JP3246249B2 - Heat pump cooling / heating dehumidification control device for electric vehicles - Google Patents

Heat pump cooling / heating dehumidification control device for electric vehicles

Info

Publication number
JP3246249B2
JP3246249B2 JP02190095A JP2190095A JP3246249B2 JP 3246249 B2 JP3246249 B2 JP 3246249B2 JP 02190095 A JP02190095 A JP 02190095A JP 2190095 A JP2190095 A JP 2190095A JP 3246249 B2 JP3246249 B2 JP 3246249B2
Authority
JP
Japan
Prior art keywords
compressor
signal
refrigerant
control
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02190095A
Other languages
Japanese (ja)
Other versions
JPH08216664A (en
Inventor
康文 倉橋
勝則 牧野
稔 福本
誠 ▲よし▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP02190095A priority Critical patent/JP3246249B2/en
Publication of JPH08216664A publication Critical patent/JPH08216664A/en
Application granted granted Critical
Publication of JP3246249B2 publication Critical patent/JP3246249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車の車室内を
空地調和する電気自動車用ヒートポンプ冷暖房除湿制御
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump cooling / heating / dehumidifying control device for an electric vehicle which harmonizes the interior and the interior of the vehicle with an electric vehicle.

【0002】[0002]

【従来の技術】従来この種の自動車用空気調和装置は、
例えば特開昭63−116922号公報に示されるよう
に、電動圧縮機の負荷が大きくなると電動圧縮機の回転
数を低下させ、さらに高くなると電動圧縮機を一旦停止
させ、3分後に再起動させ電動圧縮機の回転数を設定値
に戻すというものであった。
2. Description of the Related Art Conventionally, this type of automotive air conditioner is
For example, as shown in JP-A-63-116922, when the load on the electric compressor is increased, the rotation speed of the electric compressor is reduced, and when the load is further increased, the electric compressor is temporarily stopped and restarted after 3 minutes. The number of rotations of the electric compressor was returned to a set value.

【0003】また家庭用エアコンの再起動も同様に電動
圧縮機停止後、電動圧縮機の高低圧の圧縮比が高い状態
において電動圧縮機を再起動すると再起動電流が大きく
なり、電動圧縮機駆動装置内のパワートランジスタ等の
容量が持たない為に、電動圧縮機の高低圧がほぼ均圧す
るまで一定時間待ってから電動圧縮機を再起動してい
る。
[0003] Similarly, when the home air conditioner is restarted, if the electric compressor is stopped and then the electric compressor is restarted in a state where the high / low pressure compression ratio of the electric compressor is high, the restart current increases, and the electric compressor drive is started. Since the capacity of the power transistor and the like in the apparatus is not provided, the electric compressor is restarted after waiting for a certain time until the high and low pressures of the electric compressor are substantially equalized.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術の家庭用
のエアコンでは電動圧縮機の再起動させるのに高低圧が
均圧するまで数分間待たねばならず、その間空調装置は
停止しており自動車用空調装置用に電動圧縮機を使用す
る際に快適性の面で課題を有していた。
In the above-described conventional home air conditioner, it is necessary to wait a few minutes until the high and low pressures are equalized in order to restart the electric compressor. There was a problem in terms of comfort when using an electric compressor for an air conditioner.

【0005】また電動圧縮機内部に差圧がある状態での
起動は、電動圧縮機内部の軸受け部のオイル切れなど電
動圧縮機の耐久性の面で不具合が発生する。
[0005] In addition, starting in a state where there is a differential pressure inside the electric compressor causes a problem in durability of the electric compressor such as running out of oil in a bearing portion inside the electric compressor.

【0006】本発明は、電動圧縮機の耐久性の向上とと
もに起動時間を短縮させ、快適性の向上を図ることを目
的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the durability of an electric compressor, shorten the start-up time, and improve comfort.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

(請求項1)本発明は、第1の手段として上記課題を解
決するために、冷房モードまたは暖房モードまたは除湿
暖房モードまたは圧縮機停止モードのいずれか一つの制
御モードを設定する制御モード設定手段と、前記電動圧
縮機のモータに通電し前記電動圧縮機を可変回転数にて
駆動するインバータと、前記制御モード設定手段からの
信号に基づき、少なくとも前記インバータ及び前記第1
の冷媒絞り装置及び前記第2の冷媒絞り装置を制御する
空調制御手段と、前記空調制御手段に、前記制御モード
設定手段からの信号に基づき、前記電動圧縮機の停止モ
ードを判定する圧縮機停止判定手段と、前記圧縮機停止
判定手段からの信号が圧縮機停止モードである時、圧縮
機停止モードに変更直前の制御モードを記憶する制御モ
ード記憶手段と、前記制御モード記憶手段及び圧縮機停
止判定手段からの信号に基づき、前記第1の冷媒絞り装
置と前記第2の冷媒絞り装置のどちらに差圧があるかを
判定する差圧判定手段と、前記差圧判定手段からの信号
に基づき、前記第1の冷媒絞り装置もしくは前記第2の
冷媒絞り装置を均圧状態に制御を行う均圧制御手段を設
けたものである。
According to a first aspect of the present invention, there is provided a control mode setting means for setting any one of a cooling mode, a heating mode, a dehumidifying / heating mode, and a compressor stop mode as a first means. An inverter for energizing a motor of the electric compressor and driving the electric compressor at a variable speed; and at least the inverter and the first motor based on a signal from the control mode setting means.
Air-conditioning control means for controlling the refrigerant expansion device and the second refrigerant expansion device, and a compressor stop for the air-conditioning control device to determine a stop mode of the electric compressor based on a signal from the control mode setting device. Determining means; control mode storing means for storing a control mode immediately before changing to the compressor stop mode when a signal from the compressor stop determining means is the compressor stop mode; and control mode storing means and compressor stop Based on a signal from the determination unit, a differential pressure determination unit that determines which of the first refrigerant expansion device and the second refrigerant expansion device has a differential pressure, and based on a signal from the differential pressure determination unit. And a pressure equalization control means for controlling the first refrigerant expansion device or the second refrigerant expansion device to a pressure equalized state.

【0008】(請求項2)本発明は、第2の手段として
上記課題を解決するために、車室外熱交換器と、前記車
室外熱交換器および第2の冷媒絞り装置をバイパスする
ように配された冷媒バイパス回路と、前記冷媒バイパス
回路内に配された第1の電磁開閉弁と、(請求項1)の
空調制御手段を、前記制御モード設定手段からの信号に
基づき、前記電動圧縮機の停止モードを判定する圧縮機
停止判定手段と、前記圧縮機停止判定手段からの信号が
圧縮機停止モードである時、圧縮機停止モードに変更直
前の制御モードを記憶する制御モード記憶手段と、前記
制御モード記憶手段及び圧縮機停止判定手段からの信号
に基づき、第1の冷媒絞り装置と前記第1の電磁開閉弁
のどちらに差圧があるかを判定する差圧判定手段と、前
記差圧判定手段からの信号に基づき、前記第1の冷媒絞
り装置もしくは前記第1の電磁開閉弁を均圧状態に制御
を行う均圧制御手段としたものである。
In order to solve the above-mentioned problems, the present invention provides a heat exchanger outside the vehicle compartment, and bypasses the heat exchanger outside the vehicle compartment and the second refrigerant expansion device. A refrigerant bypass circuit disposed therein, a first electromagnetic on-off valve disposed in the refrigerant bypass circuit, and an air-conditioning control unit according to claim 1, wherein the air-conditioning control unit controls the electric compression based on a signal from the control mode setting unit. Compressor stop determination means for determining a compressor stop mode, and control mode storage means for storing a control mode immediately before changing to the compressor stop mode when a signal from the compressor stop determination means is the compressor stop mode. Based on signals from the control mode storage means and the compressor stop determination means, a differential pressure determination means for determining which of the first refrigerant throttle device and the first solenoid on-off valve has a differential pressure; Differential pressure judgment means Based on the signal, in which the first refrigerant throttling device or said first solenoid valve and a pressure equalization control means for controlling the pressure equalization.

【0009】(請求項3)本発明は、第3の手段として
上記課題を解決するために、(請求項1)の空調制御手
段を前記制御モード設定手段からの信号に基づき、電動
圧縮機の起動開始を判定する圧縮機起動判定手段と、前
記制御モード設定手段からの信号に基づき、前記電動圧
縮機の停止モードを判定する圧縮機停止判定手段と、前
記圧縮機停止判定手段からの信号が圧縮機停止モードで
ある時、圧縮機停止モードに変更直前の制御モードを記
憶する制御モード記憶手段と、前記圧縮機起動判定手段
からの信号に基づき、圧縮機の起動開始後、所定時間信
号を出力するタイマー手段と、前記タイマー手段からの
信号が出力している時、前記制御モード記憶手段に基づ
き、第1の冷媒絞り装置と前記第2の冷媒絞り装置のど
ちらに差圧があるかを判定する差圧判定手段と、前記差
圧判定手段からの信号に基づき、前記第1の冷媒絞り装
置もしくは前記第2の冷媒絞り装置を均圧状態に制御を
行う均圧制御手段としたものである。
According to a third aspect of the present invention, in order to solve the above-mentioned problems, the air conditioning control means of the first aspect is provided based on a signal from the control mode setting means. A signal from the compressor start determination means for determining the start of the compressor, a compressor stop determination means for determining the stop mode of the electric compressor based on a signal from the control mode setting means, and a signal from the compressor stop determination means. When in the compressor stop mode, a control mode storing means for storing a control mode immediately before changing to the compressor stop mode, and a signal for a predetermined time after starting the compressor start based on a signal from the compressor start determination means. The timer means for outputting, and when the signal from the timer means is outputting, based on the control mode storage means, there is a differential pressure in either the first refrigerant expansion device or the second refrigerant expansion device. And a pressure equalization control means for controlling the first refrigerant expansion device or the second refrigerant expansion device to a pressure equalized state based on a signal from the differential pressure determination device. It is.

【0010】(請求項4)本発明は、第4の手段として
上記課題を解決するために、(請求項2)の空調制御手
段を、制御モード設定手段からの信号に基づき、電動圧
縮機の起動開始を判定する圧縮機起動判定手段と、前記
制御モード設定手段からの信号に基づき、前記電動圧縮
機の停止モードを判定する圧縮機停止判定手段と、前記
圧縮機停止判定手段からの信号が圧縮機停止モードであ
る時、圧縮機停止モードに変更直前の制御モードを記憶
する制御モード記憶手段と、前記圧縮機起動判定手段か
らの信号に基づき、圧縮機の起動開始後、所定時間信号
を出力するタイマー手段と、前記タイマー手段からの信
号が出力している時、前記制御モード記憶手段に基づ
き、第1の冷媒絞り装置と前記第1の電磁開閉弁のどち
らに差圧があるかを判定する差圧判定手段と、前記差圧
判定手段からの信号に基づき、前記第1の冷媒絞り装置
もしくは前記第1の電磁開閉弁を均圧状態に制御を行う
均圧制御手段としたものである。
According to a fourth aspect of the present invention, in order to solve the above-mentioned problem, the air conditioning control means of the second aspect is provided, based on a signal from the control mode setting means, of the electric compressor. A signal from the compressor start determination means for determining the start of the compressor, a compressor stop determination means for determining the stop mode of the electric compressor based on a signal from the control mode setting means, and a signal from the compressor stop determination means. When in the compressor stop mode, a control mode storing means for storing a control mode immediately before changing to the compressor stop mode, and a signal for a predetermined time after starting the compressor start based on a signal from the compressor start determination means. Timer means for outputting, and when a signal from the timer means is being output, which of the first refrigerant expansion device and the first solenoid on-off valve has a differential pressure based on the control mode storage means. And a pressure equalizing control means for controlling the first refrigerant throttle device or the first solenoid on-off valve to a pressure equalized state based on a signal from the differential pressure determining means. is there.

【0011】[0011]

【作用】本発明の第1の手段によれば、電動圧縮機の停
止モード時、圧縮機停止直前の制御モードに応じて、圧
力差の存在する部分が第1の冷媒絞り装置にあるのか、
それとも第2の冷媒絞り装置にあるのかを判定する差圧
判定手段からの信号に基づき、圧力差のある第1または
第2の冷媒絞り装置を制御して、次第に均圧させる均圧
制御手段を設けることにより、均圧時に発生する冷媒音
を抑え、しかも短時間に均圧させることが出来る。
According to the first means of the present invention, in the stop mode of the electric compressor, depending on the control mode immediately before the stop of the compressor, whether the portion where the pressure difference exists exists in the first refrigerant expansion device,
Or, based on a signal from the differential pressure judging means for judging whether or not the refrigerant is in the second refrigerant expansion device, the first or second refrigerant expansion device having a pressure difference is controlled to gradually equalize the pressure. By providing the pressure equalizer, it is possible to suppress the refrigerant noise generated at the time of equalization and to equalize the pressure in a short time.

【0012】本発明の第2の手段によれば、電動圧縮機
の停止モード時、圧縮機停止直前の制御モードに応じ
て、圧力差の存在する部分が第1の冷媒絞り装置にある
のか、もしくは第1の電磁開閉弁にあるのかを判断する
均圧制御手段を設けることにより、第1の手段よりも更
に短時間に均圧させることが出来る。
According to the second means of the present invention, in the stop mode of the electric compressor, depending on the control mode immediately before the stop of the compressor, whether the pressure difference exists in the first refrigerant expansion device, Alternatively, by providing a pressure equalizing control means for judging whether or not the pressure is in the first electromagnetic on-off valve, the pressure can be equalized in a shorter time than in the first means.

【0013】本発明の第3の手段によれば、圧縮機停止
直前の制御モードに応じて、圧力差の存在する部分が第
1の冷媒絞り装置にあるのか、それとも第2の冷媒絞り
装置にあるのかを判定する差圧判定手段からの信号に基
づき、電動圧縮機の起動開始から所定時間の間、圧力差
のある第1または第2の冷媒絞り装置を制御して、次第
に均圧させる均圧制御手段を設けている為、つまり圧縮
機停止時ではなく、圧縮機起動時に、均圧制御を行って
いるので、短時間に均圧させることが出来、しかも均圧
時に発生する冷媒音を第1の手段よりも更に、効果的に
抑えることが出来る。
According to the third means of the present invention, depending on the control mode immediately before the compressor is stopped, whether the pressure difference exists in the first refrigerant expansion device or the second refrigerant expansion device. Based on the signal from the differential pressure determining means for determining whether there is pressure, the first or second refrigerant expansion device having a pressure difference is controlled for a predetermined time from the start of the electric compressor to gradually equalize the pressure. Since pressure control means is provided, that is, equalization control is performed not when the compressor is stopped but when the compressor is started, equalization can be achieved in a short time, and the refrigerant noise generated at the time of equalization is reduced. It can be suppressed more effectively than the first means.

【0014】本発明の第4の手段によれば、圧縮機停止
直前の制御モードに応じて、圧力差の存在する部分が第
1の冷媒絞り装置にあるのか、それとも第1の電磁開閉
弁にあるのかを判定する差圧判定手段からの信号に基づ
き、電動圧縮機の起動開始から所定時間の間、圧力差の
ある第1の冷媒絞り装置または第1の電磁開閉弁を制御
して、次第に均圧させる均圧制御手段を設けている為、
言い替えると圧縮機停止時ではなく、圧縮機起動時に、
均圧制御を行っているので、第3の手段よりも更に短時
間に均圧させることが出来る。
According to the fourth means of the present invention, depending on the control mode immediately before the stop of the compressor, whether the portion where the pressure difference exists is in the first refrigerant expansion device or whether the portion is located in the first solenoid on-off valve. Based on a signal from the differential pressure determination means for determining whether there is a pressure difference, the first refrigerant throttle device or the first electromagnetic opening / closing valve having a pressure difference is controlled for a predetermined time from the start of activation of the electric compressor, and gradually. Because equalizing pressure control means for equalizing is provided,
In other words, not when the compressor is stopped, but when the compressor starts,
Since the equalizing control is performed, the pressure can be equalized in a shorter time than in the third means.

【0015】[0015]

【実施例】本発明の一実施例を図面により説明する。An embodiment of the present invention will be described with reference to the drawings.

【0016】図1は、請求項1の電気自動車用ヒートポ
ンプ冷暖房除湿制御装置の一実施例の構成図である。
FIG. 1 is a block diagram of an embodiment of a heat pump cooling / heating / dehumidifying control device for an electric vehicle according to the present invention.

【0017】図1では、モータを内蔵した電動圧縮機1
と、車室外空気熱交換器2と、車室外空気熱交換器送風
装置3と、車室内空気熱交換器用送風装置6と、前記車
室内空気熱交換器用送風装置6と車室内吹出口8を結ぶ
第1の通風回路9と、前記第1の通風回路9内に配され
た第1の車室内空気熱交換器10と、前記第1の車室内
空気熱交換器10の下流側から分岐し再度前記第1の通
風回路9に合流している第2の通風回路30と、前記第
1の通風回路9と前記第2の通風回路30の風量調整を
行なうダンパ12と、前記ダンパ12の駆動用の通風回
路切り替えアクチュエータ31と、前記第2の通風回路
30内に配された第2の車室内空気熱交換器11と、四
方切替え弁7と、前記電動圧縮機1と前記各熱交換器と
前記四方切替え弁7を結ぶ冷媒配管13と、前記第1の
車室内空気熱交換器10と前記第2の車室内空気熱交換
器11間の前記冷媒配管13に配された第1の冷媒絞り
装置14と、前記第2の車室内空気熱交換器11と前記
車室外空気熱交換器2間の前記冷媒配管13に配された
第2の冷媒絞り装置16と、前記四方切替え弁7と前記
車室外空気熱交換器2間の前記冷媒配管13に配された
第1の双方向開閉弁22と、前記第2の冷媒絞り装置1
6及び前記車室外空気熱交換器2及び前記第1の双方向
開閉弁22とをバイパスするように配された冷媒バイパ
ス回路21と、前記冷媒バイパス回路21内に配された
第2の双方向開閉弁23とで構成されている電気自動車
用ヒートポンプ冷暖房除湿装置において、電動圧縮機1
のモータを可変回転数で駆動するインバータ15と、空
調操作パネル4内に、車室内へ吹き出す空気温度に対応
もしくは関連した設定を行う可変VRを使用した温度設
定器24と、同じく空調操作パネル4内に冷房モード、
暖房モード、除湿暖房モード、圧縮器停止モードの制御
モードを設定する為の3つのSW(A/C SW,暖房
SW、ドライSW;3つのSW全てオフで圧縮器停止モ
ード)を使用した制御モード設定手段17と、風量設定
を行う風量設定手段25から構成されている。更に、空
調制御手段5と、前記空調制御手段5は、前記制御モー
ド設定手段17及び前記風量設定手段25からの信号に
より前記電動圧縮機1の停止モードを判定する圧縮機停
止判定手段18と、前記制御モード設定手段17及び前
記圧縮機停止判定手段18からの信号により圧縮機停止
直前の制御モードを記憶する制御モード記憶手段26
と、前記圧縮機停止判定手段18及び前記制御モード記
憶手段26からの信号に基づき、差圧のある部分が第1
の冷媒絞り装置14にあるのか、もしくは第2の冷媒絞
り装置16にあるのかを判定する差圧判定手段27と、
前記差圧判定手段27の判定結果に基づき、前記第1の
冷媒絞り装置14もしくは第2の冷媒絞り装置16を均
圧するように信号を出力する均圧制御手段19と、前記
均圧制御手段19及び前記操作パネル4からの信号に基
づき、前記インバータ15及び、前記第1の冷媒絞り装
置14及び、前記第2の冷媒絞り装置16及び、前記第
1の双方向開閉弁22及び、第2の双方向開閉弁23及
び、前記通風回路切り替えアクチュエータ31の制御を
行う出力制御手段20とで構成されている。
FIG. 1 shows an electric compressor 1 having a built-in motor.
The outside air heat exchanger 2, the outside air heat exchanger blower 3, the inside air heat exchanger 6 and the inside air heat exchanger 6 and the inside air outlet 8. A first ventilation circuit 9 to be connected, a first vehicle interior air heat exchanger 10 disposed in the first ventilation circuit 9, and a branch from a downstream side of the first vehicle interior air heat exchanger 10. A second ventilation circuit 30 rejoining the first ventilation circuit 9, a damper 12 for adjusting the air volume of the first ventilation circuit 9 and the second ventilation circuit 30, and a drive of the damper 12 Circuit switching actuator 31 for use, a second vehicle interior air heat exchanger 11 disposed in the second ventilation circuit 30, a four-way switching valve 7, the electric compressor 1, and each of the heat exchangers A refrigerant pipe 13 connecting the four-way switching valve 7 and the first compartment air heat exchange A first refrigerant expansion device 14 disposed in the refrigerant pipe 13 between the second heat exchanger 10 and the second air heat exchanger 11; and a heat exchange between the second air heat exchanger 11 and the outside air. A second refrigerant throttle device 16 disposed in the refrigerant pipe 13 between the heat exchangers 2, and a first bidirectional disposed in the refrigerant pipe 13 between the four-way switching valve 7 and the outside air heat exchanger 2. On-off valve 22 and second refrigerant throttle device 1
6, a refrigerant bypass circuit 21 arranged to bypass the outside air heat exchanger 2 and the first bidirectional on-off valve 22, and a second bidirectional circuit arranged in the refrigerant bypass circuit 21 An electric vehicle heat pump air conditioner dehumidifier comprising an on-off valve 23 and an electric compressor 1
And a temperature setter 24 using a variable VR in the air-conditioning operation panel 4 for making settings corresponding to or relating to the temperature of the air blown into the vehicle cabin. In cooling mode,
Control mode using three SWs (A / C SW, heating SW, dry SW; compressor stop mode with all three SWs off) to set the control mode of heating mode, dehumidifying heating mode, and compressor stop mode It comprises a setting means 17 and an air volume setting means 25 for setting an air volume. Further, the air-conditioning control means 5, the air-conditioning control means 5 includes a compressor stop determination means 18 for determining a stop mode of the electric compressor 1 based on signals from the control mode setting means 17 and the air volume setting means 25, Control mode storage means 26 for storing the control mode immediately before the compressor is stopped based on signals from the control mode setting means 17 and the compressor stop determination means 18.
Based on the signals from the compressor stop determination means 18 and the control mode storage means 26,
Differential pressure judging means 27 for judging whether the refrigerant throttle device 14 is located in the second refrigerant throttle device 16 or not,
A pressure equalizing control means for outputting a signal to equalize the first refrigerant expansion device or the second refrigerant expansion device based on a result of the judgment by the differential pressure judgment device; And the signal from the operation panel 4, the inverter 15, the first refrigerant expansion device 14, the second refrigerant expansion device 16, the first bidirectional on-off valve 22, and the second It comprises a bidirectional on-off valve 23 and an output control means 20 for controlling the ventilation circuit switching actuator 31.

【0018】よって、冷房を行う場合は、操作により、
空調操作パネル4内の風量設定手段25を例えば2速に
設定し、空調操作パネル4内の制御モード選択SW24
の冷房SWをオンさせ、この信号に基づき空調制御手段
5内の出力制御手段20は、ダンパ12が図1の波線の
位置となる様(風が第1の通風回路9に流れる様)に通
風回路切り替えアクチュエータ31を制御し、電動圧縮
機1から吐出された高温、高圧の冷媒が車室外空気熱交
換器2へ流れる様に、四方切替え弁7を実線で示す回路
に切替え、第1の双方向開閉弁22を冷媒が車室外空気
熱交換器2に流れる様に全開し、一方の第2の双方向開
閉弁23を冷媒が流れない様に全閉し、第1の冷媒絞り
装置14は全開(絞りのない状態)の状態とし、第2の
冷媒絞り装置16は絞り有りの状態にする。よって、電
動圧縮機1から吐出した冷媒は四方切替え弁7を経由
し、車室外空気熱交換器2と車室外空気熱交換器用送風
装置3で車室外空気に放熱して、冷媒を凝縮液化させた
後、その冷媒を第2の冷媒絞り装置16を介して減圧し
た後、第2の車室内空気熱交換器11、第1の冷媒絞り
装置14、第1の車室内空気熱交換器10に導きここで
車室内空気熱交換器用送風装置6で車室内もしくは車室
外の空気を冷却、減湿しながら蒸発し冷房作用を行な
い、この冷却された空気は第1の通風回路9を流れ車室
内に供給される。ここで、冷房SWをオンからオフさせ
た場合、圧縮機停止判定手段18は電動圧縮機1が停止
モードであると判定する。更に、制御モード記憶手段2
6は、圧縮機停止判定手段18からの信号を受けて、圧
縮機がオフする直前の制御モードが冷房モードであるこ
とを記憶する。差圧判定手段27は圧縮機停止判定手段
18及び制御モード記憶手段26からの信号を受けて、
差圧が第2の冷媒絞り装置16にあることを判定する。
均圧制御手段19は差圧判定手段27からの信号を受け
て、第2の冷媒絞り装置16を均圧するように、制御信
号を出力する。出力制御手段20は実際に均圧制御手段
19からの信号を受けて、第2の冷媒絞り装置16が均
圧するように、出力する。以上のように、冷房SWをオ
ンからオフして電動圧縮機を停止させると、差圧のある
第2の冷媒絞り装置16を均圧させる様に、作動する。
また、冷房SWがオン時、風量設定手段25を風量をオ
フした時も前述と同様なので、説明を省略する。
Therefore, when cooling is performed,
The air volume setting means 25 in the air conditioning operation panel 4 is set to, for example, the second speed, and the control mode selection SW 24 in the air conditioning operation panel 4 is set.
Is turned on, and based on this signal, the output control means 20 in the air-conditioning control means 5 performs ventilation so that the damper 12 is positioned at the wavy line in FIG. 1 (in such a manner that the wind flows to the first ventilation circuit 9). The circuit switching actuator 31 is controlled to switch the four-way switching valve 7 to a circuit indicated by a solid line so that the high-temperature, high-pressure refrigerant discharged from the electric compressor 1 flows to the outside air heat exchanger 2. The two-way on-off valve 22 is fully opened so that the refrigerant flows to the outside air heat exchanger 2, and one of the two-way on-off valves 23 is fully closed so that the refrigerant does not flow. The second refrigerant throttle device 16 is in a fully opened state (a state without a throttle), and is in a state with a throttle. Accordingly, the refrigerant discharged from the electric compressor 1 passes through the four-way switching valve 7 and radiates heat to the vehicle exterior air by the vehicle exterior air heat exchanger 2 and the vehicle exterior air heat exchanger blower 3 to condense and liquefy the refrigerant. After that, the refrigerant is decompressed through the second refrigerant expansion device 16 and then transmitted to the second vehicle interior air heat exchanger 11, the first refrigerant expansion device 14, and the first vehicle interior air heat exchanger 10. Here, the air inside or outside the vehicle compartment is cooled and dehumidified by the blower 6 for the vehicle interior air heat exchanger to perform a cooling action, and the cooled air flows through the first ventilation circuit 9 and flows through the vehicle interior. Supplied to Here, when the cooling SW is turned off from on, the compressor stop determination means 18 determines that the electric compressor 1 is in the stop mode. Further, the control mode storage means 2
6 receives the signal from the compressor stop determination means 18 and stores that the control mode immediately before the compressor is turned off is the cooling mode. The differential pressure determination unit 27 receives signals from the compressor stop determination unit 18 and the control mode storage unit 26,
It is determined that the differential pressure is in the second refrigerant expansion device 16.
The equalization control means 19 receives the signal from the differential pressure determination means 27 and outputs a control signal so as to equalize the pressure of the second refrigerant expansion device 16. The output control means 20 actually receives the signal from the pressure equalization control means 19 and outputs the signal so that the second refrigerant expansion device 16 equalizes the pressure. As described above, when the electric compressor is stopped by turning off the cooling SW from on, the second refrigerant expansion device 16 having a differential pressure is operated to equalize the pressure.
Further, when the cooling switch is turned on and the air volume setting means 25 is turned off the air volume is the same as described above, the description is omitted.

【0019】一方、暖房を行う場合は、操作により、空
調操作パネル4内の風量設定手段25を例えば2速に設
定し、制御モード選択SW24の暖房SWをONさせ、
この信号に基づき空調制御手段5内の出力制御手段20
は、ダンパ12が図1の実線の位置となる様(風が第2
の通風回路30に流れる様)に通風回路切り替えアクチ
ュエータ31を制御し、四方切替え弁7を冷房時の冷媒
流路と逆転(波線で示す回路)させ、冷房時と同様に、
第1の双方向開閉弁22を冷媒が車室外空気熱交換器2
に流れる様に全開し、一方の第2の双方向開閉弁23を
冷媒が流れない様に全閉し、第1の冷媒絞り装置14の
絞りを開(絞りのない状態)とし、第2の冷媒絞り装置
16の絞りを絞りのある状態とする。よって電動圧縮機
1から突出された冷媒は四方切替え弁7を経由し、高
圧、高温状態で第1の車室内空気熱交換器10および第
2の車室内空気熱交換器11で車室内空気に放熱して冷
媒を凝縮液化させた後、その冷媒を第2の冷媒絞り装置
16を介して減圧させた後、車室外空気熱交換器2に導
き、ここで車室内外の空気を冷却、減湿しながら冷媒が
吸熱、蒸発させるヒートポンプ暖房を行う。ここで、暖
房SWをオンからオフさせた場合、圧縮機停止判定手段
18は電動圧縮機1を停止モードであると判定する。更
に、制御モード記憶手段26は、圧縮機停止判定手段1
8からの信号を受けて、圧縮機がオフする直前の制御モ
ードが暖房モードであることを記憶する。差圧判定手段
27は圧縮機停止判定手段18及び制御モード記憶手段
26からの信号を受けて、差圧が第2の冷媒絞り装置1
6にあることを判定する。均圧制御手段19は差圧判定
手段27からの信号を受けて、第2の冷媒絞り装置16
を均圧するように、制御信号を出力する。出力制御手段
20は実際に均圧制御手段19からの信号を受けて、第
2の冷媒絞り装置16が均圧するように、出力する。以
上のように、冷房SWをオンからオフして電動圧縮機を
停止させると、差圧のある第2の冷媒絞り装置16を均
圧させる様に、作動する。また、暖房SWがオン時、風
量設定手段25を風量をオフした時も前述と同様なの
で、説明を省略する。
On the other hand, in the case of heating, the air volume setting means 25 in the air conditioning operation panel 4 is set to, for example, the second speed by operation, and the heating switch of the control mode selection switch 24 is turned on.
Based on this signal, the output control means 20 in the air conditioning control means 5
Is such that the damper 12 is at the position indicated by the solid line in FIG.
The airflow circuit switching actuator 31 is controlled to flow through the airflow circuit 30), and the four-way switching valve 7 is reversed (circuit indicated by a dashed line) with the refrigerant flow path at the time of cooling.
The refrigerant is supplied to the first two-way on-off valve 22 through the outside air heat exchanger 2
And the second bidirectional on-off valve 23 is fully closed so that the refrigerant does not flow, and the throttle of the first refrigerant throttle device 14 is opened (in a state where there is no throttle). The throttle of the refrigerant throttle device 16 is set to a state with a throttle. Therefore, the refrigerant protruding from the electric compressor 1 passes through the four-way switching valve 7 and is converted into the vehicle interior air by the first vehicle interior air heat exchanger 10 and the second vehicle interior air heat exchanger 11 at high pressure and high temperature. After the heat is radiated to condense and liquefy the refrigerant, the refrigerant is depressurized through the second refrigerant expansion device 16, and then guided to the outside air heat exchanger 2, where the air inside and outside the vehicle is cooled and reduced. Heat pump heating in which the refrigerant absorbs heat and evaporates while wetting. Here, when the heating SW is turned off from on, the compressor stop determination means 18 determines that the electric compressor 1 is in the stop mode. Further, the control mode storage means 26 stores the compressor stop determination means 1
In response to the signal from 8, the control mode immediately before the compressor is turned off is stored as the heating mode. The differential pressure judging means 27 receives signals from the compressor stop judging means 18 and the control mode storage means 26, and changes the differential pressure to the second refrigerant throttle device 1.
6 is determined. The equalizing control means 19 receives the signal from the differential pressure judging means 27 and receives the signal from the second refrigerant expansion device 16.
The control signal is output so as to equalize the pressure. The output control means 20 actually receives the signal from the pressure equalization control means 19 and outputs the signal so that the second refrigerant expansion device 16 equalizes the pressure. As described above, when the electric compressor is stopped by turning off the cooling SW from on, the second refrigerant expansion device 16 having a differential pressure is operated to equalize the pressure. Also, when the heating SW is turned on and the air volume setting means 25 is turned off the air volume is the same as described above, the description is omitted.

【0020】除湿暖房を行なう場合、操作により、空調
操作パネル4内の風量設定手段25を例えば2速に設定
し、制御モード選択SW24のドライSWをONさせ、
空調制御手段5は、ダンパ12が図1の実線の位置とな
る様(風が第2の通風回路30に流れる様)に通風回路
切り替えアクチュエータ31を制御し、四方切替え弁7
を実線で示す回路に切替え、第1の双方向開閉弁22を
冷媒が車室外空気熱交換器2に流れない様に全閉し、一
方の第2の双方向開閉弁23を冷媒が流れる様に全開
し、第1の冷媒絞り装置14を絞り状態とし、第2の冷
媒絞り装置16を開の状態(絞りのない状態)とする。
よって、電動圧縮機1から吐出された冷媒は高圧、高温
状態で第2の車室内空気熱交換器11にはいる為、第2
の車室内空気熱交換器11は高温となり、車室内空気に
放熱して、冷媒を凝縮液化させた後、第1の冷媒絞り装
置14に導き、液化、低圧となり、第1の車室内空気熱
交換器10で車室内外の空気を冷却、減湿しながら冷媒
が、吸熱、蒸発し、電動圧縮機1へ戻る。従って、風の
流れの面から説明すると、車室内空気熱交換器用送風装
置6により車室内外の空気を導き、第1の車室内空気熱
交換器10で冷却、除湿された後、第2の車室内空気熱
交換器11により再加熱され、車室内に放熱し、除湿暖
房を行う。ここで、ドライSWをオンからオフさせた場
合、圧縮機停止判定手段18は電動圧縮機1を停止モー
ドであると判定する。更に、制御モード記憶手段26
は、圧縮機停止判定手段18からの信号を受けて、圧縮
機がオフする直前の制御モードがドライモードであるこ
とを記憶する。差圧判定手段27は圧縮機停止判定手段
18及び制御モード記憶手段26からの信号を受けて、
差圧が第1の冷媒絞り装置14にあることを判定する。
均圧制御手段19は差圧判定手段27からの信号を受け
て、第1の冷媒絞り装置14を均圧するように、制御信
号を出力する。出力制御手段20は実際に均圧制御手段
19からの信号を受けて、第1の冷媒絞り装置14が均
圧するように、出力する。以上のように、ドライSWを
オンからオフして電動圧縮機を停止させると、差圧のあ
る第1の冷媒絞り装置14を均圧させる様に、作動す
る。また、ドライSWがオン時、風量設定手段25を風
量をオフした時も前述と同様なので、説明を省略する。
図2は、請求項2の電気自動車用ヒートポンプ冷暖房除
湿制御装置の一実施例の構成図である。図1との違い
は、図2の差圧判定手段27が、制御モード記憶手段2
6及び圧縮機停止判定手段18からの信号に基づき、前
記第1の冷媒絞り装置14と前記第2の双方向開閉弁2
3のどちらに差圧があるかを判定することとしており、
図2の均圧制御手段19が、前記差圧判定手段27から
の信号に基づき、前記第1の冷媒絞り装置14もしくは
前記第2の双方向開閉弁23を均圧状態に制御を行うこ
ととしている。以上の2点が相違しているのみである。
従って、ドライモード時の電動圧縮機1の停止時につい
ては、請求項1の一実施例で説明した内容と同様に第1
の冷媒絞り装置14を開いて均圧させている。また冷房
モード時及び、暖房モード時の電動圧縮機1の停止時に
ついては、第2の双方向開閉弁23を開いて均圧させて
いる。
When performing dehumidifying heating, the air volume setting means 25 in the air conditioning operation panel 4 is set to, for example, the second speed by operation, and the dry switch of the control mode selection switch 24 is turned on.
The air-conditioning control means 5 controls the ventilation circuit switching actuator 31 so that the damper 12 is at the position indicated by the solid line in FIG. 1 (in such a manner that the wind flows to the second ventilation circuit 30), and the four-way switching valve 7
Is switched to a circuit indicated by a solid line, the first two-way on-off valve 22 is fully closed so that the refrigerant does not flow to the outside air heat exchanger 2, and the refrigerant flows through one second two-way on-off valve 23. , The first refrigerant expansion device 14 is set to a throttled state, and the second refrigerant expansion device 16 is set to an open state (a state without a throttle).
Therefore, the refrigerant discharged from the electric compressor 1 enters the second vehicle interior air heat exchanger 11 at a high pressure and a high temperature.
Of the vehicle interior air heat exchanger 11 becomes high temperature, radiates heat to the vehicle interior air to condense and liquefy the refrigerant, and then guides the refrigerant to the first refrigerant expansion device 14, where the refrigerant is liquefied and has a low pressure. The refrigerant absorbs heat and evaporates while cooling and dehumidifying the air inside and outside the vehicle interior by the exchanger 10, and returns to the electric compressor 1. Therefore, in terms of the flow of the wind, the air inside and outside the vehicle compartment is guided by the air blower 6 for the vehicle interior air heat exchanger, and after being cooled and dehumidified by the first vehicle interior air heat exchanger 10, It is reheated by the vehicle interior air heat exchanger 11, radiates heat into the vehicle interior, and performs dehumidifying and heating. Here, when the dry SW is turned off from on, the compressor stop determination means 18 determines that the electric compressor 1 is in the stop mode. Further, the control mode storage means 26
Receives the signal from the compressor stop determination means 18 and stores that the control mode immediately before the compressor is turned off is the dry mode. The differential pressure determination unit 27 receives signals from the compressor stop determination unit 18 and the control mode storage unit 26,
It is determined that the differential pressure is in the first refrigerant expansion device 14.
The equalizing control means 19 receives a signal from the differential pressure determining means 27 and outputs a control signal so as to equalize the pressure of the first refrigerant expansion device 14. The output control means 20 actually receives the signal from the pressure equalization control means 19 and outputs the signal so that the first refrigerant expansion device 14 equalizes the pressure. As described above, when the dry SW is turned off from on and the electric compressor is stopped, the first refrigerant expansion device 14 having a differential pressure is operated to equalize the pressure. Further, when the dry SW is turned on and the air volume setting means 25 is turned off the air volume is the same as described above, the description is omitted.
FIG. 2 is a block diagram of an embodiment of a heat pump cooling / heating / dehumidifying control device for an electric vehicle according to claim 2. The difference from FIG. 1 is that the differential pressure determination means 27 in FIG.
6 and the signal from the compressor stop determination means 18, the first refrigerant expansion device 14 and the second bidirectional on-off valve 2
3 is to determine which of the differential pressures,
It is assumed that the equalizing control means 19 in FIG. 2 controls the first refrigerant expansion device 14 or the second bidirectional on-off valve 23 to an equalized state based on the signal from the differential pressure determining means 27. I have. Only the above two points are different.
Therefore, when the electric compressor 1 is stopped in the dry mode, the first operation is performed in the same manner as described in the first embodiment.
Is opened to equalize the pressure. When the electric compressor 1 is stopped in the cooling mode and the heating mode, the second bidirectional on-off valve 23 is opened to equalize the pressure.

【0021】図3は、請求項3の電気自動車用ヒートポ
ンプ冷暖房除湿制御装置の一実施例の構成図である。冷
凍サイクルの構成は図1及び図2と同様なので、説明を
省略する。従って、図3に示す図1と同様の電気自動車
用ヒートポンプ冷暖房除湿装置において、電動圧縮機1
のモータを可変回転数で駆動するインバータ15と、空
調操作パネル4内に、車室内へ吹き出す空気温度に対応
もしくは関連した設定を行う可変VRを使用した温度設
定器24と、同じく空調操作パネル4内に冷房モード、
暖房モード、除湿暖房モード、圧縮器停止モードの制御
モードを設定する為の3つのSW(A/C SW,暖房
SW、ドライSW:3つのSW全てオフで圧縮器停止モ
ード)を使用した制御モード設定手段17と、風量設定
を行う風量設定手段25から構成されている。更に、空
調制御手段5と、前記空調制御手段5を、前記制御モー
ド設定手段17及び前記風量設定手段25からの信号に
基づき、電動圧縮機1の起動開始を判定する圧縮機起動
判断手段28と、前記制御モード設定手段17及び前記
風量設定手段25からの信号に基づき、前記電動圧縮機
1の停止モードを判定する圧縮機停止判定手段18と、
前記圧縮機停止判定手段18からの信号が圧縮機停止モ
ードである時、その直前の制御モードを記憶する制御モ
ード記憶手段26と、前記圧縮機起動判定手段28から
の信号に基づき、電動圧縮機の起動開始後、所定時間信
号を出力するタイマー手段29と、前記タイマー手段2
9からの信号が出力している時、前記制御モード記憶手
段26に基づき、前記第1の冷媒絞り装置14と前記第
2の冷媒絞り装置16のどちらに差圧があるかを判定す
る差圧判定手段27と、前記差圧判定手段27からの信
号に基づき、前記第1の冷媒絞り装置14もしくは前記
第2の冷媒絞り装置16を前記タイマー手段29が信号
を出力している間のみ、均圧状態に制御を行う均圧制御
手段19とで構成されている。ここで、冷房SWをオン
からオフさせた場合、圧縮機停止判定手段18は電動圧
縮機1が停止モードであると判定する。更に、制御モー
ド記憶手段26は、圧縮機停止判定手段18からの信号
を受けて、圧縮機がオフする直前の制御モードが冷房モ
ードであることを記憶する。その後、再び、冷房SWを
オフからオンさせた時、圧縮機起動判定手段28は、電
動圧縮機1が起動開始を判定する。更に、タイマー手段
29は、圧縮機起動判定手段28からの起動開始の信号
を受けて、所定時間、例えば5秒間の信号を出力する。
差圧判定手段27はタイマー手段29及び制御モード記
憶手段26からの信号を受けて、差圧が第2の冷媒絞り
装置16にあることを判定する。均圧制御手段19は差
圧判定手段27からの信号を受けて、第2の冷媒絞り装
置16を均圧するように、制御信号を出力する。出力制
御手段20は実際に均圧制御手段19からの信号を受け
て、第2の冷媒絞り装置16が均圧するように、出力す
る。以上のように、冷房SWをオンからオフして電動圧
縮機を停止させた後、再び冷房SWをオフからオンして
電動圧縮機を起動させた際、差圧のある第2の冷媒絞り
装置16を均圧させる様に、作動する。また、冷房SW
がオン時、風量設定手段25を風量をオフした時も前述
と同様なので、説明を省略する。また暖房SWをオンか
らオフさせて、再びオフからオンさせた場合も、前述し
た通りと同様であり、差圧のある第2の冷媒絞り装置1
6を均圧させる様に、作動する。また、暖房SWがオン
時、風量設定手段25を風量をオフした時も前述と同様
なので、説明を省略する。更にドライSWをオンからオ
フさせて、再びオフからオンさせた場合も、前述した冷
房SWと同様であるが、差圧のある第1の冷媒絞り装置
14を均圧させる様に、作動する。また、ドライSWが
オン時、風量設定手段25を風量をオフした時も前述と
同様なので、説明を省略する。図4は、請求項4の電気
自動車用ヒートポンプ冷暖房除湿制御装置の一実施例の
構成図である。図3との違いは、図4の差圧判定手段2
7が、タイマー手段29からの信号が出力している時、
制御モード記憶手段26に基づき、第1の冷媒絞り装置
14と第2の双方向開閉弁23のどちらに差圧があるか
を判定することとしており、図4の均圧制御手段19
が、前記差圧判定手段27からの信号に基づき、前記第
1の冷媒絞り装置14もしくは前記第2の双方向開閉弁
23を前記タイマー手段29が信号を出力している間の
み、均圧状態に制御を行うこととしている。以上の2点
が相違しているのみである。従って、冷房SWをオンか
らオフさせて、再びオフからオンさせた場合、請求項3
で説明した通りと同様であるが、差圧のある第2の双方
向開閉弁23を均圧させる様に作動する。また、冷房S
Wがオン時、風量設定手段25を風量をオフ後、風量を
オンした時も前述と同様なので、説明を省略する。また
暖房SWをオンからオフさせて、再びオフからオンさせ
た場合も、前述した通りと同様であり、差圧のある第2
の冷媒絞り装置16を均圧させる様に、作動する。ま
た、暖房SWがオン時、風量設定手段25を風量をオフ
した時も前述と同様なので、説明を省略する。更にドラ
イSWをオンからオフさせて、再びオフからオンさせた
場合も、前述した冷房SWと同様であるが、差圧のある
第1の冷媒絞り装置14を均圧させる様に、作動する。
また、ドライSWがオン時、風量設定手段25を風量を
オフ後、風量をオンした時も前述と同様なので、説明を
省略する。
FIG. 3 is a block diagram showing an embodiment of a heat pump cooling / heating / dehumidifying control device for an electric vehicle according to the present invention. Since the configuration of the refrigeration cycle is the same as in FIGS. 1 and 2, the description is omitted. Accordingly, in the electric vehicle heat pump air conditioner dehumidifier similar to that shown in FIG.
And a temperature setter 24 using a variable VR in the air-conditioning operation panel 4 for making settings corresponding to or relating to the temperature of the air blown into the vehicle cabin. In cooling mode,
Control mode using three SWs (A / C SW, heating SW, dry SW: compressor stop mode with all three switches off) to set the control mode of heating mode, dehumidifying heating mode, and compressor stop mode It comprises a setting means 17 and an air volume setting means 25 for setting an air volume. Further, the air-conditioning control means 5 and a compressor start-judgment means 28 for judging the start of the electric compressor 1 based on signals from the control mode setting means 17 and the air volume setting means 25 are provided. A compressor stop determination unit 18 that determines a stop mode of the electric compressor 1 based on signals from the control mode setting unit 17 and the air volume setting unit 25;
When the signal from the compressor stop judging means 18 is the compressor stop mode, a control mode storing means 26 for storing the immediately preceding control mode and an electric compressor based on the signal from the compressor start judging means 28 Timer means 29 for outputting a signal for a predetermined time after the start of
9 is output, the differential pressure judging which of the first refrigerant expansion device 14 and the second refrigerant expansion device 16 has a differential pressure based on the control mode storage means 26. Based on the signal from the judging means 27 and the differential pressure judging means 27, the first refrigerant throttling device 14 or the second refrigerant throttling device 16 is averaged only while the timer means 29 is outputting a signal. Pressure equalizing control means 19 for controlling the pressure state. Here, when the cooling SW is turned off from on, the compressor stop determination means 18 determines that the electric compressor 1 is in the stop mode. Further, the control mode storage unit 26 receives the signal from the compressor stop determination unit 18 and stores that the control mode immediately before the compressor is turned off is the cooling mode. Thereafter, when the cooling SW is turned on again from off, the compressor start determining means 28 determines that the electric compressor 1 starts to be started. Further, the timer unit 29 receives a start start signal from the compressor start determination unit 28 and outputs a signal for a predetermined time, for example, 5 seconds.
The differential pressure determining unit 27 receives signals from the timer unit 29 and the control mode storage unit 26 and determines that the differential pressure is present in the second refrigerant expansion device 16. The equalization control means 19 receives the signal from the differential pressure determination means 27 and outputs a control signal so as to equalize the pressure of the second refrigerant expansion device 16. The output control means 20 actually receives the signal from the pressure equalization control means 19 and outputs the signal so that the second refrigerant expansion device 16 equalizes the pressure. As described above, when the electric compressor is stopped by turning off the cooling SW from on to stop the electric compressor and then starting the electric compressor by turning on the cooling SW again from off, the second refrigerant expansion device having a differential pressure It operates to equalize 16. Cooling SW
Is ON, and when the air volume setting means 25 turns off the air volume, it is the same as described above, and the description is omitted. The same applies to the case where the heating SW is turned off from on and then on again from off, as described above.
It operates to equalize 6. Also, when the heating SW is turned on and the air volume setting means 25 is turned off the air volume is the same as described above, the description is omitted. Further, when the dry SW is turned off from on and then turned on again, it is the same as the above-mentioned cooling SW, but operates so as to equalize the first refrigerant expansion device 14 having a differential pressure. Further, when the dry SW is turned on and the air volume setting means 25 is turned off the air volume is the same as described above, the description is omitted. FIG. 4 is a block diagram of an embodiment of a heat pump cooling / heating and dehumidifying control device for an electric vehicle according to claim 4. The difference from FIG. 3 is that the differential pressure determination means 2 in FIG.
7, when the signal from the timer means 29 is output,
Based on the control mode storage means 26, it is determined which of the first refrigerant expansion device 14 and the second bidirectional on-off valve 23 has a differential pressure.
However, based on the signal from the differential pressure determination means 27, the first refrigerant expansion device 14 or the second bidirectional on-off valve 23 is set to the pressure equalized state only while the timer means 29 is outputting a signal. Is to be controlled. Only the above two points are different. Therefore, when the cooling switch is turned off from on and then turned on again from off,
As described above, it operates to equalize the pressure of the second bidirectional on-off valve 23 having a differential pressure. In addition, cooling S
When W is on, the air volume setting means 25 turns off the air volume, and then turns on the air volume. The same applies to the case where the heating SW is turned off from on and then turned on again from off, as described above.
It operates so as to equalize the refrigerant expansion device 16. Also, when the heating SW is turned on and the air volume setting means 25 is turned off the air volume is the same as described above, the description is omitted. Further, when the dry SW is turned off from on and then turned on again, it is the same as the above-mentioned cooling SW, but operates so as to equalize the first refrigerant expansion device 14 having a differential pressure.
Also, when the dry SW is on, the air volume setting means 25 turns off the air volume, and then turns on the air volume.

【0022】[0022]

【発明の効果】【The invention's effect】

(請求項1) 本発明の第1の手段によれば、操作パネ
ル等の操作により、電動圧縮機が停止している時を利用
して、均圧させており、しかも膨張弁にて均圧させてい
るので、均圧時に発生する冷媒音を抑え、かつ短時間に
均圧させることが出来るので、再起動時の快適性の向上
と電動圧縮機の耐久性の向上をはかることが出来る。
According to the first aspect of the present invention, the pressure is equalized by operating the operation panel or the like while the electric compressor is stopped, and the pressure is equalized by the expansion valve. As a result, the refrigerant noise generated at the time of pressure equalization can be suppressed and the pressure can be equalized in a short time, so that the comfort at the time of restart and the durability of the electric compressor can be improved.

【0023】本発明の第2の手段によれば、第1の手段
よりも更に短時間に均圧させることが出来るので、再起
動時の快適性の向上と電動圧縮機の耐久性の向上をはか
ることが出来る。
According to the second means of the present invention, the pressure can be equalized in a shorter time than in the first means, so that the comfort at the time of restarting and the durability of the electric compressor can be improved. You can measure.

【0024】本発明の第3の手段によれば、電動圧縮機
停止中に、膨張弁の絞りを通じて徐々に均圧していき、
再起動時、膨張弁を開いて完全に均圧する様にしている
ので、第1の手段よりも更に、均圧時間の短縮と、均圧
時に発生する冷媒音を低減させることができるとともに
再起動時の快適性の向上と電動圧縮機の耐久性の向上を
はかることができる。
According to the third aspect of the present invention, while the electric compressor is stopped, the pressure is gradually equalized through the throttle of the expansion valve.
At the time of restart, since the expansion valve is opened to completely equalize the pressure, the equalizing time can be further reduced and the refrigerant noise generated at the time of equalizing can be reduced, and the restart can be performed. It is possible to improve the comfort at the time and the durability of the electric compressor.

【0025】本発明の第4の手段によれば、第3の手段
よりも更に短時間に均圧させることが出来るので、再起
動時の快適性の向上と電動圧縮機の耐久性の向上をはか
ることが出来る。
According to the fourth means of the present invention, the pressure can be equalized in a shorter time than in the third means, so that the comfort at the time of restarting and the durability of the electric compressor can be improved. You can measure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の電気自動車用ヒートポンプ冷暖房除
湿装置の一実施例の構成図
FIG. 1 is a configuration diagram of one embodiment of a heat pump air conditioner dehumidifier for an electric vehicle according to claim 1;

【図2】請求項2の電気自動車用ヒートポンプ冷暖房除
湿装置の一実施例の構成図
FIG. 2 is a configuration diagram of an embodiment of a heat pump air conditioner dehumidifier for electric vehicles according to claim 2;

【図3】請求項3の電気自動車用ヒートポンプ冷暖房除
湿装置の一実施例の構成図
FIG. 3 is a configuration diagram of an embodiment of a heat pump air conditioner dehumidifier for an electric vehicle according to claim 3;

【図4】請求項4の電気自動車用ヒートポンプ冷暖房除
湿装置の一実施例の構成図
FIG. 4 is a block diagram of one embodiment of a heat pump air conditioner dehumidifier for an electric vehicle according to claim 4;

【符号の説明】[Explanation of symbols]

1 電動圧縮機 2 車室外空気熱交換器 3 車室外空気熱交換器用送風装置 4 操作パネル 5 空調制御手段 6 車室内空気熱交換器用送風装置 7 四方切替弁 8 車室内吹出口 9 第1の通風回路 10 第1の車室内空気熱交換器 11 第2の車室内空気熱交換器 12 ダンパ 13 冷媒配管 14 第1の冷媒絞り装置 15 インバータ 16 第2の冷媒絞り装置 17 制御モード設定手段 18 圧縮器停止判定手段 19 均圧制御手段 20 出力制御手段 21 冷媒バイパス回路 22 第1の双方向開閉弁 23 第2の双方向開閉弁 24 温度調節器 25 風量設定器 26 制御モード記憶手段 27 差圧判定手段 28 圧縮器起動判定手段 29 タイマー手段 30 第2の通風回路 31 通風回路切り替えアクチュエータ REFERENCE SIGNS LIST 1 electric compressor 2 exterior air heat exchanger 3 exterior air heat exchanger blower 4 operation panel 5 air conditioning control means 6 interior air heat exchanger blower 7 four-way switching valve 8 interior air outlet 9 first ventilation Circuit 10 First cabin air heat exchanger 11 Second cabin air heat exchanger 12 Damper 13 Refrigerant pipe 14 First refrigerant throttle device 15 Inverter 16 Second refrigerant throttle device 17 Control mode setting means 18 Compressor Stop determination means 19 Equalization control means 20 Output control means 21 Refrigerant bypass circuit 22 First two-way on-off valve 23 Second two-way on-off valve 24 Temperature controller 25 Air volume setting unit 26 Control mode storage means 27 Differential pressure determination means 28 Compressor activation determination means 29 Timer means 30 Second ventilation circuit 31 Ventilation circuit switching actuator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲よし▼田 誠 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭59−183255(JP,A) 特開 平6−344758(JP,A) 特開 平4−13051(JP,A) 特開 平6−323646(JP,A) 特開 平5−178069(JP,A) 特開 平5−96940(JP,A) 実開 昭59−21461(JP,U) 実開 平4−106462(JP,U) 実開 昭63−108059(JP,U) (58)調査した分野(Int.Cl.7,DB名) B60H 1/22 671 B60H 1/32 624 B60H 3/00 F25B 13/00 F25B 13/00 103 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Yoshi ▼ Makoto Tadashi 1006 Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-59-183255 (JP, A) JP-A-6-344758 (JP, A) JP-A-4-13051 (JP, A) JP-A-6-323646 (JP, A) JP-A-5-178069 (JP, A) JP-A-5-96940 (JP) , A) Japanese Utility Model Showa 59-21461 (JP, U) Japanese Utility Model Hei 4-106462 (JP, U) Japanese Utility Model Showa 63-108059 (JP, U) (58) Fields surveyed (Int. Cl. 7 , DB Name) B60H 1/22 671 B60H 1/32 624 B60H 3/00 F25B 13/00 F25B 13/00 103

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の冷媒絞り装置と、第2の冷媒絞り装
置と、冷房モードまたは暖房モードまたは除湿暖房モー
ドまたは圧縮機停止モードのいずれか一つの制御モード
を設定する制御モード設定手段と、電動圧縮機のモータ
に通電し前記電動圧縮機を可変回転数にて駆動するイン
バータと、前記制御モード設定手段からの信号に基づ
き、少なくとも前記インバータ及び前記第1の冷媒絞り
装置及び前記第2の冷媒絞り装置を制御する空調制御手
段と、前記空調制御手段に、前記制御モード設定手段か
らの信号に基づき、前記電動圧縮機の停止モードを判定
する圧縮機停止判定手段と、前記圧縮機停止判定手段か
らの信号が圧縮機停止モードである時、圧縮機停止モー
ドに変更直前の制御モードを記憶する制御モード記憶手
段と、前記制御モード記憶手段及び圧縮機停止判定手段
からの信号に基づき、前記第1の冷媒絞り装置と前記第
2の冷媒絞り装置のどちらに差圧があるかを判定する差
圧判定手段と、前記差圧判定手段からの信号に基づき、
前記第1の冷媒絞り装置もしくは前記第2の冷媒絞り装
置を均圧状態に制御を行う均圧制御手段とを具備したこ
とを特徴とする電気自動車用ヒートポンプ冷暖房除湿制
御装置。
A first refrigerant expansion device, a second refrigerant expansion device, and control mode setting means for setting any one of a cooling mode, a heating mode, a dehumidifying / heating mode, and a compressor stop mode. An inverter that energizes a motor of the electric compressor and drives the electric compressor at a variable speed; and at least the inverter, the first refrigerant expansion device, and the second compressor based on a signal from the control mode setting means. Air-conditioning control means for controlling the refrigerant expansion device; compressor stop determination means for determining a stop mode of the electric compressor based on a signal from the control mode setting means; Control mode storage means for storing a control mode immediately before changing to the compressor stop mode when the signal from the determination means is the compressor stop mode; A differential pressure determining unit that determines which of the first refrigerant expansion device and the second refrigerant expansion device has a differential pressure based on a signal from a storage unit and a compressor stop determination unit; Based on the signal from the means,
A heat pump cooling / heating and dehumidification control device for an electric vehicle, comprising: a pressure equalization control unit that controls the first refrigerant expansion device or the second refrigerant expansion device to an equal pressure state.
【請求項2】車室外熱交換器と、前記車室外熱交換器お
よび第2の冷媒絞り装置をバイパスするように配された
冷媒バイパス回路と、前記冷媒バイパス回路内に配され
た第1の電磁開閉弁と、空調制御手段を、前記制御モー
ド設定手段からの信号に基づき、電動圧縮機の停止モー
ドを判定する圧縮機停止判定手段と、前記圧縮機停止判
定手段からの信号が圧縮機停止モードである時、圧縮機
停止モードに変更直前の制御モードを記憶する制御モー
ド記憶手段と、前記制御モード記憶手段及び圧縮機停止
判定手段からの信号に基づき、第1の冷媒絞り装置と前
記第1の電磁開閉弁のどちらに差圧があるかを判定する
差圧判定手段と、前記差圧判定手段からの信号に基づ
き、前記第1の冷媒絞り装置もしくは前記第1の電磁開
閉弁を均圧状態に制御を行う均圧制御手段とを具備した
ことを特徴とする請求項1記載の電気自動車用ヒートポ
ンプ冷暖房除湿制御装置。
2. An external heat exchanger, a refrigerant bypass circuit arranged to bypass the external heat exchanger and a second refrigerant expansion device, and a first heat exchanger disposed in the refrigerant bypass circuit. An electromagnetic on / off valve, an air conditioning control unit, a compressor stop determination unit that determines a stop mode of the electric compressor based on a signal from the control mode setting unit, and a signal from the compressor stop determination unit that stops the compressor. When in the mode, the control mode storage means for storing a control mode immediately before changing to the compressor stop mode, and the first refrigerant expansion device and the second refrigerant throttle apparatus based on signals from the control mode storage means and the compressor stop determination means. The first refrigerant throttle device or the first electromagnetic on-off valve based on a signal from the differential pressure determining means for determining which of the first electromagnetic on-off valve has a differential pressure; Control over pressure Claim 1 electric vehicle heat pump air conditioning dehumidification control device, wherein by comprising a pressure equalization control means for performing.
【請求項3】空調制御手段を、制御モード設定手段から
の信号に基づき、電動圧縮機の起動開始を判定する圧縮
機起動判定手段と、前記制御モード設定手段からの信号
に基づき、前記電動圧縮機の停止モードを判定する圧縮
機停止判定手段と、前記圧縮機停止判定手段からの信号
が圧縮機停止モードである時、圧縮機停止モードに変更
直前の制御モードを記憶する制御モード記憶手段と、前
記圧縮機起動判定手段からの信号に基づき、圧縮機の起
動開始後、所定時間信号を出力するタイマー手段と、前
記タイマー手段からの信号が出力している時、前記制御
モード記憶手段に基づき、第1の冷媒絞り装置と第2の
冷媒絞り装置のどちらに差圧があるかを判定する差圧判
定手段と、前記差圧判定手段からの信号に基づき、前記
第1の冷媒絞り装置もしくは前記第2の冷媒絞り装置を
均圧状態に制御を行う均圧制御手段とを具備した請求項
1記載の電気自動車用ヒートポンプ冷暖房除湿制御装
置。
3. An air-conditioning control means, comprising: a compressor start-judgment means for judging start-up of an electric compressor based on a signal from a control mode setting means; and an electric compressor based on a signal from the control mode setting means. Compressor stop determination means for determining a compressor stop mode, and control mode storage means for storing a control mode immediately before changing to the compressor stop mode when a signal from the compressor stop determination means is the compressor stop mode. A timer means for outputting a signal for a predetermined time after the start of the compressor, based on a signal from the compressor start determination means, and a signal output from the timer means, based on the control mode storage means. A differential pressure judging means for judging which of the first refrigerant throttling device and the second refrigerant throttling device has a differential pressure, and the first refrigerant throttling device based on a signal from the differential pressure judging device. Or said second refrigerant throttle device according to claim 1 for use in electric vehicle heat pump air conditioning dehumidification control device according equipped a pressure equalization control means for controlling the pressure equalization of.
【請求項4】空調制御手段を、制御モード設定手段から
の信号に基づき、電動圧縮機の起動開始を判定する圧縮
機起動判定手段と、前記制御モード設定手段からの信号
に基づき、前記電動圧縮機の停止モードを判定する圧縮
機停止判定手段と、前記圧縮機停止判定手段からの信号
が圧縮機停止モードである時、圧縮機停止モードに変更
直前の制御モードを記憶する制御モード記憶手段と、前
記圧縮機起動判定手段からの信号に基づき、圧縮機の起
動開始後、所定時間信号を出力するタイマー手段と、前
記タイマー手段からの信号が出力している時、前記制御
モード記憶手段に基づき、第1の冷媒絞り装置と第1の
電磁開閉弁のどちらに差圧があるかを判定する差圧判定
手段と、前記差圧判定手段からの信号に基づき、第1の
冷媒絞り装置もしくは第1の電磁開閉弁を均圧状態に制
御を行う均圧制御手段とを具備した請求項2記載の電気
自動車用ヒートポンプ冷暖房除湿制御装置。
4. An air-conditioning control means, comprising: a compressor start-judgment means for judging start-up of an electric compressor based on a signal from a control mode setting means; and the electric compression control means based on a signal from the control mode setting means. Compressor stop determination means for determining a compressor stop mode, and control mode storage means for storing a control mode immediately before changing to the compressor stop mode when a signal from the compressor stop determination means is the compressor stop mode. A timer means for outputting a signal for a predetermined time after the start of the compressor, based on a signal from the compressor start determination means, and a signal output from the timer means, based on the control mode storage means. A differential pressure determining means for determining which of the first refrigerant throttle device and the first solenoid on-off valve has a differential pressure; and a first refrigerant throttle device based on a signal from the differential pressure determining device. The first electromagnetic valve electric vehicle heat pump air conditioning dehumidification control device according to claim 2 which comprises a pressure equalization control means for controlling the pressure equalization of the.
JP02190095A 1995-02-09 1995-02-09 Heat pump cooling / heating dehumidification control device for electric vehicles Expired - Fee Related JP3246249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02190095A JP3246249B2 (en) 1995-02-09 1995-02-09 Heat pump cooling / heating dehumidification control device for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02190095A JP3246249B2 (en) 1995-02-09 1995-02-09 Heat pump cooling / heating dehumidification control device for electric vehicles

Publications (2)

Publication Number Publication Date
JPH08216664A JPH08216664A (en) 1996-08-27
JP3246249B2 true JP3246249B2 (en) 2002-01-15

Family

ID=12067989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02190095A Expired - Fee Related JP3246249B2 (en) 1995-02-09 1995-02-09 Heat pump cooling / heating dehumidification control device for electric vehicles

Country Status (1)

Country Link
JP (1) JP3246249B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830239B2 (en) * 1997-09-29 2006-10-04 カルソニックカンセイ株式会社 Air conditioner for vehicles
EP2962878B1 (en) * 2013-03-29 2017-10-25 Japan Climate Systems Corporation Vehicle air conditioner
JP6853036B2 (en) * 2016-12-27 2021-03-31 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP6854668B2 (en) * 2017-02-28 2021-04-07 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Also Published As

Publication number Publication date
JPH08216664A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
CN107709067B (en) Air conditioner for vehicle
JPH09142139A (en) Air-conditioning device for vehicle
JPH08238919A (en) Air conditioner for electric automobile
JP3246250B2 (en) Heat pump air conditioner dehumidifier for electric vehicles
JPH07164867A (en) Control device of air conditioner for electric vehicle
JPH0842938A (en) Dehumidifying device and method of air conditioner
JP2011005980A (en) Air conditioner for vehicle
JP2013154749A (en) Vehicle air conditioner
JP3275410B2 (en) Heat pump type air conditioner for vehicles
JP3246249B2 (en) Heat pump cooling / heating dehumidification control device for electric vehicles
JP3279104B2 (en) Heat pump cooling / heating dehumidification control device for electric vehicles
JP4196681B2 (en) Refrigeration cycle controller
JP2011020478A (en) Air conditioner for vehicle
JP2006177599A (en) Air conditioner
JP2005262958A (en) Vehicular air-conditioner
JP3232183B2 (en) Vehicle air conditioner
JPH0891042A (en) Heat pump type air-conditioning cooling and heating equipment
JP5472412B2 (en) Air conditioner for vehicles
JP3246290B2 (en) Air conditioning controller for electric vehicles
JP3271423B2 (en) Heat pump air conditioner dehumidifier for electric vehicles
JP2684668B2 (en) Vehicle air conditioner
JP2000055484A (en) Air conditioner
JP3271347B2 (en) Heat pump type air conditioner for vehicles
JP3198623B2 (en) Air conditioner
WO2023002993A1 (en) Vehicular air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees