JP3246296B2 - Forming method of semi-molten metal - Google Patents

Forming method of semi-molten metal

Info

Publication number
JP3246296B2
JP3246296B2 JP29076095A JP29076095A JP3246296B2 JP 3246296 B2 JP3246296 B2 JP 3246296B2 JP 29076095 A JP29076095 A JP 29076095A JP 29076095 A JP29076095 A JP 29076095A JP 3246296 B2 JP3246296 B2 JP 3246296B2
Authority
JP
Japan
Prior art keywords
container
alloy
temperature
cooling
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29076095A
Other languages
Japanese (ja)
Other versions
JPH09137239A (en
Inventor
充 安達
寛人 佐々木
康則 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP29076095A priority Critical patent/JP3246296B2/en
Priority to CA002177455A priority patent/CA2177455C/en
Priority to EP96108499A priority patent/EP0745694B1/en
Priority to EP02028272A priority patent/EP1331279A3/en
Publication of JPH09137239A publication Critical patent/JPH09137239A/en
Priority to US09/490,983 priority patent/US6769473B1/en
Application granted granted Critical
Publication of JP3246296B2 publication Critical patent/JP3246296B2/en
Priority to US10/852,952 priority patent/US6851466B2/en
Priority to US11/008,749 priority patent/US7121320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半溶融金属の成形法
に係り、特に、結晶核を有する液相線温度以上の液体状
態の合金、または結晶核を有する成形温度以上の固液共
存状態の合金を、内部あるいは外部から加熱または冷却
できる熱伝導率(室温)が1.0kcal/mhr℃以
上の材質であって注湯前に該合金の液相線温度以下に保
持された容器に注湯し成形に適した固相率を示す温度ま
で冷却する過程において、該容器内に該合金を注湯し
て、非樹枝状晶の微細な初晶を該合金液中に晶出させ、
かつ、該容器内の合金の冷却温度分布が均一になるよう
にして急速に冷却し、冷却後に該合金を成形用金型に供
給して加圧成形することを特徴とする半溶融金属の成形
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a semi-molten metal, and more particularly to an alloy in a liquid state having a crystal nucleus at a liquidus temperature or higher, or a solid-liquid coexisting state at a molding temperature or higher having a crystal nucleus. The alloy is poured into a container having a thermal conductivity (room temperature) of at least 1.0 kcal / mhr ° C. which can be heated or cooled from inside or outside, and which is kept at a temperature not higher than the liquidus temperature of the alloy before pouring. In the process of cooling to a temperature showing a solid fraction suitable for molding, the alloy is poured into the container to crystallize fine non-dendritic primary crystals in the alloy liquid,
And forming the semi-molten metal by cooling rapidly so that the cooling temperature distribution of the alloy in the container becomes uniform, supplying the alloy to a forming die after cooling, and press forming. It is about the method.

【0002】[0002]

【従来の技術】チクソキャスト法は、従来の鋳造法に比
べて鋳造欠陥や偏析が少なく、金属組織が均一で、金型
寿命が長いことや成形サイクルが短いなどの利点があ
り、最近注目されている技術である。この成形法(A)
において使用されるビレットは、半溶融温度領域で機械
撹拌や電磁撹拌を実施するか、あるいは加工後の再結晶
を利用することによって得られた球状化組織を特徴とす
るものである。これに対して、従来鋳造法による素材を
用いて半溶融成形する方法も知られている。これは、た
とえば、等軸晶組織を発生しやすいマグネシウム合金に
おいてさらに微細な結晶を生じせしめるためにZrを添
加する方法(B)や炭素系微細化剤を使用する方法
(C)であり、またアルミニウム合金において微細化剤
としてAl−5%Ti−1%B母合金を従来の2倍〜1
0倍程度添加する方法(D)であり、これらの方法によ
り得られた素材を半溶融温度域に加熱し初晶を球状化さ
せ成形する方法である。また、固溶限以内の合金に対し
て、固相線近くの温度まで比較的急速に加熱した後、素
材全体の温度を均一にし局部的な溶融を防ぐために、固
相線を超えて材料が柔らかくなる適当な温度まで緩やか
に加熱して成形する方法(E)が知られている。一方、
ビレットを半溶融温度領域まで昇温し成形する方法と異
なり、球状の初晶を含む融液を連続的に生成し、ビレッ
トとして一旦固化することなく、そのまま成形するレオ
キャスト法(F)が知られている。
2. Description of the Related Art Thixocasting has attracted attention recently because it has fewer casting defects and segregation than conventional casting methods, has a uniform metal structure, has a long mold life, and has a short molding cycle. Technology. This molding method (A)
The billet used in (1) is characterized by a spheroidized structure obtained by performing mechanical stirring or electromagnetic stirring in a semi-melting temperature range or utilizing recrystallization after processing. On the other hand, a method of semi-solid molding using a material obtained by a conventional casting method is also known. This is, for example, a method of adding Zr (B) or a method of using a carbon-based refining agent (C) in order to generate finer crystals in a magnesium alloy that easily generates an equiaxed crystal structure; Al-5% Ti-1% B master alloy as a refining agent in aluminum alloys
This is a method (D) in which the material obtained by these methods is added about 0 times, and the material obtained by these methods is heated to a semi-melting temperature range to form a primary crystal into a spheroid to form it. Also, for alloys within the solid solubility limit, after heating relatively quickly to a temperature near the solidus, the material exceeds the solidus in order to equalize the temperature of the entire material and prevent local melting. A method (E) of forming by heating gently to an appropriate temperature at which the material is softened is known. on the other hand,
Unlike the method in which a billet is heated to a semi-melting temperature range and molded, a rheocasting method (F) is known in which a melt containing a spherical primary crystal is continuously generated and molded as it is without being solidified as a billet. Have been.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た(A)の方法は撹拌法や再結晶を利用する方法のいず
れの場合も煩雑であり、製造コストが高くなる難点があ
る。また、マグネシウム合金においては(B)の場合に
は、Zrが高くコスト的に問題であり、(C)の方法で
は、炭化物系微細化剤を使用してその微細化効果を十分
に発揮させるためには、酸化防止元素であるBeを、た
とえば、7ppm程度に低く管理する必要があり、成形
直前の加熱処理時に酸化燃焼しやすく、作業上不都合で
ある。一方、アルミニウム合金においては、単に微細化
剤を添加するだけでは500μm程度であり、100μ
m以下の微細な結晶粒の組織を得ることは容易ではな
い。このため、多量に微細化剤を添加する方法(D)が
あるが、微細化剤が炉底に沈降しやすく工業的には難し
く、かつコストも高い。さらに(E)の方法では、固相
線を超えてから緩やかに加熱して素材の均一加熱と球状
化を図ることを特徴とするチクソ成形法が提案されてい
るが、通常のデンドライト組織を加熱してもチクソ組織
(初晶デンドライトが球状化されている)には変化しな
い。しかも(A)〜(E)のいずれのチクソ成形法にお
いても半溶融成形するために、一旦液相を固化しそのビ
レットを再度半溶融温度領域まで昇温する必要があり、
従来鋳造法に比べてコスト高になる。また、(F)の方
法では、球状の初晶を含む融液を連続的に生成供給する
ため、コスト的、エネルギ的にもチクソキャストよりも
有利であるが、球状組織と液相からなる金属原料を製造
する機械と最終製品を製造する鋳造機との設備的連動が
煩雑である。本発明は、上述の従来の各方法の問題点に
着目し、ビレットを使用することなく、簡便容易に、容
器内の金属の温度分布を均一に保ちながら急速に冷却し
て、球状化した初晶を有する半溶融金属を得て、加圧成
形することを目的とするものである。
However, the method (A) described above is complicated in both cases of the stirring method and the method utilizing recrystallization, and has a drawback that the production cost is increased. Further, in the case of magnesium alloy (B), Zr is high, which is a problem in terms of cost. In the method (C), a carbide-based refining agent is used to sufficiently exhibit the refining effect. It is necessary to control Be, which is an antioxidant element, to a low level of, for example, about 7 ppm, which is liable to be oxidized and burned during a heat treatment immediately before molding, which is inconvenient in operation. On the other hand, in the case of an aluminum alloy, it is about 500 μm simply by adding a refining agent.
It is not easy to obtain a structure of fine crystal grains of m or less. For this reason, there is a method (D) of adding a large amount of a fine agent, but the fine agent easily sediments at the furnace bottom and is industrially difficult and costly. Further, in the method (E), a thixo-molding method characterized by uniform heating and spheroidization of the material by gradually heating after exceeding the solidus line has been proposed. However, it does not change into the thixo structure (the primary dendrite is spheroidized). Moreover, in any of the thixo-molding methods (A) to (E), in order to perform semi-solid molding, it is necessary to once solidify the liquid phase and raise the temperature of the billet to the semi-molten temperature range again.
The cost is higher than the conventional casting method. In the method (F), the melt containing spherical primary crystals is continuously produced and supplied, which is more cost-effective and energy-efficient than thixocast. The interlocking of equipment between a machine for producing raw materials and a casting machine for producing final products is complicated. The present invention focuses on the problems of the above-described conventional methods, and uses a billet to easily and easily cool the metal in the container while keeping the temperature distribution uniform, and rapidly cooling the metal into a spherical shape. It is intended to obtain a semi-molten metal having crystals and to perform pressure molding.

【0004】[0004]

【課題を解決するための手段】このような問題を解決す
るために、本発明においては、第1の発明では、結晶核
を有する液相線温度以上の液体状態のアルミニウム合金
またはマグネシウム合金、または結晶核を有する成形温
度以上の固液共存状態の該アルミニウム合金またはマグ
ネシウム合金を、容器の内部あるいは外部から加熱また
は冷却できる熱伝導率(室温)が1.0kcal/mh
r℃以上の材質であって注湯前に該合金の液相線以下に
保持された該容器に注湯し成形に適した固相率を示す温
度まで冷却する過程において、液相線温度に対する過熱
度を100℃未満に保持した合金溶湯を、治具を使用す
ることなく直接、該容器に該合金を注湯して、非樹枝状
晶の微細な初晶を該合金液中に晶出させ、かつ、該合金
の冷却過程で、該容器内の冷却温度分布が均一になるよ
うに該容器の上部および下部を中央部に比べてより多く
加熱するか、または熱伝導率が1.0kcal/mhr
℃未満の保温材料で該容器上部および該容器下部を保温
しつつ該合金を冷却し、冷却後に該合金を成形用金型に
供給して加圧成形することとした。また、第2の発明で
は、結晶核を有する液相線温度以上の液体状態のアルミ
ニウム合金またはマグネシウム合金、または結晶核を有
する成形温度以上の固液共存状態の該アルミニウム合金
またはマグネシウム合金を、容器の内部あるいは外部か
ら加熱または冷却できる熱伝導率(室温)が1.0kc
al/mhr℃以上の材質であって注湯前に該合金の液
相線以下に保持された容器に注湯し成形に適した固相
率を示す温度まで冷却する過程において、液相線温度に
対する過熱度を100℃未満に保持した合金溶湯を、治
具を使用することなく直接、該容器に該合金を注湯し
て、非樹枝状晶の微細な初晶を該合金液中に晶出させ、
かつ、該合金の冷却過程で、該容器内の冷却温度分布が
均一になるように該容器上部を該容器中央部に比べてよ
り多く加熱し該容器下部を保温するか、または該容器上
部を保温し該容器下部を該容器中央部に比べて多く加熱
しつつ該合金を冷却し、冷却後に該合金を成形用金型に
供給して加圧成形することとした。さらに、第3の発明
では、結晶核を有する液相線温度以上の液体状態のアル
ミニウム合金またはマグネシウム合金、または結晶核を
有する成形温度以上の固液共存状態の該アルミニウム合
金またはマグネシウム合金を、容器の内部あるいは外部
から加熱または冷却できる熱伝導率(室温)が1.0k
cal/mhr℃以上の材質であって注湯前に該合金の
液相線以下に保持された容器に注湯し成形に適した固相
率を示す温度まで冷却する過程において、予め冷却工程
に先だって、該容器内の冷却温度分布が均一になるよう
に該容器上部および該容器下部を該容器中央部に比べて
より多く加熱するか、または、該容器の中央部のみを冷
却して、該容器の中央部を該容器上部および該容器下部
に比べて低温に保持したうえ、あるいは該容器下部を該
容器上部および該容器中央部より高温に保持するように
加熱したうえ、液相線温度に対する過熱度を100℃未
満に保持した合金溶湯を、治具を使用することなく直
接、該容器に該合金を注湯し、冷却後に該合金を成形用
金型に供給して加圧成形することとした。
In order to solve such a problem, according to the present invention, in the first invention, an aluminum alloy or a magnesium alloy having a crystal nucleus and in a liquid state at a liquidus temperature or higher, or The heat conductivity (room temperature) at which the aluminum alloy or magnesium alloy having a crystal nucleus in a solid-liquid coexisting state at a molding temperature or higher can be heated or cooled from the inside or outside of the container has a thermal conductivity (room temperature) of 1.0 kcal / mh.
In the process of pouring into a container that is a material of r ° C. or higher and held below the liquidus of the alloy before pouring and cooling to a temperature that shows a solid fraction suitable for molding, overheating to the liquidus temperature The alloy melt maintained at a temperature of less than 100 ° C. is poured directly into the container without using a jig, and fine primary crystals of non-dendritic crystals are crystallized in the alloy liquid. In addition, during the cooling process of the alloy, the upper and lower portions of the container are heated more than the central portion so that the cooling temperature distribution in the container is uniform, or the thermal conductivity is 1.0 kcal / mhr
The alloy was cooled while keeping the upper part and the lower part of the container warm with a heat insulating material of less than ° C, and after cooling, the alloy was supplied to a molding die and subjected to pressure molding. Further, in the second invention, an aluminum alloy or magnesium alloy in a liquid state having a crystal nucleus or higher in a liquid state at a temperature equal to or higher than a liquidus temperature, or an aluminum alloy or magnesium alloy having a crystal nucleus in a solid-liquid coexistence state at a molding temperature or higher is charged into a container. 1.0kc thermal conductivity (room temperature) that can be heated or cooled from inside or outside
In the process of cooling to a temperature showing a solid fraction suitable for pouring formed into retained the container before pouring a al / mhr ° C. or more material below the liquidus of the alloy, the liquidus temperature A molten alloy having a degree of superheat of less than 100 ° C. is directly poured into the container without using a jig, and fine primary crystals of non-dendritic crystals are crystallized in the alloy liquid. Let me out
And, in the cooling process of the alloy, the upper part of the container is heated more than the central part of the container to keep the lower part of the container warm, or the upper part of the container is heated so that the cooling temperature distribution in the container becomes uniform. The alloy was cooled while maintaining the temperature and heating the lower part of the container more than the central part of the container, and after cooling, the alloy was supplied to a molding die and subjected to pressure molding. Further, in the third invention, the aluminum alloy or magnesium alloy in a liquid state having a crystal nucleus or higher in a liquid phase temperature or higher, or the aluminum alloy or magnesium alloy in a solid-liquid coexistence state in a temperature equal to or higher than a forming temperature having a crystal nucleus is charged into a container. 1.0k thermal conductivity (room temperature) that can be heated or cooled from inside or outside
In a process of pouring into a container of cal / mhr ° C or higher and kept below the liquidus of the alloy before pouring, and cooling to a temperature showing a solid phase ratio suitable for molding, prior to the cooling step, Heating the upper part and the lower part of the container more than the central part of the container so that the cooling temperature distribution in the container becomes uniform, or cooling only the central part of the container, The central part of the container is kept at a lower temperature than the upper part of the container and the lower part of the container, or the lower part of the container is heated so as to be higher than the upper part of the container and the central part of the container. Pouring the molten alloy having a temperature of less than 100 ° C. directly into the container without using a jig, supplying the alloy to a molding die after cooling, and performing pressure molding. did.

【0005】[0005]

【発明の実施の形態】結晶核を有する液相線温度以上の
液体状態の合金、または結晶核を有する成形温度以上の
固液共存状態の合金を、内部あるいは外部から加熱また
は冷却できる熱伝導率(室温)が1.0kcal/mh
r℃以上の材質であって注湯前に該合金の液相線温度以
下に保持された容器に注湯し成形に適した固相率を示す
温度まで冷却する過程において、該容器内に該合金を注
湯して、非樹枝状晶の微細な初晶を該合金液中に晶出さ
せ、かつ、該容器内の合金の冷却温度分布が均一になる
ようにして急速に冷却し、冷却後に該合金を成形用金型
に供給して加圧成形することにより、安定した機械的性
質を保有する優れた成形体が得られる。具体的な容器の
温度管理方法は、第2、第3ならびに第4の発明に示す
ように、合金の冷却過程で、容器の上部および下部を中
央部に比べてより多く加熱するか、または、熱伝導率が
1.0kcal/mhr℃未満の保温材料で該容器上部
または該容器下部を保温しつつ、該合金を冷却したり、
容器上部を該容器中央部に比べてより多く加熱し該容器
下部を保温するか、または該容器上部を保温し該容器下
部を該容器中央部に比べて多く加熱しつつ、該合金を冷
却するようにしたり、あるいは、予め冷却工程に先立っ
て、容器上部および該容器下部を該容器中央部に比べて
より多く加熱するか、または、該容器の中央部のみを冷
却して、該容器の中央部を該容器上部および該容器下部
に比べて低温に保持したうえ、あるいは該容器下部を該
容器上部および該容器中央部よりも高温に保持するよう
に加熱したうえ、該合金を該容器内へ入れて冷却するこ
とにした。また、結晶核の生成方法は、液相線温度に対
して加熱度を300℃未満に保持された合金溶湯を該合
金の融点よりも低い温度の治具の表面に接触させること
とした。さらに、溶湯に接触させる治具は、金属製治具
または非金属製治具、あるいは半導体を含む非金属材料
を複合させた金属製治具とし、かつ該治具の内部あるい
は外部から該治具を冷却することができるようにした。
そして、第7の発明では、結晶核の生成を、治具または
容器のいずれかもしくは両方に接触する合金溶湯に振動
を与えることとした。また、第8の発明では、液相線温
度に対する加熱度は100℃未満に保持した合金溶湯
を、治具を使用することなく直接、断熱容器に注ぐよう
にした。
BEST MODE FOR CARRYING OUT THE INVENTION Thermal conductivity capable of heating or cooling an alloy having crystal nuclei in a liquid state at a liquidus temperature or higher or a solid state having a crystal nucleus and a solid-liquid coexisting temperature at a molding temperature or higher from inside or outside (Room temperature) is 1.0 kcal / mh
In the process of pouring into a container having a material temperature of at least r ° C. and being held at a temperature not higher than the liquidus temperature of the alloy before pouring and cooling to a temperature showing a solid fraction suitable for molding, the alloy is contained in the container. To cool the fine primary crystals of non-dendritic crystals into the alloy liquid, and rapidly cool the alloy in the vessel so that the cooling temperature distribution becomes uniform. By supplying the alloy to a molding die and performing pressure molding, an excellent molded body having stable mechanical properties can be obtained. A specific method of controlling the temperature of the container is, as shown in the second, third and fourth inventions, to heat the upper and lower parts of the container more than the center part during the cooling of the alloy, or Cooling the alloy while keeping the upper part or lower part of the container warm with a heat insulating material having a thermal conductivity of less than 1.0 kcal / mhr ° C;
Either heat the upper part of the container more than the central part of the container and keep the lower part of the container, or cool the alloy while keeping the upper part of the container warm and the lower part of the container more heated than the central part of the container. Prior to the cooling step, the upper part of the container and the lower part of the container may be heated more than the central part of the container, or only the central part of the container may be cooled before the cooling step. After the part is kept at a lower temperature than the upper part of the container and the lower part of the container, or the lower part of the container is heated so as to be higher than the upper part of the container and the central part of the container, and then the alloy is put into the container. I decided to put it in and cool it down. Further, as a method for generating crystal nuclei, a molten alloy having a heating degree of less than 300 ° C. with respect to a liquidus temperature is brought into contact with the surface of a jig having a temperature lower than the melting point of the alloy. Further, the jig to be brought into contact with the molten metal may be a metal jig or a non-metal jig, or a metal jig in which a non-metal material including a semiconductor is compounded, and the jig may be provided from inside or outside the jig. Can be cooled.
In the seventh invention, the crystal nucleus is generated by applying vibration to the molten alloy in contact with one or both of the jig and the container. Further, in the eighth invention, the molten alloy kept at a heating degree of less than 100 ° C. with respect to the liquidus temperature is directly poured into the heat insulating container without using a jig.

【0006】[0006]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1〜図9は本発明の実施例に係り、図1は
最大固溶限以上の組成の亜共晶アルミニウム合金の半溶
融金属の成形方法を示す工程説明図、図2は最大固溶限
内組成のマグネシウム合金あるいはアルミニウム合金の
半溶融金属の成形方法を示す工程説明図、図3は球状初
晶の生成から成形までの工程説明図、図4は図3に示し
た各工程における金属組織の模式図、図5は図3に示し
た工程3における容器内金属の冷却温度変化の比較図、
図6は容器の各温度管理の説明図、図7は代表的なアル
ミニウム合金であるAl−Si系合金の平衡状態図、図
8は代表的なマグネシウム合金であるMg−Al系合金
の平衡状態図、図9は本発明例の成形品の金属組織を示
す顕微鏡写真の模写図である。なお、図10は比較例の
成形品の金属組織を示す顕微鏡写真の模写図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 9 relate to an embodiment of the present invention. FIG. 1 is a process explanatory view showing a method for forming a semi-molten metal of a hypoeutectic aluminum alloy having a composition not less than the maximum solid solubility limit, and FIG. FIG. 3 is a process explanatory diagram showing a method for forming a semi-molten metal of a magnesium alloy or an aluminum alloy having an internal composition, FIG. 3 is a process explanatory diagram from the generation of a spherical primary crystal to molding, and FIG. 4 is a metal structure in each process shown in FIG. FIG. 5 is a comparison diagram of the cooling temperature change of the metal in the container in step 3 shown in FIG. 3,
FIG. 6 is an explanatory view of each temperature control of the container, FIG. 7 is an equilibrium state diagram of a typical aluminum alloy, Al-Si alloy, and FIG. 8 is an equilibrium state of a typical magnesium alloy, Mg-Al alloy. FIG. 9 and FIG. 9 are simulated views of micrographs showing the metal structure of the molded article of the present invention. FIG. 10 is a microphotograph showing the metallographic structure of the molded article of the comparative example.

【0007】本発明においては、図1、図2、図7、図
8に示すように、まず、(1)液相線温度に対して過熱
度を300℃未満に保持した最大固溶限以上の組成の亜
共晶アルミニウム合金あるいは最大固溶限内組成のマグ
ネシウム合金またはアルミニウム合金の溶湯を、該合金
の融点よりも低い温度の治具20の表面に接触させる
か、あるいは、(2)液相線温度に対する過熱度は10
0℃未満に保持した結晶核の生成を促す元素を含むアル
ミニウム合金、マグネシウム合金の溶湯を、治具20を
使用せずに直接、内部あるいは外部から加熱かつ冷却で
きる熱伝導率(室温)が1.0kcal/mhr℃以上
の材質であって注湯前に該合金の液相線温度以下に保持
された所定厚みの容器30に注湯し、成形に適した固相
率を示す温度まで冷却する過程において、容器30の上
部および下部を中央部に比べてより多く加熱するか、ま
たは、熱伝導率が1.0kcal/mhr℃未満の保温
材料で該容器上部または該容器下部を保温しつつ該容器
30内に該合金を注ぐか、あるいは、容器上部を該容器
中央部に比べてより多く加熱し該容器下部を保温する
か、または該容器上部を保温し該容器下部を該容器中央
部に比べて多く加熱しつつ該容器30内に該合金を注ぐ
か、あるいは、予め冷却工程に先立って、容器上部およ
び該容器下部を該容器中央部に比べてより多く加熱する
か、または、該容器30の中央部のみを冷却して、該容
器30の中央部を該容器上部および該容器下部に比べて
低温に保持したうえ、あるいは、該容器下部を該容器上
部および該容器中央部よりも高温に保持するように加熱
したうえ、該容器30内に該合金を注湯して、非樹枝状
晶の微細な初晶を該合金液中に晶出させ、かつ、該容器
30内の合金の冷却温度分布が均一になるようにして急
速に冷却し、冷却後に該合金を成形用金型80に供給し
て加圧成形するようにした。
In the present invention, as shown in FIG. 1, FIG. 2, FIG. 7, and FIG. 8, first, (1) the maximum solid solubility at which the superheat degree is kept below 300 ° C. with respect to the liquidus temperature. Contacting the surface of the jig 20 with a temperature lower than the melting point of the hypoeutectic aluminum alloy having the composition of Degree of superheat to phase line temperature is 10
A heat conductivity (room temperature) at which a molten metal of an aluminum alloy or a magnesium alloy containing an element that promotes generation of crystal nuclei held at a temperature lower than 0 ° C. can be directly heated and cooled from the inside or the outside without using the jig 20 is 1 A process of pouring into a vessel 30 of a predetermined thickness maintained at a temperature not higher than the liquidus temperature of the alloy before pouring, and cooling to a temperature showing a solid fraction suitable for molding before pouring. , The upper and lower portions of the container 30 are heated more than the central portion, or the upper and lower portions of the container are kept warm with a heat insulating material having a thermal conductivity of less than 1.0 kcal / mhr ° C. Pour the alloy into 30 or heat the upper part of the container more than the central part of the container to keep the lower part of the container, or keep the upper part of the container warm and keep the lower part of the container Much heating While pouring the alloy into the container 30 or heating the container upper portion and the container lower portion more than the central portion of the container prior to the cooling step in advance, or only the central portion of the container 30 So that the central part of the container 30 is kept at a lower temperature than the container upper part and the container lower part, or the container lower part is kept at a higher temperature than the container upper part and the container central part. After heating, the alloy is poured into the vessel 30 to crystallize fine primary crystals of non-dendritic crystals in the alloy liquid, and the cooling temperature distribution of the alloy in the vessel 30 is uniform. Then, the alloy was rapidly cooled, and after cooling, the alloy was supplied to a molding die 80 for pressure molding.

【0008】上述の冷却過程における容器30および容
器30内の合金の温度管理を、整理してまとめたもの
を、図6に示した。図6の(a)〜(g)は、それぞ
れ、第2発明〜第4発明に記載の温度管理方法に対応し
ている。
FIG. 6 shows a summary of the temperature control of the container 30 and the alloy in the container 30 in the cooling process described above. (A) to (g) of FIG. 6 correspond to the temperature management methods described in the second to fourth inventions, respectively.

【0009】容器30の厚みに関しては、注湯された
後、容器壁面に接する溶湯より樹枝状の初晶が発生せ
ず、しかも成形直前に容器内から半溶融金属を取り出し
た段階で容器内部に凝固層が残らない厚みとすることが
望ましく、その厚みは、合金の種類および容器30内の
合金の重量により適宜決定される。また、「成形に適し
た固相率」とは,加圧成形に適する固相の量比を意味
し、ダイカスト鋳造、スクイズ鋳造などの高圧鋳造では
固相率は10%〜80%、好ましくは30%〜70%
(70%以上では素材の成形性が劣り、30%以下では
素材が軟らかいためハンドリングが難しいばかりでな
く、均一な組織が得にくくなる)とし、押出法や鍛造法
では、30%〜99.9%、好ましくは50%〜99.
9%(50%以下では組織の不均一が生じる惧れがあ
る)とする。
Regarding the thickness of the container 30, after pouring, no dendritic primary crystals are generated from the molten metal in contact with the wall of the container. It is desirable that the thickness be such that no solidified layer remains. The thickness is appropriately determined depending on the type of the alloy and the weight of the alloy in the container 30. The term “solid phase ratio suitable for molding” means the ratio of the solid phase suitable for pressure molding. In high-pressure casting such as die casting and squeeze casting, the solid phase ratio is 10% to 80%, preferably 30% to 70%
(If the content is 70% or more, the formability of the material is inferior, and if it is 30% or less, the material is soft and difficult to handle, and it is difficult to obtain a uniform structure.) In the extrusion method and the forging method, 30% to 99.9. %, Preferably 50% to 99.%.
9% (If it is 50% or less, there is a possibility that the tissue becomes uneven).

【0010】また、「液相線温度以下の温度」とは、速
やかに容器内金属の温度を成形温度まで低下させても、
容器壁面に接する溶湯より樹枝状の初晶が発生せず、し
かも成形直前に容器内から半溶融金属を取り出した段階
で容器内部に凝固層が残らない温度を意味しており、そ
の値は、合金および容器内の合金の重量により異なる。
また、本発明でいう「容器」とは、金属性容器または非
金属性容器とするか、あるいは半導体を含む非金属材料
を表面に塗布した金属製容器、もしくは半導体を含む非
金属材料を複合させた金属製容器とする。非金属材料を
金属製容器の表面に塗布するのは、メタルの付着防止に
効果的である。また、容器を加熱する手段として、該容
器の内部あるいは外部をヒータで加熱する以外に、導電
性の容器を用いた場合は高周波による誘導加熱も含むも
のとする。
[0010] The term "temperature below the liquidus temperature" means that even if the temperature of the metal in the container is rapidly lowered to the molding temperature,
It means the temperature at which no dendritic primary crystals are generated from the molten metal in contact with the vessel wall, and the solidified layer does not remain inside the vessel at the stage when the semi-molten metal is taken out of the vessel immediately before molding. Depends on the alloy and the weight of the alloy in the container.
Further, the “container” in the present invention is a metal container or a non-metal container, or a metal container having a surface coated with a non-metal material containing a semiconductor, or a composite of a non-metal material containing a semiconductor. Metal container. Applying a non-metallic material to the surface of a metal container is effective in preventing the adhesion of metal. As means for heating the container, in addition to heating the inside or outside of the container with a heater, when a conductive container is used, induction heating by high frequency is included.

【0011】具体的には、以下のとおりの手順により作
業を進める。図3および図4の工程[1]においてラド
ル10内に入れられた完全液体である金属Mを工程
[2]において、(a)冷却用治具20を用いて低温溶
湯(必要に応じて結晶核生成を促進する元素も添加)か
ら結晶核を発生させ、工程[3]−0においてあらかじ
め液相線温度以下の所定の温度に保持された容器30に
注ぐ、または、(b)微細組織生成促進元素を含む融点
直上の低温溶湯を直接工程[3]−0においてあらかじ
め液相線温度以下に保持された容器30に注ぐ、のいず
れかの方法により多数の結晶核を含む液相線直下あるい
は直上の合金を得る。
[0011] Specifically, the operation proceeds according to the following procedure. In the step [2], the metal M which is the complete liquid put in the ladle 10 in the step [1] of FIG. 3 and FIG. Nucleation is also added) and a crystal nucleus is generated, and in step [3] -0, it is poured into a container 30 that has been previously held at a predetermined temperature equal to or lower than the liquidus temperature, or (b) microstructure formation. The low-temperature molten metal immediately above the melting point containing the accelerating element is directly poured into the vessel 30 previously kept at a liquidus temperature or lower in the step [3] -0. Obtain the alloy directly above.

【0012】次に工程[3]において、該合金を半溶融
状態で保持し、導入された結晶核から微細な粒状(非デ
ンドライト状)の初晶を生成させる。このようにして、
得られた所定の固相率を有する金属Mを、たとえば、工
程[4]のようにダイキャストの射出スリーブ70に挿
入した後、ダイカストマシンの金型キャビティ80a内
で加圧成形して成形品を得る。
Next, in step [3], the alloy is held in a semi-molten state, and fine granular (non-dendritic) primary crystals are generated from the introduced crystal nuclei. In this way,
The obtained metal M having a predetermined solid fraction is inserted into a die-cast injection sleeve 70, for example, as in step [4], and then pressure-molded in a mold cavity 80a of a die-casting machine to form a molded product. Get.

【0013】図1、図2、図3、図4に示す本発明と従
来のチクソキャスト法、レオキャスト法、の違いは図よ
り明らかである。すなわち、本発明では従来法のよう
に、半溶融温領域で晶出したデンドライト状の初晶を機
械撹拌や電磁撹拌で強制的に破砕球状化することはな
く、半溶融温度領域での温度低下とともに液中に導入さ
れた結晶核を起点として晶出、成長する多数の初晶が合
金自身が持っている熱量により(必要に応じて外部から
加熱保持されることも有り得る)連続的に球状化される
ものであり、また、チクソキャスト法におけるビレット
の再昇温による半溶融化の工程が省かれているため極め
て簡便な方法である。
The differences between the present invention shown in FIGS. 1, 2, 3 and 4 and the conventional thixocast method and rheocast method are apparent from the figures. That is, in the present invention, unlike the conventional method, the dendritic primary crystals crystallized in the semi-melting temperature region are not forcibly crushed and spheroidized by mechanical stirring or electromagnetic stirring, and the temperature is reduced in the semi-melting temperature region. At the same time, many primary crystals that crystallize and grow from the crystal nuclei introduced into the liquid as a starting point are continuously spheroidized by the heat of the alloy itself (it can be heated and held from the outside if necessary). This is an extremely simple method because the step of semi-solidification by reheating the billet in the thixocasting method is omitted.

【0014】上述した各工程、すなわち、図1に示す冷
却治具への注湯工程、初晶の生成、球状工程、成形工程
のそれぞれにおいて設定された鋳造条件、球状化条件お
よび成形条件や第1の発明、第2の発明、第4の発明、
第8の発明で示した数値限定理由について以下に説明す
る。鋳造温度が融点に対して300℃以上高ければ、あ
るいは治具20の表面温度が融点以上の場合では、
(1)結晶の核発生が少なく、しかも、(2)容器に注
がれた時の溶湯Mの温度が液相線よりも高いために残存
する結晶核の割合も少なく、初晶のサイズが大きくな
る。このため、鋳造温度は液相線に対する過熱度が30
0℃未満とし、治具の表面温度は、合金の融点よりも低
くする。なお、液相線に対する過熱度を100℃未満と
することにより、さらに好ましくは50℃以下にするこ
とにより、また治具20の温度を合金Mの融点よりも5
0℃以上低くすることにより、より微細な初晶サイズと
することができる。治具20に溶湯Mを接触させる方法
としては、治具の表面を溶湯Mを移動させる場合(傾斜
した治具20へ溶湯を流す)と、溶湯中を治具20が移
動する場合の2種類がある。なお、ここで言う治具と
は、溶湯が流下する際に冷却作用を溶湯に与えるものを
言うが、これに代えて、たとえば給湯機に筒状のパイプ
を使用してもよい。
The casting conditions, spheroidizing conditions, molding conditions and molding conditions set in each of the above-mentioned steps, ie, the steps of pouring into the cooling jig shown in FIG. The first invention, the second invention, the fourth invention,
The reason for the numerical limitation shown in the eighth invention will be described below. If the casting temperature is higher than the melting point by 300 ° C. or more, or if the surface temperature of the jig 20 is higher than the melting point,
(1) The generation of crystal nuclei is small, and (2) the ratio of remaining crystal nuclei is small because the temperature of the molten metal M when poured into the vessel is higher than the liquidus line, and the size of primary crystals is small. growing. For this reason, the casting temperature is 30 degrees of superheat to the liquidus line.
The temperature is set to less than 0 ° C., and the surface temperature of the jig is set lower than the melting point of the alloy. The degree of superheat to the liquidus is set to less than 100 ° C., more preferably to 50 ° C. or less, and the temperature of the jig 20 is set to 5
By lowering the temperature by 0 ° C. or more, a finer primary crystal size can be obtained. There are two methods for bringing the molten metal M into contact with the jig 20: moving the molten metal M on the surface of the jig (flowing the molten metal to the inclined jig 20) and moving the molten metal M through the molten metal. There is. The jig referred to here is a jig that gives a cooling action to the molten metal when the molten metal flows down. Alternatively, for example, a cylindrical pipe may be used for a water heater.

【0015】容器30は、液相線直下に低下した溶湯を
所定の固相率まで冷却保持するために用いるものである
が、容器30の熱伝導率(室温)が1.0kcal/m
hr℃未満の場合は、断熱性が良いため、容器30に注
がれた溶湯Mが所定の固相率を示す温度まで冷却保持さ
れる時間が長くなり、作業能率が悪く、かつ,生成した
球状初晶も粗くなり成形性が低下する。ただし、容器内
の溶湯量が少ない場合は1.0kcal/mhr℃未満
でも冷却に必要な保持時間は短くなる。また、容器30
の温度が液相線温度よりも高い場合は、該容器に注がれ
た時の溶湯Mの温度が液相線よりも高いために残存する
結晶核の割合も少なく、初晶のサイズが大きくなる。ま
た、溶湯Mの固相率が成形に適した固相率を示すまで冷
却される際に、容器上部および容器下部が加熱もしくは
保温されない場合、該容器の上部および下部の溶湯Mが
接する部位よりデンドライト状の初晶が発生したり、凝
固層が成長し容器内の金属の温度分布も不均一になるた
め、容器内部に凝固層が残り成形が困難になる。このた
め、注湯後の冷却過程では容器上部および容器下部を容
器中央部より加熱したりあるいは保温し、必要に応じて
注湯後の冷却過程だけでなく、注湯前にあらかじめ該容
器の上部、下部を加熱する。
The container 30 is used for cooling and holding the molten metal that has dropped just below the liquidus line to a predetermined solid fraction, and the thermal conductivity (room temperature) of the container 30 is 1.0 kcal / m.
When the temperature is lower than hr ° C., since the heat insulating property is good, the time during which the molten metal M poured into the container 30 is cooled and held to a temperature at which a predetermined solid fraction is maintained is prolonged. Spherical primary crystals also become coarse and the formability decreases. However, when the amount of molten metal in the container is small, the holding time required for cooling becomes shorter even at less than 1.0 kcal / mhr ° C. The container 30
Is higher than the liquidus temperature, the rate of the remaining crystal nuclei is small because the temperature of the molten metal M when poured into the container is higher than the liquidus temperature, and the size of the primary crystal is large. Become. Further, when the molten metal M is cooled until the solid phase ratio of the molten metal M shows a solid phase ratio suitable for molding, if the upper portion and the lower portion of the container are not heated or kept warm, the upper portion and the lower portion of the container may be in contact with the portion where the molten metal M contacts. Since a dendrite-like primary crystal is generated or a solidified layer grows and the temperature distribution of the metal in the container becomes uneven, the solidified layer remains in the container and molding is difficult. For this reason, in the cooling process after pouring, the upper part and lower part of the container are heated or kept warm from the central part of the container, and not only the cooling process after pouring as necessary, but also the upper part of the container before pouring, Heat the lower part.

【0016】容器30は熱伝導率以外は特に限定される
ものではなく,溶湯との濡れ性が悪いものが好ましい。
また、通気性のある容器を容器30として使用する場合
あるいは長時間保持される場合、マグネシウム合金およ
びアルミニウム合金は酸化しやすいため、容器外部を所
定の雰囲気(不活性雰囲気、減圧雰囲気など)にするこ
とが好ましい。また金属性容器を使用する場合において
も、マグネシウム合金は酸化しやすいので不活性雰囲気
やCO2雰囲気にすることが望ましい。また、酸化防止
を図るために予め金属溶湯に、マグネシウム合金ではB
e、Caを、アルミニウム合金ではBeを添加すること
が望ましい。なお、容器30の形状は筒状に限定される
ものではなく、その後の成形法に適した形状が可能であ
る。なお、高圧鋳造では成形直前の固相率が80%以上
であれば成形時の変形抵抗が高く良好な品質の成形品を
得ることができない。また10%以内では均一な組織を
有する成形品を得ることができない。このため、前述し
たとおり成形時の固相率は、10%〜80%とすること
が望ましい。さらに、実質の固相率を30%〜70%に
することにより、さらに均質でかつ高品質の成形材を容
易に加圧成形できる。また、共晶組成に近いAl−Si
系合金を成形する場合、液相率を80%以内に低下させ
る必要がある時は、Siの改良元素であるNaやSrな
どを添加することは共晶Siを微細化し延性を向上させ
るのに好都合である。加圧成形する手段としては、スク
イズ鋳造法やダイキャスト鋳造法に代表される高圧鋳造
法に限定されるものではなく、押し出し法、鍛造法など
の加圧成形する種々の方法が含まれる。
The container 30 is not particularly limited except for the thermal conductivity, and preferably has poor wettability with the molten metal.
When a gas-permeable container is used as the container 30 or when the container is held for a long time, the magnesium alloy and the aluminum alloy are easily oxidized, so that the outside of the container is set to a predetermined atmosphere (inert atmosphere, reduced-pressure atmosphere, or the like). Is preferred. Even when a metal container is used, the magnesium alloy is easily oxidized, so that it is desirable to use an inert atmosphere or a CO2 atmosphere. In addition, in order to prevent oxidation, the molten metal is used in advance.
It is desirable to add e, Ca, and Be in an aluminum alloy. The shape of the container 30 is not limited to a cylindrical shape, but may be a shape suitable for a subsequent molding method. In the case of high-pressure casting, if the solid phase ratio immediately before molding is 80% or more, a molded article having high deformation resistance during molding and good quality cannot be obtained. If it is less than 10%, a molded article having a uniform structure cannot be obtained. For this reason, as described above, the solid phase ratio during molding is desirably 10% to 80%. Further, by setting the substantial solid phase ratio to 30% to 70%, a more homogeneous and high-quality molded material can be easily pressure-formed. In addition, Al-Si close to the eutectic composition
When it is necessary to reduce the liquid phase ratio to within 80% when forming a system alloy, adding Na or Sr, which is an element for improving Si, to make eutectic Si finer and improve ductility. It is convenient. The means for pressure molding is not limited to a high pressure casting method represented by a squeeze casting method or a die casting method, but includes various methods of pressure molding such as an extrusion method and a forging method.

【0017】溶湯Mを接触させる治具20は、溶湯の温
度を低下させることができるものであればその材質を限
定するものではないが、特に熱伝導率の高い銅、銅合
金、アルミ合金などの金属で、しかも一定の温度以下に
維持できるように冷却管理された治具20は結晶核を多
く生成するので好ましい。なお、溶湯Mが治具20に付
着するのを防ぐために非金属材料を塗布するのは効果的
である。塗布する方法としては、機械的、化学的、ある
いは物理的方法のいずれでも構わない。なお、治具20
を用いずに微細球状の初晶を得る場合、液相線に対する
加熱度を100℃未満にするのは、容器30に注いだ合
金を、結晶核を有する液体状態,または結晶核を有する
成形温度以上の固液共存状態にするためである。注がれ
た容器30内の溶湯温度が高ければ、所定の固相率まで
温度が低下するために時間がかかりすぎ能率が悪い.ま
た注がれた溶湯Mの湯面が酸化されたり、あるいは燃焼
したりするために不都合である。
The material of the jig 20 to be brought into contact with the molten metal M is not limited as long as it can lower the temperature of the molten metal, but copper, a copper alloy, an aluminum alloy, etc. The jig 20 which is made of the above-mentioned metal and is cooled and controlled so as to be able to maintain the temperature below a certain level is preferable because it generates many crystal nuclei. It is effective to apply a non-metallic material to prevent the molten metal M from attaching to the jig 20. As a method of applying, any of a mechanical, chemical, or physical method may be used. The jig 20
In the case of obtaining a fine spherical primary crystal without using an alloy, the degree of heating to the liquidus line is set to less than 100 ° C. because the alloy poured into the container 30 is converted into a liquid state having crystal nuclei or a molding temperature having crystal nuclei. This is for achieving the above-described solid-liquid coexistence state. If the temperature of the molten metal in the poured container 30 is high, it takes too much time to lower the temperature to a predetermined solid fraction, and the efficiency is poor. In addition, it is inconvenient because the surface of the poured molten metal M is oxidized or burned.

【0018】表1に成形前の半溶融金属の条件および成
形材の品質を示す。成形は図3に示すように、半溶融金
属をスリーブに挿入し、その後スクイズ鋳造機を用いて
行なった。成形条件は,加圧力950kgf/cm2
射出速度1.0m/s、鋳造品重量(ビスケット含む)
30kg、金型温度230℃とした。
Table 1 shows the conditions of the semi-molten metal before forming and the quality of the formed material. The molding was performed by inserting a semi-molten metal into the sleeve as shown in FIG. 3 and then using a squeeze casting machine. The molding conditions were a pressure of 950 kgf / cm 2 ,
Injection speed 1.0m / s, casting weight (including biscuit)
30 kg and a mold temperature of 230 ° C.

【0019】[0019]

【表1】 [Table 1]

【0020】比較例1では熱伝導率が小さく、かつ注湯
後の容器の加熱、保温が不適切なため、成形までの保持
時間が長く、かつ容器内部に凝固層が生成されるため、
半溶融合金を取り出すことができず成形ができない。比
較例2では熱伝導率が小さいために成形までの保持時間
が長い。比較例3では容器の加熱保温が不適切なため、
容器内部に凝固層が生成されるため、半溶融合金を取り
出すことができず成形工程に移行できない。比較例4で
は容器肉厚が厚く、しかも容器の加熱保温が不適切なた
め、不定形初晶が発生し、また容器内部に凝固層が生成
されるため、半溶融金属を取り出すことができず成形で
きない。比較例5では鋳造温度が高いため、容器内にお
いて残存する結晶核がほとんどないため、図10に示す
ような粗大な不定形の初晶しか得られない。比較例6で
は冷却治具の温度が高いために、結晶核の発生が少な
く、微細球状の初晶が比較例5と同様に粗大な不定形の
初晶しか得られない。比較例7では固相率が少ないため
に、成形品内部の偏析が多い。
In Comparative Example 1, since the heat conductivity is low, and the heating and heat retention of the container after pouring are inappropriate, the holding time until molding is long, and a solidified layer is formed inside the container.
The semi-solid alloy cannot be removed and molding cannot be performed. In Comparative Example 2, since the thermal conductivity is small, the holding time until molding is long. In Comparative Example 3, because the heating and heat retention of the container were inappropriate,
Since a solidified layer is formed inside the container, the semi-molten alloy cannot be taken out and the process cannot be shifted to the forming step. In Comparative Example 4, since the container thickness was large and the heating and heat retention of the container were inappropriate, an amorphous primary crystal was generated, and a solidified layer was formed inside the container, so that the semi-molten metal could not be taken out. Cannot be molded. In Comparative Example 5, since the casting temperature was high, almost no crystal nuclei remained in the vessel, and only a coarse amorphous primary crystal as shown in FIG. 10 was obtained. In Comparative Example 6, since the temperature of the cooling jig was high, the generation of crystal nuclei was small, and fine spherical primary crystals could be obtained only as coarse amorphous primary crystals as in Comparative Example 5. In Comparative Example 7, the segregation inside the molded article was large because the solid phase ratio was small.

【0021】一方、本発明例8〜14では、容器30内
の金属の温度分布を均一に保ちながら急速に冷却させ、
簡便容易に非樹枝状晶の微細な初晶を有する半溶融金属
を得て、該合金を成形用金型に供給して加圧成形するこ
とにより、200μm以下の微細な球状の初晶を有する
均質な組織の成形体が得られる。
On the other hand, in Examples 8 to 14 of the present invention, the metal in the container 30 was cooled rapidly while keeping the temperature distribution uniform.
A semi-molten metal having fine primary crystals of non-dendritic crystals can be obtained easily and easily, and the alloy is supplied to a molding die and subjected to pressure molding to have a fine spherical primary crystal of 200 μm or less. A compact having a homogeneous structure is obtained.

【0022】[0022]

【発明の効果】以上説明したことから明らかなように、
本発明に関わる半溶融金属の成形方法では、(1)結晶
核を有する液相線温度以上の液体状態の合金,または,
結晶核を有する成形温度以上の固液共存状態の合金を、
あるいは、(2)液相線温度に対して過熱度を300℃
未満に保持された合金溶湯を該合金の融点よりも低い温
度の治具の表面に接触させることにより結晶核を発生さ
せて、微細かつ球状化した初晶を液中に発生させた該合
金を、内部あるいは外部から加熱かつ冷却できる熱伝導
率(室温)が1.0kcal/mhr℃以上の容器に注
湯し、成形に適した固相率を示す温度まで冷却する過程
において、該容器の中央部に比べて容器上部および容器
下部をより加熱するか、または、熱伝導率が1.0kc
al/mhr℃未満の保温材料で容器上部および容器下
部を保温することにより、または該容器の中央部のみ冷
却することにより、または該容器上部を該容器中央部に
比べてより加熱し該容器下部を保温するか、または該容
器下部を保温し該容器上部を該容器中央部に比べてより
加熱することにより、非樹枝状晶の微細な初晶を該合金
中に晶出させ、かつ該容器内の合金の温度分布を均一に
保持して急速に冷却した後、該合金を成形用金型に供給
して加圧成形することにより、従来の機械撹拌法、電磁
撹拌法によらず、簡便容易にかつ、低コストで微細かつ
球状の組織を有する成形体が得られる。また、液相線温
度に対する過熱度は100℃未満に保持した結晶核の生
成を促す元素を含むアルミニウム合金溶湯、マグネシウ
ム合金溶湯を治具を使用せず直接に、容器の中に注ぎ、
所定の固相率を示す成形温度まで冷却しつつ保持するこ
とにより、同様に、微細かつ球状化した初晶を発生させ
ることができる。
As is apparent from the above description,
In the method for forming a semi-molten metal according to the present invention, (1) an alloy in a liquid state having a crystal nucleus and having a liquidus temperature or higher, or
An alloy in a solid-liquid coexisting state at a molding temperature or higher having crystal nuclei,
Alternatively, (2) the degree of superheat is set to 300 ° C. with respect to the liquidus temperature.
A crystal nucleus is generated by contacting the molten alloy held at a temperature lower than the melting point of the alloy with the surface of the jig to generate a fine and spherical primary crystal in the liquid. In the process of pouring into a container having a heat conductivity (room temperature) of 1.0 kcal / mhr ° C. or higher, which can be heated and cooled from inside or outside, and cooling to a temperature showing a solid fraction suitable for molding, the center of the container is cooled. Heats the container upper and lower parts more than the part, or has a thermal conductivity of 1.0 kc
By keeping the upper and lower portions of the container warm with a heat insulating material of less than al / mhr ° C., or by cooling only the central portion of the container, or by heating the upper portion of the container more than the central portion of the container and lowering the lower portion of the container. Or by heating the lower part of the container and heating the upper part of the container more than the central part of the container to crystallize non-dendritic fine primary crystals in the alloy, and After maintaining the temperature distribution of the alloy in the inside uniformly and cooling rapidly, the alloy is supplied to a molding die and press-formed, so that it can be easily performed without using the conventional mechanical stirring method or electromagnetic stirring method. A compact having a fine and spherical structure can be obtained easily and at low cost. In addition, the degree of superheat with respect to the liquidus temperature is kept at less than 100 ° C., and the molten aluminum alloy and the molten magnesium alloy containing the element that promotes the generation of crystal nuclei are poured directly into the container without using a jig,
Similarly, by cooling and holding to a molding temperature showing a predetermined solid fraction, fine and spherical primary crystals can be generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る最大固溶限以上の組成の亜共晶ア
ルミニウム合金の半溶融金属の成形方法を示す工程説明
図である。
FIG. 1 is a process explanatory view showing a method for forming a semi-molten metal of a hypoeutectic aluminum alloy having a composition not less than the maximum solid solubility according to the present invention.

【図2】本発明に係る最大固溶限内組成のマグネシウム
合金あるいはアルミニウム合金の半溶融金属の成形方法
を示す工程説明図である。
FIG. 2 is a process explanatory view showing a method for forming a semi-molten metal of a magnesium alloy or an aluminum alloy having a composition within a maximum solid solubility limit according to the present invention.

【図3】本発明に係る球状初晶の生成から成形までの工
程説明図である。
FIG. 3 is an explanatory diagram of steps from generation of a spherical primary crystal to molding according to the present invention.

【図4】図3に示した各工程における金属組織の模式図
である。
FIG. 4 is a schematic view of a metal structure in each step shown in FIG.

【図5】図3に示した工程3における容器内金属の冷却
温度変化の比較図である。
FIG. 5 is a comparison diagram of a change in cooling temperature of metal in a container in step 3 shown in FIG.

【図6】本発明に係る容器の各温度管理の説明図であ
る。
FIG. 6 is an explanatory diagram of each temperature management of the container according to the present invention.

【図7】本発明に係る代表的なアルミニウム合金である
Al−Si系合金の平衡状態図である。
FIG. 7 is an equilibrium diagram of an Al—Si alloy which is a typical aluminum alloy according to the present invention.

【図8】本発明に係る代表的なマグネシウム合金である
Mg−Al系合金の平衡状態図である。
FIG. 8 is an equilibrium diagram of a Mg—Al alloy, which is a typical magnesium alloy according to the present invention.

【図9】本発明例の成形品の金属組織を示す顕微鏡写真
の模写図である。
FIG. 9 is a simulated view of a micrograph showing a metal structure of a molded article of an example of the present invention.

【図10】比較例の成形品の金属組織を示す顕微鏡写真
の模写図である。
FIG. 10 is a simulated view of a micrograph showing a metal structure of a molded article of a comparative example.

【符号の説明】[Explanation of symbols]

10 ラドル 20 治具(冷却用治具) 30 容器(断熱容器またはセラミック製容器) 40 ヒータ 50 保温カバー 60 搬送装置 70 射出スリーブ 80 金型 80a 金型キャビティ M 溶湯金属(合金) T 容器内合金温度 t 保持時間 Reference Signs List 10 ladle 20 jig (cooling jig) 30 container (insulated container or ceramic container) 40 heater 50 heat retaining cover 60 transfer device 70 injection sleeve 80 mold 80a mold cavity M molten metal (alloy) T alloy temperature in container t Holding time

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−60267(JP,A) 特開 平8−103859(JP,A) 特開 平7−164108(JP,A) 特開 平7−100612(JP,A) 特開 平6−279889(JP,A) 特開 平8−325652(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 1/02 B22D 17/00 - 17/32 B22D 27/00 - 27/20 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-8-60267 (JP, A) JP-A-8-103859 (JP, A) JP-A-7-164108 (JP, A) JP-A-7-164 100612 (JP, A) JP-A-6-279889 (JP, A) JP-A-8-325652 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 1/02 B22D 17 / 00-17/32 B22D 27/00-27/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結晶核を有する液相線温度以上の液体状
態のアルミニウム合金またはマグネシウム合金、または
結晶核を有する成形温度以上の固液共存状態の該アルミ
ニウム合金またはマグネシウム合金を、容器の内部ある
いは外部から加熱または冷却できる熱伝導率(室温)が
1.0kcal/mhr℃以上の材質であって注湯前に
該合金の液相線以下に保持された該容器に注湯し成形に
適した固相率を示す温度まで冷却する過程において、液
相線温度に対する過熱度を100℃未満に保持した合金
溶湯を、治具を使用することなく直接、該容器に該合金
を注湯して、非樹枝状晶の微細な初晶を該合金液中に晶
出させ、かつ、該合金の冷却過程で、該容器内の冷却温
度分布が均一になるように該容器の上部および下部を中
央部に比べてより多く加熱するか、または熱伝導率が
1.0kcal/mhr℃未満の保温材料で該容器上部
および該容器下部を保温しつつ該合金を冷却し、冷却後
に該合金を成形用金型に供給して加圧成形することを特
徴とする半溶融金属の成形方法。
An aluminum alloy or magnesium alloy having a crystal nucleus in a liquid state at a liquidus temperature or higher, or a solid-liquid coexistence state having a crystal nucleus or higher having a crystal nucleus or higher in a container or It is a material that has a thermal conductivity (room temperature) of 1.0 kcal / mhr ° C. or higher, which can be heated or cooled from the outside, and is poured into the container kept below the liquidus of the alloy before pouring, and is suitable for molding. In the process of cooling to a temperature indicating a phase ratio, a molten alloy having a degree of superheat of less than 100 ° C. with respect to a liquidus temperature is directly poured into the container without using a jig, and a non- Fine primary crystals of dendrites are crystallized in the alloy liquid, and in the course of cooling the alloy, the upper and lower parts of the vessel are placed in the center so that the cooling temperature distribution in the vessel becomes uniform. More than in comparison The alloy is cooled while keeping the upper part and the lower part of the container warm with a heat insulating material having a thermal conductivity of less than 1.0 kcal / mhr ° C., and after cooling, supply the alloy to a molding die. Forming a semi-molten metal by pressure forming.
【請求項2】 結晶核を有する液相線温度以上の液体状
態のアルミニウム合金またはマグネシウム合金、または
結晶核を有する成形温度以上の固液共存状態の該アルミ
ニウム合金またはマグネシウム合金を、容器の内部ある
いは外部から加熱または冷却できる熱伝導率(室温)が
1.0kcal/mhr℃以上の材質であって注湯前に
該合金の液相線以下に保持された該容器に注湯し成形に
適した固相率を示す温度まで冷却する過程において、液
相線温度に対する過熱度を100℃未満に保持した合金
溶湯を、治具を使用することなく直接、該容器に該合金
を注湯して、非樹枝状晶の微細な初晶を該合金液中に晶
出させ、かつ、該合金の冷却過程で、該容器内の冷却温
度分布が均一になるように該容器上部を該容器中央部に
比べてより多く加熱し該容器下部を保温するか、または
該容器上部を保温し該容器下部を該容器中央部に比べて
多く加熱しつつ該合金を冷却し、冷却後に該合金を成形
用金型に供給して加圧成形することを特徴とする半溶融
金属の成形方法。
2. An aluminum alloy or magnesium alloy in a liquid state having a crystal nucleus or higher in a liquid state at a temperature equal to or higher than a liquidus temperature, or an aluminum alloy or magnesium alloy in a solid-liquid coexistence state at a molding temperature or higher having a crystal nucleus in a container or It is a material that has a thermal conductivity (room temperature) of 1.0 kcal / mhr ° C. or higher, which can be heated or cooled from the outside, and is poured into the container kept below the liquidus of the alloy before pouring, and is suitable for molding. In the process of cooling to a temperature indicating a phase ratio, a molten alloy having a degree of superheat of less than 100 ° C. with respect to a liquidus temperature is directly poured into the container without using a jig, and a non- Fine primary crystals of dendrites are crystallized in the alloy liquid, and the upper part of the container is compared with the central part of the container so that the cooling temperature distribution in the container becomes uniform during the cooling of the alloy. More heating Then, the lower part of the container is kept warm, or the upper part of the container is kept warm, the lower part of the container is heated more than the center part of the container, the alloy is cooled, and after cooling, the alloy is supplied to a molding die. A method for forming a semi-molten metal, which is performed by pressure molding.
【請求項3】 結晶核を有する液相線温度以上の液体状
態のアルミニウム合金またはマグネシウム合金、または
結晶核を有する成形温度以上の固液共存状態の該アルミ
ニウム合金またはマグネシウム合金を、容器の内部ある
いは外部から加熱または冷却できる熱伝導率(室温)が
1.0kcal/mhr℃以上の材質であって注湯前に
該合金の液相線以下に保持された容器に注湯し成形に適
した固相率を示す温度まで冷却する過程において、予め
冷却工程に先だって、該容器内の冷却温度分布が均一に
なるように該容器上部および該容器下部を該容器中央部
に比べてより多く加熱するか、または、該容器の中央部
のみを冷却して、該容器の中央部を該容器上部および該
容器下部に比べて低温に保持したうえ、あるいは該容器
下部を該容器上部および該容器中央部より高温に保持す
るように加熱したうえ、液相線温度に対する過熱度を1
00℃未満に保持した合金溶湯を、治具を使用すること
なく直接、該容器に該合金を注湯し、冷却後に該合金を
成形用金型に供給して加圧成形することを特徴とする半
溶融金属の成形方法。
3. An aluminum alloy or magnesium alloy in a liquid state having a crystal nucleus or higher in a liquid state at a temperature of not lower than a liquidus temperature or an aluminum alloy or magnesium alloy in a solid-liquid coexistence state at a molding temperature or higher having a crystal nucleus in a container or A solid phase suitable for molding by pouring into a container having a thermal conductivity (room temperature) of 1.0 kcal / mhr ° C. or higher, which can be heated or cooled from the outside, and held below the liquidus of the alloy before pouring. In the process of cooling to the temperature showing the rate, prior to the cooling step in advance, heating the upper part and the lower part of the container more than the central part of the container so that the cooling temperature distribution in the container becomes uniform, Alternatively, only the central part of the container is cooled, and the central part of the container is kept at a lower temperature than the upper part of the container and the lower part of the container. And heated so as to maintain the temperature higher than the center of the container, and the degree of superheat with respect to the liquidus temperature was 1
The molten alloy held at a temperature of less than 00 ° C. is directly poured into the container without using a jig, and after cooling, the alloy is supplied to a molding die and pressure molded. To form a semi-molten metal.
JP29076095A 1995-05-29 1995-11-09 Forming method of semi-molten metal Expired - Fee Related JP3246296B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP29076095A JP3246296B2 (en) 1995-11-09 1995-11-09 Forming method of semi-molten metal
CA002177455A CA2177455C (en) 1995-05-29 1996-05-27 Method and apparatus for shaping semisolid metals
EP02028272A EP1331279A3 (en) 1995-05-29 1996-05-29 Method and apparatus for shaping semisolid metals
EP96108499A EP0745694B1 (en) 1995-05-29 1996-05-29 Method and apparatus for shaping semisolid metals
US09/490,983 US6769473B1 (en) 1995-05-29 2000-01-24 Method of shaping semisolid metals
US10/852,952 US6851466B2 (en) 1995-05-29 2004-05-24 Method and apparatus for shaping semisolid metals
US11/008,749 US7121320B2 (en) 1995-05-29 2004-12-09 Method for shaping semisolid metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29076095A JP3246296B2 (en) 1995-11-09 1995-11-09 Forming method of semi-molten metal

Publications (2)

Publication Number Publication Date
JPH09137239A JPH09137239A (en) 1997-05-27
JP3246296B2 true JP3246296B2 (en) 2002-01-15

Family

ID=17760184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29076095A Expired - Fee Related JP3246296B2 (en) 1995-05-29 1995-11-09 Forming method of semi-molten metal

Country Status (1)

Country Link
JP (1) JP3246296B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536559B2 (en) 1996-11-26 2004-06-14 宇部興産株式会社 Method for forming semi-solid metal
US7883874B2 (en) 2003-06-30 2011-02-08 Clasado Inc. Galactooligosaccharide composition and the preparation thereof
US8030049B2 (en) 2006-01-31 2011-10-04 Clasado Inc. Galactosidase with α-galactosyltransferase activity
US8058047B2 (en) 2005-12-20 2011-11-15 Clasado, Inc. α-galactosidase with transgalactosylating activity
US8168414B2 (en) 2006-03-28 2012-05-01 Clasado Inc. Beta-galactosidase with transgalactosylating activity
US11065268B2 (en) 2009-05-27 2021-07-20 Clasado Research Services Limited Method of preventing diarrhoea
JP7330667B2 (en) 2014-11-28 2023-08-22 アナジェニックス アイピー リミテッド Gold kiwifruit composition and method of preparation and use thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100340357C (en) * 2003-07-10 2007-10-03 上海交通大学 Self-mixed melt refined and frozen structure launder
CN104190895B (en) * 2014-09-11 2017-02-01 中国船舶重工集团公司第十二研究所 Aluminum-based composite material small-deformation pressure part forming method
CN114700484A (en) * 2022-04-08 2022-07-05 无锡锡南科技股份有限公司 Automatic mechanical arm single-spoon sectional type automatic pouring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536559B2 (en) 1996-11-26 2004-06-14 宇部興産株式会社 Method for forming semi-solid metal
US7883874B2 (en) 2003-06-30 2011-02-08 Clasado Inc. Galactooligosaccharide composition and the preparation thereof
US8058047B2 (en) 2005-12-20 2011-11-15 Clasado, Inc. α-galactosidase with transgalactosylating activity
US8030049B2 (en) 2006-01-31 2011-10-04 Clasado Inc. Galactosidase with α-galactosyltransferase activity
US8168414B2 (en) 2006-03-28 2012-05-01 Clasado Inc. Beta-galactosidase with transgalactosylating activity
US11065268B2 (en) 2009-05-27 2021-07-20 Clasado Research Services Limited Method of preventing diarrhoea
JP7330667B2 (en) 2014-11-28 2023-08-22 アナジェニックス アイピー リミテッド Gold kiwifruit composition and method of preparation and use thereof
JP7471668B2 (en) 2014-11-28 2024-04-22 アナジェニックス アイピー リミテッド GOLD KIWI FRUIT COMPOSITIONS AND METHODS OF PREPARATION AND USE THEREOF

Also Published As

Publication number Publication date
JPH09137239A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
EP0841406B1 (en) Method of shaping semisolid metals
JP3474017B2 (en) Method for producing metal slurry for casting
US5846350A (en) Casting thermal transforming and semi-solid forming aluminum alloys
US5701942A (en) Semi-solid metal processing method and a process for casting alloy billets suitable for that processing method
US5911843A (en) Casting, thermal transforming and semi-solid forming aluminum alloys
CN100588733C (en) A kind of magnesium alloy for semi-solid forming and preparation method of semi-solid blank thereof
JP3246296B2 (en) Forming method of semi-molten metal
JP3246363B2 (en) Forming method of semi-molten metal
US5968292A (en) Casting thermal transforming and semi-solid forming aluminum alloys
CN1480275A (en) Method and equipment for preparing semisolid fused mass of ferrous material
JP3246273B2 (en) Forming method of semi-molten metal
JP3246358B2 (en) Forming method of semi-molten metal
JP3783275B2 (en) Method for forming semi-molten metal
JP3491468B2 (en) Method for forming semi-solid metal
JPH0910893A (en) Apparatus for producing metal for half melt molding
JPH08318349A (en) Production of casting metallic billet and producing apparatus thereof
JPH0987773A (en) Method for molding half-molten metal
JPH0987768A (en) Production of half-melted hypereutectic al-si alloy
JP3473214B2 (en) Forming method of semi-molten metal
JP2003126950A (en) Molding method of semi-molten metal
JPH0987771A (en) Production of half-melted aluminum-magnesium alloy
JP3216685B2 (en) Forming method of semi-molten metal
JP3536559B2 (en) Method for forming semi-solid metal
JPH08257722A (en) Casting method by die casting
JP3246319B2 (en) Forming method of semi-molten metal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees