JP3244696B2 - Isolation, proliferation and differentiation of human muscle cells - Google Patents

Isolation, proliferation and differentiation of human muscle cells

Info

Publication number
JP3244696B2
JP3244696B2 JP50911490A JP50911490A JP3244696B2 JP 3244696 B2 JP3244696 B2 JP 3244696B2 JP 50911490 A JP50911490 A JP 50911490A JP 50911490 A JP50911490 A JP 50911490A JP 3244696 B2 JP3244696 B2 JP 3244696B2
Authority
JP
Japan
Prior art keywords
myogenic
cells
composition according
primary
cell composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50911490A
Other languages
Japanese (ja)
Other versions
JPH05500601A (en
Inventor
ヘレン ブロー
シモン エム ヒューズ
Original Assignee
ザ ボード オブ トラスティーズ オブ ザ リランド スタンフォード ジュニア ユニバーシティー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ ボード オブ トラスティーズ オブ ザ リランド スタンフォード ジュニア ユニバーシティー filed Critical ザ ボード オブ トラスティーズ オブ ザ リランド スタンフォード ジュニア ユニバーシティー
Publication of JPH05500601A publication Critical patent/JPH05500601A/en
Application granted granted Critical
Publication of JP3244696B2 publication Critical patent/JP3244696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/33Insulin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 (関連分野) 本発明の分野は神経筋病の治療および多様な病因に由
来する病気の細胞性治療を目的とするトランスホーメー
ションに使用する筋原細胞の発生に関する。
Description: FIELD OF THE INVENTION The field of the invention relates to the generation of myogenic cells for use in the treatment of neuromuscular diseases and for the transformation of cells of diverse etiology to treat cells of disease.

(背景) 筋原細胞は筋形成に使われる中胚葉の前駆体細胞であ
る。特定の筋原細胞は分化した筋管を生産する他の筋原
細胞を認識し、自然にこれと融合し得る。多核筋管はも
はや***せず、またDNAも合成しないが、筋たんぱく質
を多量に生産する。これらには収縮装置の構成物や神経
筋伝達に必要な特定の細胞表面成分が含まれる。最終的
に分化した筋細胞は特徴的な横紋およびリズミカルな収
縮を示す。この経路の次のステップは成熟である。発生
段階の異なる収縮装置および筋肉には多重遺伝子群の異
なるメンバーによってコードされるミオシンおよびアク
チンなどの別のタイプの筋肉たんぱく質が含まれる。
(Background) Myogenic cells are mesodermal precursor cells used for myogenesis. Certain myogenic cells recognize other myogenic cells that produce differentiated myotubes and can naturally fuse with them. Multinucleated myotubes no longer divide and do not synthesize DNA, but produce large amounts of muscle protein. These include the components of the contractile device and certain cell surface components required for neuromuscular transmission. The terminally differentiated myocytes show characteristic striations and rhythmic contractions. The next step in this pathway is maturity. Contractile devices and muscles at different stages of development contain other types of muscle proteins, such as myosin and actin, encoded by different members of a multigene group.

胎児や成人組織からの筋原細胞の生産法が開発されて
きている。これらの方法は実質的に他の細胞を含まない
成人筋肉組織から大量の筋原細胞を生産することができ
ることを示している。筋原細胞には様々な用途がある。
まず筋原細胞は筋肉組織に関する様々な遺伝病の治療に
使用できる。また、筋原細胞は、1つ以上の遺伝子を導
入して目的の産物を提供する細胞治療を目的としたベヒ
クルとしても有用である。
Methods for producing myogenic cells from fetal and adult tissues have been developed. These methods show that large amounts of myogenic cells can be produced from adult muscle tissue substantially free of other cells. Myogenic cells have a variety of uses.
First, myogenic cells can be used to treat a variety of genetic diseases involving muscle tissue. Myogenic cells are also useful as vehicles for cell therapy where one or more genes are introduced to provide the desired product.

(関連技術) ブロー(Blau)およびウェブスター(Webster),Pro
c.Natl.Acad.Sci.,USA(1981)78:5623−5627、は個々
のクローンの増殖や分化を目的とした筋原細胞の単離お
よびクローニングについて報告している。ブロー(Bla
u)等、Proc.Natl.Acad.Sci.,USA(1983)80:4856−486
0、はダチェン型筋ジストロフィー患者由来の培養細胞
のクローン分析における筋原細胞(サテライト細胞)、
成熟筋繊維の単核前駆体の増殖能の欠除について報告し
ている。ブロー(Blau)等、Exp.Cell.Res.(1983)14
4:495−503、はダチェン型筋ジストロフィー患者の生検
由来の純粋な筋原細胞クローンの生産および分析につい
て報告している。ブロー(Blau)等、Science(1985)2
30:758−766は筋肉遺伝子が活性化された非筋肉細胞と
筋肉細胞との融合について報告している。ウェブスター
(Webster)等、Exp.Cell.Res.(1988)174:252−265、
は蛍光活性化セルソーターを用いたヒト筋原細胞の精製
について報告している。ハム(Ham)等、In Vitro Cel
l.& Dev.Biology(1988)24:833−844、はヒト筋肉サ
テライト細胞のクローン増殖を目的とした無血清培地に
ついて報告している。ウェブスター(Webster)等、Cel
l(1988)52:503−513、はダチェン型筋ジストロフィー
は速い収縮に特殊化した骨格筋繊維群に選択的に影響す
ることを示した(ここで引用している参考文献参照)。
(Related technology) Blau and Webster, Pro
Acad. Sci., USA (1981) 78 : 5623-5627, reports the isolation and cloning of myoblasts for the purpose of growing and differentiating individual clones. Blow (Bla
u) et al., Proc. Natl. Acad. Sci., USA (1983) 80: 4856-486.
0, myogenic cells (satellite cells) in clonal analysis of cultured cells from patients with Dachen's muscular dystrophy,
We report a lack of proliferative capacity of mononuclear precursors in mature muscle fibers. Blau et al., Exp. Cell. Res. (1983) 14
4 : 495-503, report the production and analysis of a pure myogenic cell clone from a biopsy of a patient with Dachen's muscular dystrophy. Blau et al., Science (1985) 2
30 : 758-766 report the fusion of non-muscle cells with activated muscle genes to muscle cells. Webster et al., Exp. Cell. Res. (1988) 174 : 252-265,
Report purification of human myogenic cells using a fluorescence activated cell sorter. In Vitro Cel, such as Ham
l. & Dev. Biology (1988) 24 : 833-844, report a serum-free medium for clonal expansion of human muscle satellite cells. Cel, such as Webster
1 (1988) 52 : 503-513, showed that Dachen's muscular dystrophy selectively affects a group of skeletal muscle fibers specialized for fast contraction (see references cited therein).

(本発明の概要) 細胞治療用に筋原細胞を無血清または低血清培地で調
製する。筋原細胞は移動し、予め存在する繊維と融合し
得、またトランスホーメーションの結果導入される遺伝
子のキャリヤーとしても使用される。基底層を通過する
筋原細胞の移動で、種々の病気の治療を目的とした注入
を減らすことができる。
SUMMARY OF THE INVENTION Myogenic cells are prepared in serum-free or low-serum media for cell therapy. Myoblasts can migrate, fuse with pre-existing fibers, and are also used as carriers for genes that are introduced as a result of transformation. The migration of myogenic cells through the basal layer can reduce infusion for the purpose of treating various diseases.

(特定の態様の説明) 病気の治療を目的とした細胞性治療に使用する方法お
よび細胞が提供される。栄養培地中血清の非存在下、ま
たは実質的に非存在下、クローン的に純粋な、もしくは
実質的に濃縮した筋原細胞を大量に調製する方法が示さ
れている。生成した細胞は筋肉組織または可溶性因子が
関連する他の組織に関する様々な病気の治療に用いられ
る。
DESCRIPTION OF SPECIFIC EMBODIMENTS Methods and cells for use in cellular therapy for the treatment of disease are provided. Methods for preparing large quantities of clonally pure or substantially enriched myoblasts in the absence or substantially absence of serum in a nutrient medium are described. The resulting cells are used in the treatment of various diseases involving muscle tissue or other tissues in which soluble factors are involved.

使用する細胞は、胎児、新生児またはより成熟したヒ
ト由来の組織を含む組織サンプルから得られる筋原細胞
である。これらの細胞には新鮮なものか、患者から入手
後直ちに凍結したものか、もしくは約5〜30倍に増殖さ
せ使用するまで凍結して保存したクローン培養物を用い
る。この細胞は至適条件として細胞培養インキュベータ
ーを用い(37℃、5%CO2含有空気、飽和湿度)増殖す
る。もし必要なら別の条件を用いる。使用した培地は有
意な分化なしに増殖させるものである。したがってこの
培地は筋原細胞の成熟レベルを維持するが、必要に応じ
てそれらが分化し成熟する環境に導入することもでき
る。
The cells used are myogenic cells obtained from a tissue sample containing tissue from a fetal, neonatal or more mature human. These cells may be fresh, frozen immediately after being obtained from the patient, or clone cultures that have been grown about 5 to 30-fold and stored frozen until use. The cells are grown under optimal conditions using a cell culture incubator (37 ° C., 5% CO 2 containing air, saturation humidity). Use other conditions if necessary. The medium used grows without significant differentiation. Thus, this medium maintains the level of maturation of the myoblasts, but can be introduced into an environment where they differentiate and mature as needed.

この培地には必須アミノ酸、無機塩、微量元素および
ビタミン類、ならびに他の有機成分が含まれる。以下の
表には当分野ではよく知られているように筋原細胞の増
殖に有害な影響を与えないよう各成分を変化させている
が一般には至適と考えられているものを示している。
This medium contains essential amino acids, inorganic salts, trace elements and vitamins, and other organic components. The following table shows that, as is well known in the art, each component is changed so as not to have a detrimental effect on the proliferation of myoblasts, but is generally considered optimal. .

MCDB120と呼ばれる基礎培地に加えて以下の因子を補
う。最初の因子は、0.3〜0.5μg/ml、好ましくは約0.39
/0.40μg/mlのデキサメタゾンである。0.25〜0.75μg/m
l、好ましくは約0.50mg/mlの血清アルブミン、特にウシ
血清アルブミンも使用される。約5〜15ng、好ましくは
約10ngの上皮成長因子も使用する。約0.25〜0.75mg/m
l、好ましくは0.5mg/mlのフェチュインも使用する。最
後に、約150〜200μg/ml、好ましくは約180μg/mlのイ
ンシュリン、簡便にはウシインシュリンも使用される。
Supplement the following factors in addition to the basal medium called MCDB120. The first factor is 0.3-0.5 μg / ml, preferably about 0.39
/0.40 μg / ml dexamethasone. 0.25-0.75μg / m
1, preferably about 0.50 mg / ml of serum albumin, especially bovine serum albumin, is also used. About 5 to 15 ng, preferably about 10 ng, of epidermal growth factor is also used. About 0.25-0.75mg / m
1, preferably 0.5 mg / ml fetuin is also used. Finally, about 150-200 μg / ml, preferably about 180 μg / ml of insulin, conveniently bovine insulin, is also used.

筋原細胞の増殖には上述の培地に接種物を導入し、先
に述べた条件下細胞を増殖させる。接種物添加後、集密
度を高める目的で細胞の分布を均一に保つため培地を緩
やかに攪拌する。
For the growth of myoblasts, the inoculum is introduced into the medium described above and the cells are grown under the conditions described above. After addition of the inoculum, the medium is gently agitated to maintain a uniform distribution of cells for the purpose of increasing confluency.

細胞を簡便な方法で収穫する。組織は一定に攪拌しな
がらウィーチントリプシン処理用フラスコ中0.05%トリ
プシン−EDTAを用い2〜3回連続的に総計40〜60分間の
処理を行うことで解離させる。
Cells are harvested in a convenient manner. The tissue is dissociated by performing 2 to 3 continuous treatments for a total of 40 to 60 minutes using 0.05% trypsin-EDTA in a Wheatin trypsinization flask with constant stirring.

各トリプシン処理後の上清から回収した細胞を収穫
し、氷上で4℃に冷却する。最終10%(v/v)となるよ
うウマ血清を加えてプロテアーゼ活性を停止させる。解
離した細胞を遠心する(2分間、25℃)。この細胞ペレ
ットをならし培地に懸濁し、培地にプレーティングする
か、もしくは1ml当り組織約0.1cm3の密度として液体窒
素中で凍結する。
The cells recovered from the supernatant after each trypsin treatment are harvested and cooled to 4 ° C. on ice. Equine serum is added to a final 10% (v / v) to stop protease activity. Centrifuge the dissociated cells (2 minutes, 25 ° C). The cell pellet is suspended in conditioned medium and plated on the medium or frozen in liquid nitrogen to a density of about 0.1 cm 3 of tissue per ml.

培養の場合、その筋原細胞を融合、トランスフェクシ
ョン、インフェクション、エレクトロポレーション、粒
子衝突法などを含む種々の方法でトランスホームする。
外来DNAを導入する方法は本発明にとって重要ではな
い。DNA導入の目的に依存して、組換え、または非相同
的組換えにより特異的に相同的または正統的組込みを行
うことは興味深い。スミシーズ(Smithies)等(1985)
Nature317:230−235;トーマス(Thomas)およびカペッ
チ(Capecchi)(1987)Cell51:503−512およびマンサ
ー(Mansour)等(1988)Nature336:348−352参照。特
異的組込みを行う場合、組込み部位と相同的DNAの各側
の少なくとも50bp、通常100bpのところに目的の遺伝子
を隣接させる。この相同的DNAの大きさは10kbp程、通常
せいぜい約5kbp程度でその隣接領域もほぼ同サイズであ
ることが好ましい。
In the case of culture, the myoblasts are transformed by various methods including fusion, transfection, infection, electroporation, particle bombardment, and the like.
The method of introducing the foreign DNA is not critical to the invention. Depending on the purpose of the DNA transfer, it is of interest to perform homologous or orthologous integration specifically by recombination or by heterologous recombination. Smithies, etc. (1985)
Nature 317 : 230-235; Thomas and Capecchi (1987) Cell 51 : 503-512 and Mansour et al. (1988) Nature 336 : 348-352. When performing specific integration, the gene of interest is flanked by at least 50 bp, usually 100 bp, on each side of the DNA homologous to the integration site. It is preferable that the size of this homologous DNA is about 10 kbp, usually about 5 kbp at most, and that the adjacent regions have substantially the same size.

組込み領域には特定の筋肉欠陥に関連するDNA配列が
含まれる。したがって、その宿主の筋原細胞は宿主から
取り出し、相同組換えによりトランスホームする。つい
で、細胞のクローン化の後欠陥部位における相同組換え
についてスクリーニングする。それとは別に、通常、筋
原細胞または成熟筋肉組織中では抑制されている天然の
誘導可能遺伝子の場合、転写開始調節配列、たとえばエ
ンハンサーを伴う、または伴なわないプロモーターなど
を修正し誘導または構成的転写への基礎を提供する相同
組換えを起こし得る。したがって、この筋原細胞を用
い、通常筋肉組織では発現されない内在的(宿主にとっ
て)または異種の遺伝子を発現し得る。たとえば、サイ
トカイン、成長因子、コロニー刺激因子、インターフェ
ロン、表面膜レセプター、インシュリンなどの発現も可
能となる。転写開始調節領域を修正することにより、筋
原細胞は発現産物の構成的生産を行ない得るし、また、
それとは別個に、あるいはそれと同時に、可溶性産物に
対するレセプターを導入することができ、この事はたと
えば細胞質や核などの細胞性たんぱく質の誘導可能な転
写を提供する。このレセプターを活性化することにより
筋原細胞は関連リガンドの誘導条件下発現産物の生産が
誘導される。
The integration region contains a DNA sequence associated with a particular muscle defect. Thus, the host myogenic cells are removed from the host and transformed by homologous recombination. The cells are then cloned and screened for homologous recombination at the defective site. Alternatively, for natural inducible genes that are normally repressed in myoblasts or mature muscle tissue, transcription initiation regulatory sequences, such as promoters, with or without enhancers, may be modified and induced or constitutively modified. Homologous recombination can occur that provides the basis for transcription. Thus, the myogenic cells can be used to express endogenous (to the host) or heterologous genes not normally expressed in muscle tissue. For example, expression of cytokines, growth factors, colony stimulating factors, interferons, surface membrane receptors, insulin and the like is possible. By modifying the transcription initiation regulatory region, myogenic cells can achieve constitutive production of the expression product, and
Separately or simultaneously, a receptor for the soluble product can be introduced, which provides for inducible transcription of cellular proteins, such as the cytoplasm and nucleus. By activating this receptor, myogenic cells are induced to produce an expression product under conditions that induce the related ligand.

筋原細胞のトランスホーメーションには種々のベクタ
ーが使用される。トランスフェクションやインフェクシ
ョンに特に興味深いのは細胞内に導入し得る複製能欠失
ウイルスベクター、DNAウイルスまたはレトロウイルス
ベクターである。通常これらのベクターには原核性DNA
は含まれず、かつ種々の機能性配列が含まれている。
Various vectors are used for transformation of myoblasts. Of particular interest for transfection and infection are replication defective viral vectors, DNA virus or retroviral vectors that can be introduced into cells. Usually, these vectors contain prokaryotic DNA.
Is not included, and various functional sequences are included.

すでに議論されているように、機能性配列には、転写
および翻訳開始および停止調節配列を踏むDNA領域、目
的たんぱく質をコードするオープンリーディングフレー
ムがあり、また、さらに部位特異的組込み用の隣接領域
を含むこともある。すでに示したように、ある状況で
は、5′隣接領域は相同組換えにより転写開始領域の性
質を変えてしまう。たとえば、エンハンサーがある場合
とない場合では転写誘導の可否や転写レベルの増減など
に違いが起こる。同様に、プロモーター領域が修正を受
けて誘導の感受性や転写レベルが変化することもある。
As previously discussed, functional sequences include DNA regions that traverse transcriptional and translational start and stop regulatory sequences, open reading frames encoding the protein of interest, and additional flanking regions for site-specific integration. May include. As already indicated, in some situations, the 5 'flanking region alters the nature of the transcription initiation region by homologous recombination. For example, the presence or absence of an enhancer causes a difference in whether or not transcription can be induced or the level of transcription increases or decreases. Similarly, promoter regions may be modified to alter induction sensitivity and transcription levels.

使用する構造遺伝子は、細胞質や核などのオルガネラ
など細胞内に維持されるか、細胞内膜や細胞膜に輸送さ
れる細胞内産物を生産するものや、その構造遺伝子に本
来存在する天然のシグナル配列や本来存在しないシグナ
ル配列を与えることにより分泌されるものがある。目的
の可溶性たんぱく質が大きいたんぱく質の断片であるよ
うな場合、そのようなたんぱく質にシグナル配列を与え
る必要がある。その結果分泌やプロセシング部位におけ
るプロセシングの際に所望されるたんぱく質が天然の配
列のものになる。
Structural genes to be used include those that are maintained in the cell, such as organelles such as the cytoplasm and nucleus, or that produce intracellular membranes and intracellular products that are transported to the cell membrane, and the natural signal sequences that are naturally present in the structural genes Some are secreted by providing a signal sequence that does not exist originally. If the soluble protein of interest is a large protein fragment, it is necessary to provide such a protein with a signal sequence. As a result, the protein desired for processing at the secretory or processing site will be of the native sequence.

ベヒクル構築物を含む細胞を選択するためのマーカー
が存在する。通常このマーカーは1つ以上の細胞毒性薬
剤耐性を提供するポジティブ選択を可能にする。たとえ
ば細胞をG418で選択するカナマイシン耐性や、メソトレ
キセートに対する耐性を示すジヒドロフォレートリダク
ターゼが用いられる。これらのマーカーは誘導可能また
は非誘導性の遺伝子が用いられるので、選択は誘導条件
または非誘導条件で行なわれる。
Markers exist to select for cells containing the vehicle construct. Usually this marker allows for a positive selection that provides one or more cytotoxic drug resistances. For example, kanamycin resistance, which selects cells with G418, or dihydrofolate reductase, which exhibits resistance to methotrexate, is used. Since these markers use inducible or non-inducible genes, selection is performed under inducing or non-inducing conditions.

また、ベクターには複製オリジンや宿主における複製
に必要なその他の遺伝子が含まれる。オリジンを含む複
製システムおよび特定のウイルスにコードされている複
製関連のたんぱく質が構築物の一部として含まれてい
る。複製をコードする遺伝子が筋原細胞のトランスホー
メーションを起こさないよう複製システムの選択には注
意しなければならない。例示的複製システムにはエプス
タイン・バーウイルスがある。その他に複製欠失ベヒク
ル、特に複製欠失レトロウイルスベクターが用いられ
る。これらのベクターに関してはプライス(Price)
等、Proc.Natl.Acad.Sci.,USA(1987)84:156−160およ
びサレス(Sares)等、EMBO J.(1986):3133−3142
による報告がある。最終的ベヒクル構築物には目的の遺
伝子が1つ以上含まれる。cDNA遺伝子または染色体遺伝
子のいずれも使用し得る。5′側非コード領域またはコ
ード領域に少なくとも1つのイントロンを提供すること
は特に興味深い。イントロンの存在はメッセンジャーRN
Aの安定性を増すことが分っている。
The vector also contains an origin of replication and other genes required for replication in the host. An origin-containing replication system and replication-related proteins encoded by the particular virus are included as part of the construct. Care must be taken in choosing a replication system so that the gene encoding replication does not cause myogenic cell transformation. An exemplary replication system is the Epstein-Barr virus. In addition, replication-defective vehicles, especially replication-defective retroviral vectors, are used. Price for these vectors
Proc. Natl. Acad. Sci., USA (1987) 84 : 156-160 and Sales et al., EMBO J. (1986) 5 : 3133-3142.
There is a report by. The final vehicle construct contains one or more genes of interest. Either cDNA or chromosomal genes can be used. It is of particular interest to provide at least one intron in the 5 'non-coding or coding region. Messenger RN
A has been found to increase stability.

また、感染性の複製欠損ウイルスベクターの注射によ
りインビボで細胞をトランスホームできる。ベクターは
エコトロピックパッキング用のレトロウイルスプロデュ
ーサー細胞に導入する。それからこの細胞を収穫し、濾
過後遠心で濃縮する。その後、インビボで1部位にこの
ウイルスストックを注射する。筋原細胞は移動すること
が分っており、隣接領域に拡がることから、筋肉繊維に
必要な注射は比較的少ない。
In addition, cells can be transformed in vivo by injection of an infectious replication-defective viral vector. The vector is introduced into retroviral producer cells for ecotropic packing. The cells are then harvested, filtered and concentrated by centrifugation. The virus stock is then injected at one site in vivo. Because myogenic cells have been shown to migrate and spread to adjacent areas, relatively little injection is required for muscle fibers.

ベクターの投与には、水、食塩水、リン酸緩衝液など
生理的に許容可能な培地を用いて注射するのが簡便であ
る。一般的にウイルス濃度は約105ffu以上である。その
他の添加物にはポリブレンがある。通常注射には筋肉組
織cm3当り約105個の細胞が用いられる。その組織の損傷
は目的部分への注射回数を抑えることで最小限にとどめ
る。特に、患者が膨大な治療を必要とする場合、特定領
域への注射回数を減らすことが望ましいのは明白であ
る。
For administration of the vector, it is convenient to inject using a physiologically acceptable medium such as water, saline, or phosphate buffer. Generally, the virus concentration is about 10 5 ffu or more. Other additives include polybrene. Usually, about 10 5 cells per cm 3 of muscle tissue are used for injection. Damage to the tissue is minimized by reducing the number of injections to the target area. It is clear that it is desirable to reduce the number of injections to a particular area, especially if the patient requires extensive treatment.

以下に示す例は説明を目的とするもので本発明を制限
するものではない。
The following examples are for illustrative purposes and do not limit the invention.

(実験) (ベクター) BAGおよびpMMuLVSVnlsLacZと呼ばれる2つのβ−ガラ
クトシダーゼベクターを使用した、これらのベクターは
各々、MMuLVプロモーター/エンハンサーまたはSV40初
期プロモーターの転写コントロール下のβ−ガラクトシ
ダーゼコード配列を含む。さらにこれらのベクターなne
oγおよびLacZ遺伝子を有し、ある場合にはSV40ラージ
T核局在化配列に対する7個のアミノ酸コドンを有す
る。
EXPERIMENTAL (Vectors) Two β-galactosidase vectors called BAG and pMMuLVSVnlsLacZ were used, each of which contains a β-galactosidase coding sequence under the transcriptional control of the MMULV promoter / enhancer or the SV40 early promoter. Furthermore, these vectors are ne
o Has γ and LacZ genes, and in some cases has seven amino acid codons for the SV40 large T nuclear localization sequence.

組換え耐性のΨCREまたはΨエコトロピックパッキ
ング細胞系列への各々BAGまたはpMMuLVSVnlsLacZのトラ
ンスフェクションによって作製した各々CREBAG2またはP
A12Ψ212−C2レトロウイルスプロデュース細胞由来の上
清を回収し、濾過後遠心により濃縮した(プライス(Pr
ice)等、1987;サネス(Sanes)等、1986)。ウイルス
ストック(50〜200μ)を活性炭および10μMポリブ
レンと混合した後、麻酔をかけたウィスターラットの後
足の側背面に26ゲージの針で注射した。約2週間後、こ
れらの動物を4%パラホルムアルデヒド、0.5%グルタ
ルアルデヒド、100mM PIPES(pH7.4)を用いた心臓灌流
で固定した。30〜60分後、後足の皮を除去して4℃で一
晩同じ固定剤中に浸し、ついで30%スクロースリン酸緩
衝液(PBS)中、4℃で24時間浸した。これをフリージ
ングイソペンタン中で凍結し、クリオスタットを用いて
連続的に30μmの厚さでスライスした。これらの断片を
2%パラホルムアルデヒドで固定後、洗浄してから1mg/
mlX−gal、35mMフェリおよびフェロシアン化カリウム、
1mM MgCl2のリン酸緩衝液を用いて30℃で一晩かけて染
色し、グリセリン:PBS(9:1)に置き、ついでツァイス
アクシオフォト明視野顕微鏡でブルーのX−gal反応産
物の存在を調べた。青く染った筋肉繊維は後足に散在し
ていた。活性炭粒子は一般にかかとおよび側腓腹筋の間
に存在し、感染部位の同定に使用した。ラベルした筋細
胞クラスターの分布またはサイズの差が各々BAGまたはp
MMuLVSVnlsLacZベクターで観測された。BAGベクターはP
9(P=生後)に注射P23に分析し、またpMMuLVSVnlsLac
ZはP16に注射、P29に分析した。さらに、活性炭粒子に
近いラベル化細胞クラスターは数ミリメートル離れたも
のと区別できず、このことは注射が近くの組織を壊さな
かったことを示している。
[Psi CRE or [psi 2 ecotropic each BAG or pMMuLVSVnlsLacZ each CREBAG2 or P produced by transfection of the packaging cell line of a recombinant resistant
A12Ψ 2 12-C2 were collected retrovirus producer cell-derived supernatants were concentrated by filtration after centrifugation (Price (Pr
ice) et al., 1987; Sanes et al., 1986). The virus stock (50-200μ) was mixed with activated charcoal and 10μM polybrene and injected with a 26-gauge needle into the dorsal and dorsal hind paw of anesthetized Wistar rats. After about two weeks, the animals were fixed with cardiac perfusion using 4% paraformaldehyde, 0.5% glutaraldehyde, 100 mM PIPES (pH 7.4). After 30-60 minutes, the hind paw skin was removed and immersed in the same fixative overnight at 4 ° C, followed by immersion in 30% sucrose phosphate buffer (PBS) at 4 ° C for 24 hours. This was frozen in freezing isopentane and sliced continuously using a cryostat to a thickness of 30 μm. After fixing these fragments with 2% paraformaldehyde, and washing, 1 mg /
mlX-gal, 35 mM ferri and potassium ferrocyanide,
Stain overnight at 30 ° C. with 1 mM MgCl 2 phosphate buffer, place in glycerin: PBS (9: 1), then check for the presence of the blue X-gal reaction product on a Zeiss Axiophoto brightfield microscope. Examined. Muscle fibers stained blue were scattered on the hind legs. Activated carbon particles were generally present between the heel and lateral gastrocnemius muscle and were used to identify the site of infection. Differences in the distribution or size of the labeled myocyte clusters were BAG or p, respectively.
It was observed with the MMuLVSVnlsLacZ vector. BAG vector is P
At 9 (P = postnatal), analysis was performed on injection P23 and pMMuLVSVnlsLac
Z was injected at P16 and analyzed at P29. In addition, labeled cell clusters close to activated carbon particles were indistinguishable from those a few millimeters away, indicating that the injection did not destroy nearby tissue.

9日目に注射し、23日目に分析したラットの場合、多
くの繊維に及びクラスターの数は25個中16個であった
が、19日目に注射し、35日目に分析したラットの場合、
多くの繊維に及ぶクラスターの数は1個中1個であるこ
とが分った。
Rats injected on day 9 and analyzed on day 23 had a high fiber count and 16/25 clusters, whereas rats injected on day 19 and analyzed on day 35 in the case of,
The number of clusters spanning many fibers was found to be one in one.

側部腓腹筋中の染色筋肉繊維のクラスターは、その筋
原細胞は多核繊維への融合後でさえ感染を受け、β−ガ
ラクトシダーゼを発現し得ることを示している。観測さ
れたクラスターの多くは単一細胞由来のクローンを示し
ており、それらの子孫のいくつかは所定の筋肉繊維の基
底層を通過して移動し、隣りの筋肉繊維と融合する。各
筋原細胞は感染時に単一の繊維と会合するので、そのデ
ータは筋原細胞は1つの繊維から他の繊維へと基底層を
通して移動し得ることを示している。さらに大部分の感
染は多数の筋肉繊維に及ぶクローンを生じるので、それ
らの移動は比較的頻繁に起こると思われる。
The cluster of stained muscle fibers in the lateral gastrocnemius muscle indicates that the myogenic cells can be infected even after fusion to polynuclear fibers and can express β-galactosidase. Many of the observed clusters represent single cell-derived clones, some of whose progeny migrate through the basal layer of a given muscle fiber and fuse with neighboring muscle fibers. As each myogenic cell associates with a single fiber upon infection, the data indicate that myogenic cells can migrate through the basal layer from one fiber to another. Furthermore, since most infections result in clones that span many muscle fibers, their migration is likely to occur relatively frequently.

感染したラットの足に存在するβ−ガラクトシダーゼ
ポジティブ細胞の各クラスターが単一のレトロウイルス
感染筋原細胞に由来することを示すため、異なるβ−ガ
ラクトシダーゼ染色パターンを示す2つのベクターの混
合物を注射した。クローンの数と大きさを最高にするた
め、2つのベクター混合物は増殖や繊維形成が盛んに起
っているP0のラットの後足に注射した。細胞質性β−ガ
ラクトシダーゼを有する23種を含む87種のβ−ガラクト
シダーゼポジティブクラスターを十分感染させた2つの
足においてわずか2つの場合にかぎり、細胞質染色繊維
に隣接する繊維が核染色を含んでいた。したがって隣接
する筋原細胞が独立に感染する頻度は、後足当り40〜50
クローンのレベルで感染させた動物の場合15%以下であ
る。したがって軽度の感染を受けた後足では、事実上1
つ以上もしくは2つのクローンが2つ以上の別個の感染
に由来することはないと考えられる。大部分は単一の感
染に由来するクローンである。
To show that each cluster of β-galactosidase positive cells present in infected rat paws was derived from a single retrovirus-infected myogenic cell, a mixture of two vectors showing different β-galactosidase staining patterns was injected. . To maximize the number and size of clones, the two vector mixtures were injected into the hind paws of P0 rats, where proliferation and fibrosis were active. Fibers adjacent to cytoplasmic stained fibers contained nuclear staining in only two cases in two paws well infected with 87 β-galactosidase positive clusters, including 23 with cytoplasmic β-galactosidase. Therefore, the frequency of independent infection of adjacent myogenic cells is 40-50 per hindpaw.
Less than 15% in animals infected at the clonal level. Therefore, in the case of mildly infected hind legs, virtually 1
It is unlikely that one or more or two clones originate from two or more separate infections. Most are clones from a single infection.

2つのウイルス技術を用い、全てのラベル化繊維にお
ける細胞質および核染色がランダムな分布をしているか
どうかを測定することにより、各繊維のラベル化が別個
の感染に由来するかどうかを調べた。細胞質および核染
色パターンは、別個の領域に分離しており、その各々が
いくつかの繊維からなるクラスターを含む点で逆の事が
観察された。
Whether the labeling of each fiber was from a separate infection was determined by using two viral techniques to determine whether the cytoplasmic and nuclear staining in all labeled fibers was randomly distributed. The cytoplasmic and nuclear staining patterns were segregated into distinct regions, the opposite being observed in that each contained a cluster of several fibers.

繊維数は明らかに一定に保たれていることから実験中
に新しく繊維が形成されたとは考え難い。クローン内の
繊維の平均径は筋肉の全平均繊維径と同じであり、この
ことは多重繊維クローンにおいて小さい新しく生成した
繊維が選択的に含有されてはいないことを示している。
新しい繊維生成の最高速度と比べた高頻度の多重繊維ク
ローンの生成は、新しい繊維形成を運命付けられた筋原
細胞は***する筋原細胞の集団と比較してベクターの感
染に対して非常に選択性が高くなければならないことを
示している。これらのデータはトランスホームした筋原
細胞が異なる繊維に含まれるメカニズムとして基底層を
通した筋原細胞の移動を強く支持している。
Since the number of fibers is clearly kept constant, it is unlikely that new fibers were formed during the experiment. The average diameter of the fibers in the clone was the same as the total average fiber diameter of the muscle, indicating that the multi-fiber clones were not selectively containing small newly formed fibers.
The generation of multiple fiber clones at a high frequency compared to the highest rate of new fibrogenesis indicates that myogenic cells destined to form new fibrils are much more susceptible to vector infection than a dividing myogenic cell population. It indicates that selectivity must be high. These data strongly support the migration of myogenic cells through the basal layer as a mechanism by which transformed myogenic cells are contained in different fibers.

本発明が筋肉繊維関連病の治療もしくは宿主内におけ
る可溶性または他のたんぱく質の生産を目的とする筋肉
形成細胞の使用を可能にしていることは上述の結果から
明白である。筋原細胞は新しい筋肉組織を形成し、また
繊維形成に参加することができ、そこでこれらの細胞は
有用な性質を提供したり、欠陥を修正したりすることが
できる。さらに、これらの細胞をマーカーで修飾するこ
とにより天然に存在する細胞中の形質転換細胞の選択を
可能にできる。本明細書で引用している全ての出版物お
よび特許出願は各々参考として引用している事を言及し
ているのと同様に参考として引用している。
It is clear from the above results that the present invention allows the use of muscle forming cells for the treatment of muscle fiber related diseases or for the production of soluble or other proteins in a host. Myogenic cells can form new muscle tissue and participate in fibrosis, where these cells can provide useful properties or correct defects. In addition, modifying these cells with a marker can allow for the selection of transformed cells among naturally occurring cells. All publications and patent applications cited herein are each incorporated by reference as though they were incorporated by reference.

これまでにより明確に理解されることを目的として詳
細に説明および例で本発明を示してきたが、特許請求の
精神や範囲を逸脱することなしに修正が可能なことは当
業者にとって明白であろう。
Although the present invention has been described in detail and by way of example for a clearer understanding, it will be apparent to those skilled in the art that modifications may be made without departing from the spirit and scope of the appended claims. Would.

フロントページの続き (72)発明者 ヒューズ シモン エム アメリカ合衆国 カリフォルニア州 94301 パロ アルト アディソン ス トリート 733 (58)調査した分野(Int.Cl.7,DB名) A61K 48/00 ABJ C12N 5/10 C12N 15/09 BIOSIS(DIALOG) MEDLINE(STN)Continuation of the front page (72) Inventor Hughes Simon M. United States of America 94301 Palo Alto Addison Street 733 (58) Fields investigated (Int. Cl. 7 , DB name) A61K 48/00 ABJ C12N 5/10 C12N 15 / 09 BIOSIS (DIALOG) MEDLINE (STN)

Claims (19)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有意な分化なしに筋原細胞の増殖を提供す
る実質的な無血清培地において、初代筋原細胞を増殖さ
せてクローン的に純粋な又は実質的に濃縮した筋原細胞
の集団を得る工程を含む方法によって得ることができる
筋原細胞組成物であって、該初代筋原細胞あるいは該ク
ローン的に純粋な又は実質的に濃縮した筋原細胞の集団
への外来DNAのin vitroトランスホーメーションの結果
として該筋原細胞組成物が外来DNAを含有し、該外来DNA
が蛋白質をコードする遺伝子を含有し、該筋原細胞組成
物の筋原細胞が先在する筋繊維に組み込まれて該外来DN
Aを発現することができる筋原細胞組成物。
1. A population of clonally pure or substantially enriched myogenic cells grown in primary serum cells in a substantially serum-free medium that provides for expansion of the myogenic cells without significant differentiation. A myoblast composition obtainable by a method comprising the step of obtaining exogenous DNA into said primary myoblasts or said clonally pure or substantially enriched population of myoblasts in vitro. The myogenic cell composition contains foreign DNA as a result of the transformation;
Contains a gene encoding a protein, wherein the myogenic cells of the myogenic cell composition are incorporated into pre-existing myofibers and the foreign DN
A myogenic cell composition capable of expressing A.
【請求項2】該外来DNAがトランスフェクションによっ
て初代筋原細胞あるいはクローン的に純粋な又は実質的
に濃縮した筋原細胞の集団へ導入されている請求項1記
載の筋原細胞組成物。
2. The myogenic cell composition of claim 1, wherein said exogenous DNA has been introduced by transfection into primary myogenic cells or a clonally pure or substantially enriched population of myogenic cells.
【請求項3】該トランスフェクションが複製能欠失レト
ロウイルスを含む請求項2記載の筋原細胞組成物。
3. The myogenic cell composition according to claim 2, wherein said transfection comprises a replication-defective retrovirus.
【請求項4】該遺伝子が相同組換えによって初代筋原細
胞あるいはクローン的に純粋な又は実質的に濃縮した筋
原細胞の集団のゲノムへ組み込まれている請求項1記載
の筋原細胞組成物。
4. The myogenic cell composition of claim 1, wherein said gene is integrated into the genome of a primary myogenic cell or a population of clonally pure or substantially enriched myogenic cells by homologous recombination. .
【請求項5】該外来DNAが初代筋原細胞あるいはクロー
ン的に純粋な又は実質的に濃縮した筋原細胞の集団中で
機能する転写開始領域を含有し、該遺伝子が該転写開始
領域の転写制御下にある、請求項1〜4のいずれか1項
記載の筋原細胞組成物。
5. The transcription initiation region wherein the exogenous DNA functions in a primary myoblast or a population of clonally pure or substantially enriched myoblasts, wherein the gene is transcribed from the transcription initiation region. 5. The myoblast composition according to any one of claims 1 to 4, which is under control.
【請求項6】該転写開始領域が該遺伝子の構成的発現を
提供する請求項5記載の筋原細胞組成物。
6. The myoblast composition of claim 5, wherein said transcription initiation region provides for constitutive expression of said gene.
【請求項7】該転写開始領域が該遺伝子の誘導性発現を
提供する請求項5記載の筋原細胞組成物。
7. The myoblast composition of claim 5, wherein said transcription initiation region provides for inducible expression of said gene.
【請求項8】該外来DNAがさらにシグナル配列を含有す
る請求項1〜7のいずれか1項記載の筋原細胞組成物。
8. The myoblast composition according to claim 1, wherein the foreign DNA further contains a signal sequence.
【請求項9】該外来DNAが初代筋原細胞あるいはクロー
ン的に純粋な又は実質的に濃縮した筋原細胞の集団で発
現する遺伝子を含有している請求項1〜8のいずれか1
項記載の筋原細胞組成物。
9. The exogenous DNA of claim 1, wherein said exogenous DNA contains a gene expressed in a primary myoblast or a population of clonally pure or substantially enriched myoblasts.
Item 8. The myogenic cell composition according to Item.
【請求項10】該外来DNAが分泌蛋白質をコードする遺
伝子を含有している請求項1〜9のいずれか1項記載の
筋原細胞組成物。
10. The myoblast composition according to claim 1, wherein the foreign DNA contains a gene encoding a secreted protein.
【請求項11】分泌蛋白質がサイトカイン、成長因子、
コロニー刺激因子、インターフェロン、表面膜レセプタ
ー又はインシュリンを含む請求項10記載の筋原細胞組成
物。
11. The secretory protein is a cytokine, a growth factor,
11. The myogenic cell composition according to claim 10, comprising a colony stimulating factor, an interferon, a surface membrane receptor, or insulin.
【請求項12】初代筋原細胞が成熟筋原細胞である請求
項1〜11のいずれか1項記載の筋原細胞組成物。
12. The myogenic cell composition according to claim 1, wherein the primary myogenic cells are mature myogenic cells.
【請求項13】初代筋原細胞がヒト筋原細胞である請求
項12記載の筋原細胞組成物。
13. The myogenic cell composition according to claim 12, wherein the primary myogenic cells are human myogenic cells.
【請求項14】請求項1〜13のいずれか1項記載の筋原
細胞組成物を含有する、筋肉組織に関連した病気を治療
するための医薬組成物。
14. A pharmaceutical composition for treating a disease associated with muscle tissue, comprising the myogenic cell composition according to any one of claims 1 to 13.
【請求項15】請求項1〜13のいずれか1項記載の筋原
細胞組成物を含有する、可溶性因子が関連する筋肉組織
以外の組織に関する病気を治療するための医薬組成物。
15. A pharmaceutical composition comprising the myogenic cell composition according to any one of claims 1 to 13 for treating a disease relating to a tissue other than muscle tissue associated with a soluble factor.
【請求項16】初代筋原細胞で発現することができる遺
伝子を含むDNA構築物を使用することを特徴とする請求
項1〜13のいずれか1項記載の筋原細胞組成物の製造方
法。
16. The method for producing a myogenic cell composition according to claim 1, wherein a DNA construct containing a gene that can be expressed in primary myogenic cells is used.
【請求項17】請求項14記載の医薬組成物の製造方法で
あって、初代筋原細胞で発現することができるDNA構築
物を含む複製能欠失ウイルスを使用することを特徴とす
方法。
17. The method for producing a pharmaceutical composition according to claim 14, wherein a replication-defective virus containing a DNA construct that can be expressed in primary myogenic cells is used.
【請求項18】請求項15記載の医薬組成物の製造方法で
あって、初代筋原細胞で発現することができるDNA構築
物を含む複製能欠失ウイルスを使用することを特徴とす
方法。
18. The method for producing a pharmaceutical composition according to claim 15, wherein a replication-defective virus containing a DNA construct that can be expressed in primary myogenic cells is used.
【請求項19】複製能欠失ウイルスがレトロウイルスで
ある、請求項17又は18記載の方法。
19. The method according to claim 17, wherein the replication-defective virus is a retrovirus.
JP50911490A 1989-06-13 1990-06-13 Isolation, proliferation and differentiation of human muscle cells Expired - Fee Related JP3244696B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36537489A 1989-06-13 1989-06-13
US365,374 1989-06-13

Publications (2)

Publication Number Publication Date
JPH05500601A JPH05500601A (en) 1993-02-12
JP3244696B2 true JP3244696B2 (en) 2002-01-07

Family

ID=23438629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50911490A Expired - Fee Related JP3244696B2 (en) 1989-06-13 1990-06-13 Isolation, proliferation and differentiation of human muscle cells

Country Status (4)

Country Link
EP (1) EP0457856A4 (en)
JP (1) JP3244696B2 (en)
CA (1) CA2058955A1 (en)
WO (1) WO1990015863A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048729A (en) * 1987-05-01 2000-04-11 Transkaryotic Therapies, Inc. In vivo protein production and delivery system for gene therapy
JPH04507041A (en) * 1988-12-13 1992-12-10 アメリカ合衆国 Endothelial cells modified by genetic engineering and methods for their use
US5538722A (en) * 1989-06-13 1996-07-23 Stanford University Isolation, growth, differentiation and genetic engineering of human muscle cells
AU7312891A (en) * 1990-02-12 1991-09-03 Board Of Regents, The University Of Texas System Satellite cell proliferation in adult skeletal muscle
US5352595A (en) * 1991-09-03 1994-10-04 Fred Hutchinson Cancer Research Center Myod regulatory region
US6063630A (en) 1991-11-05 2000-05-16 Transkaryotic Therapies, Inc. Targeted introduction of DNA into primary or secondary cells and their use for gene therapy
PT101031B (en) 1991-11-05 2002-07-31 Transkaryotic Therapies Inc PROCESS FOR THE SUPPLY OF PROTEINS BY GENETIC THERAPY
US6692737B1 (en) 1991-11-05 2004-02-17 Transkaryotic Therapies, Inc. In vivo protein production and delivery system for gene therapy
US6054288A (en) * 1991-11-05 2000-04-25 Transkaryotic Therapies, Inc. In vivo protein production and delivery system for gene therapy
US6348327B1 (en) 1991-12-06 2002-02-19 Genentech, Inc. Non-endocrine animal host cells capable of expressing variant proinsulin and processing the same to form active, mature insulin and methods of culturing such cells
WO1993017697A1 (en) * 1992-03-04 1993-09-16 Wolff Jon A Method of delivering therapeutic substances to the brain
JPH08501210A (en) * 1992-07-02 1996-02-13 ザ ソールク インスチチュート フォア バイオロジカル スタディズ Utilization of myoblasts for sustained release of gene products
US6531124B1 (en) 1992-07-10 2003-03-11 Transkaryotic Therapies, Inc. In vivo production and delivery of insulinotropin for gene therapy
US6670178B1 (en) 1992-07-10 2003-12-30 Transkaryotic Therapies, Inc. In Vivo production and delivery of insulinotropin for gene therapy
US6392118B1 (en) * 1994-07-20 2002-05-21 Neurotech S.A. Mx-1 conditionally immortalized cells
US5935849A (en) * 1994-07-20 1999-08-10 Cytotherapeutics, Inc. Methods and compositions of growth control for cells encapsulated within bioartificial organs
GB9419048D0 (en) * 1994-09-20 1994-11-09 Watt Diana J Treatment of muscular disorders
US6495364B2 (en) * 1995-05-23 2002-12-17 Neurotech, S.A. Mx-1 conditionally immortalized cells
US6673604B1 (en) 1999-07-23 2004-01-06 Diacrin, Inc. Muscle cells and their use in cardiac repair
US8889122B2 (en) 2005-05-09 2014-11-18 Mytogen, Inc. Cellular cardiomyoplasty as supportive therapy in patients with heart disease
WO2010031190A1 (en) * 2008-09-22 2010-03-25 UNIVERSITé LAVAL Culture medium for myoblasts, precursors thereof and derivatives thereof
FR2960783B1 (en) 2010-06-04 2012-07-27 Ass Pour Les Transferts De Technologies Du Mans FUNCTIONALIZED MEMBRANE FOR ENCAPSULATING CHAMBER OF CELLS PRODUCING AT LEAST ONE SUBSTANCE OF THERAPEUTIC INTEREST AND BIOARTIFICIAL ORGAN COMPRISING SUCH A MEMBRANE
EP3095509A1 (en) 2015-05-18 2016-11-23 Defymed Membranes functionalized with heparin for bioartificial organs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008450A1 (en) * 1987-05-01 1988-11-03 Birdwell Finlayson Gene therapy for metabolite disorders
WO1989002468A1 (en) * 1987-09-11 1989-03-23 Whitehead Institute For Biomedical Research Transduced fibroblasts and uses therefor

Also Published As

Publication number Publication date
EP0457856A1 (en) 1991-11-27
EP0457856A4 (en) 1992-10-21
CA2058955A1 (en) 1990-12-14
JPH05500601A (en) 1993-02-12
WO1990015863A1 (en) 1990-12-27

Similar Documents

Publication Publication Date Title
JP3244696B2 (en) Isolation, proliferation and differentiation of human muscle cells
US5538722A (en) Isolation, growth, differentiation and genetic engineering of human muscle cells
JP2703893B2 (en) Epithelial cells expressing foreign genetic material
US4980286A (en) In vivo introduction and expression of foreign genetic material in epithelial cells
EP0633318A1 (en) Transduced fibroblasts and uses therefor
EP0946199B1 (en) TGF beta 1-RESPONSIVE CELLS FROM BONE MARROW
US6093393A (en) Methods for preparing and using clonogenic fibroblasts and transfected clonogenic fibroblasts
US20060233769A1 (en) Established cell line of microglia
JPH08501210A (en) Utilization of myoblasts for sustained release of gene products
AU5321299A (en) Genetically engineered cells and tissues
JP2002514409A (en) Genetically modified fibroblasts and uses thereof
AU2005200383B2 (en) TGFbeta1-responsive cells from bone marrow
EP1477556A1 (en) Method for the selection of cardiomyogenic cells or cardiomyocytes from mixed cell populations

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees