JP3242221B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3242221B2
JP3242221B2 JP17557293A JP17557293A JP3242221B2 JP 3242221 B2 JP3242221 B2 JP 3242221B2 JP 17557293 A JP17557293 A JP 17557293A JP 17557293 A JP17557293 A JP 17557293A JP 3242221 B2 JP3242221 B2 JP 3242221B2
Authority
JP
Japan
Prior art keywords
refrigerant
way valve
compressor
refrigerant heater
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17557293A
Other languages
Japanese (ja)
Other versions
JPH0727438A (en
Inventor
昭久 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP17557293A priority Critical patent/JP3242221B2/en
Publication of JPH0727438A publication Critical patent/JPH0727438A/en
Application granted granted Critical
Publication of JP3242221B2 publication Critical patent/JP3242221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷媒加熱器を備えた空
気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner provided with a refrigerant heater.

【0002】[0002]

【従来の技術】冷凍サイクルに冷媒加熱器を加えて設
け、その冷媒加熱器の燃焼熱を利用して室内の暖房を行
なう空気調和機がある。たとえば、能力可変圧縮機の吐
出口に四方弁を介して室外熱交換器が接続され、その室
外熱交換器に逆止弁、および減圧器を介して室内熱交換
器が接続される。そして、室内熱交換器に、四方弁、逆
止弁を介して前記圧縮機の吸込口が接続される。
2. Description of the Related Art There is an air conditioner in which a refrigerant heater is added to a refrigeration cycle, and the interior of the room is heated by using the combustion heat of the refrigerant heater. For example, an outdoor heat exchanger is connected to a discharge port of the variable capacity compressor via a four-way valve, and an indoor heat exchanger is connected to the outdoor heat exchanger via a check valve and a decompressor. The suction port of the compressor is connected to the indoor heat exchanger via a four-way valve and a check valve.

【0003】さらに、逆止弁と電動膨張弁との接続部
に、二方弁を介して冷媒加熱器が接続され、その冷媒加
熱器は圧縮機の吸込口が接続される。上記冷媒加熱器
は、ガスバ−ナを付属して備えており、そのガスバ−ナ
が電磁ポンプを介して燃料供給源に接続される。これら
ガスバーナや電磁ポンプなどで、燃焼ユニットが構成さ
れる。
Further, a refrigerant heater is connected to a connection between the check valve and the electric expansion valve via a two-way valve, and the refrigerant heater is connected to a suction port of a compressor. The refrigerant heater has a gas burner attached thereto, and the gas burner is connected to a fuel supply source via an electromagnetic pump. A combustion unit is constituted by the gas burner, the electromagnetic pump, and the like.

【0004】冷房運転時は、圧縮機から吐出される冷媒
が四方弁を通って室外熱交換器に流れ、そこで凝縮す
る。室外熱交換器を経た冷媒は逆止弁、減圧器、および
室内熱交換器に流れ、そこで蒸発する。この蒸発作用に
より室内が冷房される。そして、室内熱交換器を経た冷
媒は、四方弁、逆止弁を通り、圧縮機に吸込まれる。
[0004] During the cooling operation, the refrigerant discharged from the compressor flows through the four-way valve to the outdoor heat exchanger, where it condenses. The refrigerant having passed through the outdoor heat exchanger flows to the check valve, the pressure reducer, and the indoor heat exchanger, where the refrigerant evaporates. The interior of the room is cooled by this evaporation action. The refrigerant that has passed through the indoor heat exchanger passes through the four-way valve and the check valve, and is sucked into the compressor.

【0005】この冷房時には、二方弁が閉じられ、冷媒
が冷媒加熱器に流れ込まないようにしている。暖房運転
時は、四方弁が切換わるとともに、二方弁が開き、さら
に冷媒加熱器の燃焼ユニットが運転オン(燃焼)する。
したがって、圧縮機から吐出される冷媒は四方弁を通っ
て室内熱交換器に流れ、そこで凝縮する。
[0005] During cooling, the two-way valve is closed to prevent the refrigerant from flowing into the refrigerant heater. During the heating operation, the four-way valve is switched, the two-way valve is opened, and the combustion unit of the refrigerant heater is turned on (combustion).
Therefore, the refrigerant discharged from the compressor flows through the four-way valve to the indoor heat exchanger, where it condenses.

【0006】この凝縮作用により室内が暖房される。室
内熱交換器を経た冷媒は、二方弁および冷媒加熱器に流
れ、そこで燃焼熱を受けて蒸発する。そして、冷媒加熱
器を経た冷媒は圧縮機に吸込まれる。
The inside of the room is heated by this condensation action. The refrigerant that has passed through the indoor heat exchanger flows to the two-way valve and the refrigerant heater, where it receives combustion heat and evaporates. Then, the refrigerant having passed through the refrigerant heater is sucked into the compressor.

【0007】[0007]

【発明が解決しようとする課題】特に、暖房運転立上が
り時に、冷媒加熱器を加熱する燃焼ユニットが、はじめ
から通常の強燃焼であると、このバーナ加熱量と、冷凍
サイクルに循環する冷媒が受ける受熱量とに大きなアン
バランスが生じて、種々の悪影響を招く。
In particular, if the combustion unit that heats the refrigerant heater at the start of the heating operation is a normal strong combustion from the beginning, this burner heating amount and the refrigerant circulating in the refrigeration cycle are received. A large imbalance occurs with the amount of heat received, causing various adverse effects.

【0008】そこで、この種の空気調和機においては、
圧縮機の吐出側と冷媒加熱器の上流側とをバイパス回路
で連通し、この中途に二方弁を備える。暖房運転の立上
がり時には、上記バイパス回路の二方弁を閉成して冷凍
サイクルの冷媒循環量を確保するとともに、上記燃焼ユ
ニットを弱燃焼をなすよう制御して、バーナ加熱量と冷
媒が受ける受熱量とをバランスさせる。
Therefore, in this type of air conditioner,
The discharge side of the compressor and the upstream side of the refrigerant heater are connected by a bypass circuit, and a two-way valve is provided in the middle of the bypass circuit. At the start of the heating operation, the two-way valve of the bypass circuit is closed to secure the refrigerant circulation amount of the refrigeration cycle, and the combustion unit is controlled to perform weak combustion, so that the burner heating amount and the reception of the refrigerant are controlled. Balance with calorie.

【0009】暖房安定運転に変わったら、上記二方弁を
開放して、圧縮機の吐出冷媒の一部を直接、冷媒加熱器
に導き、多くの冷媒循環量を確保するとともに、燃焼ユ
ニットを強運転をなすよう制御して、より効果的な暖房
作用をなす。
When the operation is switched to the stable heating operation, the two-way valve is opened to guide a part of the refrigerant discharged from the compressor directly to the refrigerant heater to secure a large amount of refrigerant circulation and to strengthen the combustion unit. By controlling the operation, a more effective heating effect is achieved.

【0010】しかるに、特に暖房立上がり運転時におけ
る、前記二方弁の閉成継続時間と、燃焼ユニットの弱燃
焼継続時間は、予め設定した所定時間だけ行われる。普
通、上記冷媒加熱器の上流側と下流側には、それぞれ温
度センサが設けられていて、暖房運転時、各温度センサ
は冷媒温度を検知する。各温度センサの検知温度の差を
冷媒加熱器における冷媒の過熱度として求め、その過熱
度が一定値となるよう燃焼ユニットの燃焼量を制御し
て、暖房効率の向上を図っている。
However, especially during the heating start-up operation, the duration of closing the two-way valve and the duration of weak combustion of the combustion unit are performed for a predetermined time set in advance. Normally, a temperature sensor is provided on each of the upstream side and the downstream side of the refrigerant heater, and each temperature sensor detects a refrigerant temperature during a heating operation. The difference between the temperatures detected by the temperature sensors is determined as the degree of superheat of the refrigerant in the refrigerant heater, and the amount of combustion of the combustion unit is controlled so that the degree of superheat becomes a constant value, thereby improving heating efficiency.

【0011】従来は、図4に示すように、冷媒加熱器上
流側の温度センサ(TEIセンサ)の検知温度によらず、
上述した初期制御時間(t)が常に一定(t0 :定数)
に設定されている。
Conventionally, as shown in FIG. 4, regardless of the temperature detected by the temperature sensor ( TEI sensor) on the upstream side of the refrigerant heater,
The above-mentioned initial control time (t) is always constant (t 0 : constant)
Is set to

【0012】その結果、室内温度あるいは室外温度が大
きく変化すると、バーナ加熱量と冷媒が受ける受熱量と
のバランスが崩れて、過熱状態になったり、または加熱
不足状態で圧縮機に対する液バックが生じるなど、冷凍
サイクル的に信頼性が確保できない不具合がある。
As a result, when the indoor temperature or the outdoor temperature changes greatly, the balance between the amount of heat burned and the amount of heat received by the refrigerant is lost, resulting in an overheated state or a liquid back to the compressor in an insufficiently heated state. For example, there is a problem that the reliability cannot be secured in a refrigeration cycle.

【0013】本発明は上記の事情を考慮したもので、そ
の目的とするところは、暖房運転立上がり時において、
室内外温度の変動があっても、冷媒加熱器の過熱状態
や、加熱不足による液バックの発生を確実に阻止して、
冷凍サイクル的な信頼性の向上を図り、特に暖房効率の
向上を得る空気調和機を提供することにある。
The present invention has been made in consideration of the above circumstances, and has as its object the object of starting the heating operation.
Even if the indoor and outdoor temperature fluctuates, the overheating state of the refrigerant heater and the occurrence of liquid back due to insufficient heating are reliably prevented,
An object of the present invention is to provide an air conditioner that improves the reliability of a refrigeration cycle, and in particular, improves the heating efficiency.

【0014】[0014]

【課題を解決するための手段】本発明の空気調和機は、
圧縮機の吐出冷媒を四方弁、室外熱交換器、減圧器、室
内熱交換器に通して圧縮機に戻し、冷房運転を実行する
手段と、圧縮機の吐出冷媒を室内熱交換器、冷媒加熱器
に通して圧縮機に戻し、暖房運転を実行する手段と、前
記圧縮機の吐出口から冷媒加熱器上流側を連通し、中途
に二方弁に有するバイパス回路を設けた冷凍サイクル
と、暖房運転の立上がり時に、バイパス回路の二方弁を
閉成し、冷媒加熱器を加熱する燃焼ユニットを弱燃焼を
なすよう制御し、暖房安定運転時には上記二方弁を開放
するとともに、燃焼ユニットを負荷に応じた運転をなす
よう制御する手段と、上記冷媒加熱器上流側の冷媒温度
を検知する手段と、暖房運転の立上がり時に、前記冷媒
加熱器上流側の検知温度を受け、この検知温度にもとづ
いて、前記バイパス回路の二方弁の閉成継続時間と、燃
焼ユニットの弱燃焼継続時間を設定する手段とを備え
た。
An air conditioner according to the present invention comprises:
Means for returning the refrigerant discharged from the compressor to the compressor through a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger, and performing a cooling operation; and discharging the refrigerant discharged from the compressor to an indoor heat exchanger and refrigerant heating. Means for performing a heating operation by returning to the compressor through a heat exchanger, a refrigeration cycle communicating with the refrigerant heater upstream from a discharge port of the compressor, and a bypass circuit having a two-way valve in the middle, and a heating cycle. At the start-up of the operation, the two-way valve of the bypass circuit is closed, and the combustion unit that heats the refrigerant heater is controlled to perform weak combustion. During the stable heating operation, the two-way valve is opened, and the combustion unit is loaded. Means for controlling the operation according to the above, means for detecting the refrigerant temperature on the upstream side of the refrigerant heater, and upon detection of the heating operation, receiving the detected temperature on the upstream side of the refrigerant heater, based on the detected temperature. And the bypass And closing duration of the two-way valve road, and means for setting the weak combustion duration of combustion units.

【0015】[0015]

【作用】暖房運転の立上がり時におけるバイパス回路の
二方弁の閉成継続時間と、冷媒加熱器を加熱する燃焼ユ
ニットの弱燃焼継続時間を、室外の冷媒凝縮温度を検知
した結果にもとづいて設定するようにしたから、室内外
温度の変動があっても、冷媒加熱器の過熱状態や、加熱
不足による液バックの発生を阻止して、安定した立上が
りとなる。
[Function] The duration of closing the two-way valve of the bypass circuit at the start of heating operation and the duration of weak combustion of the combustion unit that heats the refrigerant heater are set based on the result of detecting the outdoor refrigerant condensation temperature. Therefore, even if the indoor and outdoor temperatures fluctuate, the overheated state of the refrigerant heater and the occurrence of liquid back due to insufficient heating are prevented, and stable start-up is achieved.

【0016】[0016]

【実施例】以下、本発明の一実施例を図面にもとづいて
説明する。図中1は能力可変圧縮機である。この圧縮機
1の吐出口に四方弁2を介して室外熱交換器3が接続さ
れ、その室外熱交換器3に逆止弁4、冷房用キャピラリ
ーチューブ5と逆止弁6との並列回路7、および室内熱
交換器8が接続される。そして、室内熱交換器8に四方
弁2、逆止弁9を介して圧縮機1の吸込口が接続され
る。
An embodiment of the present invention will be described below with reference to the drawings. In the figure, reference numeral 1 denotes a variable capacity compressor. An outdoor heat exchanger 3 is connected to a discharge port of the compressor 1 via a four-way valve 2. The outdoor heat exchanger 3 has a check valve 4, a parallel circuit 7 of a cooling capillary tube 5 and a check valve 6. , And the indoor heat exchanger 8 are connected. The suction port of the compressor 1 is connected to the indoor heat exchanger 8 via the four-way valve 2 and the check valve 9.

【0017】さらに、前記逆止弁4と並列回路7との間
に、冷媒回収用としての二方弁10および冷媒加熱器1
1が接続され、その冷媒加熱器11に圧縮機1の吸込口
が接続される。
Further, between the check valve 4 and the parallel circuit 7, a two-way valve 10 for refrigerant recovery and a refrigerant heater 1 are provided.
1 is connected, and the suction port of the compressor 1 is connected to the refrigerant heater 11.

【0018】冷媒加熱器11は、ガスバ−ナ12を付属
して備えており、そのガスバ−ナ12に燃料を供給する
電磁ポンプ13が接続されるとともに、比例弁を介して
燃料供給源(いずれも図示しない)に接続され、これら
で燃焼ユニットAが構成される。
The refrigerant heater 11 is provided with a gas burner 12 attached thereto. An electromagnetic pump 13 for supplying fuel to the gas burner 12 is connected thereto, and a fuel supply source (whichever is provided) through a proportional valve. Are also not shown), and these constitute the combustion unit A.

【0019】すなわち、冷房運転時は、圧縮機1から吐
出される冷媒が四方弁2を通って室外熱交換器3に流
れ、そこで凝縮する。室外熱交換器3を経た冷媒は逆止
弁4、冷房用キャピラリーチューブ5を通って室内熱交
換器7に流れ、ここで蒸発して室内が冷房される。
That is, during the cooling operation, the refrigerant discharged from the compressor 1 flows through the four-way valve 2 to the outdoor heat exchanger 3, where it condenses. The refrigerant that has passed through the outdoor heat exchanger 3 flows through the check valve 4 and the cooling capillary tube 5 to the indoor heat exchanger 7, where it evaporates to cool the room.

【0020】そして、室内熱交換器7を経た冷媒は、四
方弁2、逆止弁9を通り、圧縮機1に吸込まれる。この
冷房時、二方弁10は閉成され、冷媒が冷媒加熱器11
側に流れ込まないようにしている。
The refrigerant that has passed through the indoor heat exchanger 7 passes through the four-way valve 2 and the check valve 9 and is sucked into the compressor 1. During this cooling, the two-way valve 10 is closed, and the refrigerant is supplied to the refrigerant heater 11.
So that it does not flow to the side.

【0021】暖房運転時は、四方弁2が切換わるととも
に、二方弁10が開放され、さらに冷媒加熱器11に対
する燃焼ユニットAが運転オン(燃焼)する。したがっ
て、圧縮機1から吐出される冷媒は四方弁2を通って室
内熱交換器7に流れ、ここで凝縮する。この凝縮作用に
より室内が暖房される。
During the heating operation, the four-way valve 2 is switched, the two-way valve 10 is opened, and the combustion unit A for the refrigerant heater 11 is turned on (combustion). Therefore, the refrigerant discharged from the compressor 1 flows through the four-way valve 2 to the indoor heat exchanger 7, where it is condensed. The room is heated by this condensation action.

【0022】室内熱交換器7を経た冷媒は、並列回路7
の逆止弁6から二方弁10を介して冷媒加熱器11に流
れ、そこで燃焼熱を受けて蒸発する。そして、冷媒加熱
器11を経た冷媒は、圧縮機1に吸込まれる。
The refrigerant having passed through the indoor heat exchanger 7 is supplied to the parallel circuit 7
Flows from the check valve 6 through the two-way valve 10 to the refrigerant heater 11, where it receives the heat of combustion and evaporates. Then, the refrigerant that has passed through the refrigerant heater 11 is sucked into the compressor 1.

【0023】また、上記圧縮機1の吐出口にバイパス回
路15の一端部が接続され、この他端部は冷媒加熱器1
1の上流側である、二方弁10と冷媒加熱器11との間
に接続される。バイパス回路15には、二方弁16が設
けられる。
One end of a bypass circuit 15 is connected to the discharge port of the compressor 1, and the other end is connected to the refrigerant heater 1.
It is connected between the two-way valve 10 and the refrigerant heater 11 which is on the upstream side of 1. The bypass circuit 15 is provided with a two-way valve 16.

【0024】冷媒加熱器11の上流側である入口側配管
には温度センサ(TEIセンサ)17が取付けられるとと
もに、冷媒加熱器11の下流側である出口側配管には温
度センサ(TEOセンサ)18が取付けられる。
A temperature sensor (T EI sensor) 17 is attached to an inlet pipe on the upstream side of the refrigerant heater 11, and a temperature sensor (T EO sensor) is attached to an outlet pipe on the downstream side of the refrigerant heater 11. ) 18 is attached.

【0025】これら温度センサ17,18は、本来、冷
媒加熱器11における冷媒の過熱度を検出するためのも
ので、もともと設けられるのが普通となっている。20
は制御部であり、マイクロコンピュータおよびその周辺
回路からなる。この制御部20に、圧縮機1、四方弁
2、冷媒加熱器11上流側の二方弁10、燃焼ユニット
Aの電磁ポンプ13、バイパス回路15の二方弁16、
温度センサ17,18、リモートコントロールスイッチ
(以下、リモコンと称する)21、および室内温度セン
サ22が電気的に接続される。
The temperature sensors 17 and 18 are originally for detecting the degree of superheating of the refrigerant in the refrigerant heater 11, and are usually provided originally. 20
Is a control unit, which comprises a microcomputer and its peripheral circuits. The control unit 20 includes a compressor 1, a four-way valve 2, a two-way valve 10 upstream of the refrigerant heater 11, an electromagnetic pump 13 of the combustion unit A, a two-way valve 16 of the bypass circuit 15,
Temperature sensors 17 and 18, a remote control switch (hereinafter, referred to as a remote controller) 21, and an indoor temperature sensor 22 are electrically connected.

【0026】そして、制御部20は次の機能手段を備え
る。 (1)圧縮機1の運転オン、四方弁2の非切換、燃焼ユ
ニットAの冷媒加熱器11に対する燃焼ユニットAの運
転オフを設定し、二方弁10を閉成し、圧縮機1から吐
出される冷媒を四方弁2、室外熱交換器3、逆止弁4、
冷房用キャピラリーチューブ5を通して室内熱交換器8
に流し、その室内熱交換器8を経た冷媒を、四方弁2、
逆止弁9を通して圧縮機1に戻し、冷房運転を実行する
手段。 (2)圧縮機1の運転オン、四方弁2の切換、燃焼ユニ
ットAの運転オンを設定し、二方弁10を開放し、圧縮
機1から吐出される冷媒を四方弁2、室内熱交換器8、
並列回路7の逆止弁6を通して冷媒加熱器11に流し、
二方弁10を経た冷媒を冷媒加熱器11を通して圧縮機
1に戻し、暖房運転を実行する手段。 (3)冷房運転時、リモコン21の設定室内温度と室内
温度センサ22の検知温度との差を空調負荷として求
め、その空調負荷に応じて圧縮機1の能力(運転周波
数)を制御する手段。 (4)暖房運転時、リモコン21の設定室内温度と室内
温度センサ22の検知温度との差を空調負荷として求
め、その空調負荷に応じて冷媒加熱器11に対する燃焼
ユニットAである電磁ポンプ13の燃焼供給量を制御す
る手段。 (5)暖房運転時、温度センサ17の検知温度と温度セ
ンサ18の検知温度との差を冷媒加熱器11における冷
媒の過熱度として求め、その過熱度が一定値となるよう
電磁ポンプ13の燃料供給量を制御する手段。 (6)暖房立上がり運転時に、冷媒回収時間として、圧
縮機1の運転オン、四方弁2の切換を設定し、二方弁1
0および16を閉成し、電磁ポンプ13の停止を所定時
間継続する手段。 (7)冷媒回収時間終了後、圧縮機1の吐出側と吸込側
である高圧側と低圧側のバランスをとるガスバランス時
間として、圧縮機1の運転オフ、二方弁10の開放を所
定時間継続する手段。 (8)通常の暖房運転に以降した後、バイパス回路15
の二方弁16を開放するタイミングと、電磁ポンプ13
の駆動を開始して弱運転から負荷に応じた運転、たとえ
ば強運転に変わるタイミングを、上記温度センサ(TEI
センサ)17の検知温度にもとづいて制御する手段。
The control section 20 has the following functional means. (1) The operation of the compressor 1 is turned on, the four-way valve 2 is not switched, and the operation of the combustion unit A is turned off for the refrigerant heater 11 of the combustion unit A, the two-way valve 10 is closed, and the discharge from the compressor 1 is performed. The four-way valve 2, the outdoor heat exchanger 3, the check valve 4,
The indoor heat exchanger 8 through the cooling capillary tube 5
Through the indoor heat exchanger 8, and the four-way valve 2,
Means for returning to the compressor 1 through the check valve 9 and performing a cooling operation. (2) The compressor 1 is turned on, the four-way valve 2 is switched, and the combustion unit A is turned on, the two-way valve 10 is opened, and the refrigerant discharged from the compressor 1 is supplied to the four-way valve 2 for indoor heat exchange. Vessel 8,
It flows to the refrigerant heater 11 through the check valve 6 of the parallel circuit 7,
Means for returning the refrigerant that has passed through the two-way valve 10 to the compressor 1 through the refrigerant heater 11 and performing a heating operation. (3) Means for determining the difference between the set indoor temperature of the remote controller 21 and the detected temperature of the indoor temperature sensor 22 as an air conditioning load during cooling operation, and controlling the capacity (operating frequency) of the compressor 1 according to the air conditioning load. (4) During the heating operation, the difference between the set room temperature of the remote controller 21 and the detected temperature of the room temperature sensor 22 is determined as the air conditioning load, and the electromagnetic pump 13 as the combustion unit A for the refrigerant heater 11 is operated in accordance with the air conditioning load. Means for controlling the amount of combustion supply. (5) During the heating operation, the difference between the detected temperature of the temperature sensor 17 and the detected temperature of the temperature sensor 18 is determined as the degree of superheat of the refrigerant in the refrigerant heater 11, and the fuel of the electromagnetic pump 13 is controlled so that the degree of superheat becomes a constant value. Means for controlling the supply. (6) During the heating start-up operation, the operation of the compressor 1 and the switching of the four-way valve 2 are set as the refrigerant recovery time.
Means for closing 0 and 16 and stopping the electromagnetic pump 13 for a predetermined time. (7) After the end of the refrigerant recovery time, the operation of the compressor 1 is turned off and the two-way valve 10 is opened for a predetermined time as a gas balance time for balancing the high pressure side and the low pressure side which are the discharge side and the suction side of the compressor 1. Means to continue. (8) After the normal heating operation, the bypass circuit 15
Of opening the two-way valve 16 of the electromagnetic pump 13
The timing at which the operation of the motor is started to change from the weak operation to the operation corresponding to the load, for example, the strong operation, is determined by the temperature sensor (T EI).
(Sensor) means for controlling based on the detected temperature of 17.

【0027】つぎに、上記の構成において作用を説明す
る。リモコン21で冷房運転モードが設定され、かつ運
転の開始操作がなされたとする。すると、二方弁10お
よび16が閉じた状態で圧縮機1が起動する。
Next, the operation of the above configuration will be described. It is assumed that the cooling operation mode is set by the remote controller 21 and the operation for starting the operation is performed. Then, the compressor 1 starts with the two-way valves 10 and 16 closed.

【0028】つまり、圧縮機1から冷媒が吐出される冷
媒が、図1に実線矢印で示す方向に流れ、冷房サイクル
が形成される。これにより、室外熱交換器3が凝縮器、
室内熱交換器8が蒸発器として働き、室内に冷風が吹出
される。
That is, the refrigerant discharged from the compressor 1 flows in the direction indicated by the solid line arrow in FIG. 1, and a cooling cycle is formed. Thereby, the outdoor heat exchanger 3 becomes a condenser,
The indoor heat exchanger 8 functions as an evaporator, and cool air is blown into the room.

【0029】リモコン21で暖房運転モードが設定さ
れ、かつ運転の開始操作がなされたとする。すると、四
方弁2が切換わり、燃焼ユニットAが運転オンして冷媒
加熱器11に対する燃焼作用をなす。
It is assumed that the heating operation mode is set by the remote control 21 and the operation for starting the operation is performed. Then, the four-way valve 2 is switched, and the operation of the combustion unit A is turned on to perform a combustion action on the refrigerant heater 11.

【0030】二方弁10が開放され、圧縮機1から冷媒
が吐出される冷媒が、一点鎖線矢印で示す方向に流れ、
暖房サイクルが形成される。これにより、室内熱交換器
7が凝縮器、冷媒加熱器11が蒸発器として働き、室内
に温風が吹出される。
When the two-way valve 10 is opened and the refrigerant discharged from the compressor 1 flows in the direction indicated by the dashed-line arrow,
A heating cycle is formed. Thereby, the indoor heat exchanger 7 functions as a condenser and the refrigerant heater 11 functions as an evaporator, and warm air is blown into the room.

【0031】以上は、暖房運転の、特に通常運転での作
用であり、立上がり時は、後述するように異なる。すな
わち、それまで冷房運転を行っていれば、室外熱交換器
3に冷媒が導通される。暖房運転では、室外熱交換器3
に冷媒が導かれない。したがって、冷房運転から暖房運
転に切換えると、そのままでは室外熱交換器3に冷媒が
溜る(寝込む)状態となり、実際の冷凍サイクルにおい
て冷媒量が不足する。
The above is the operation in the heating operation, particularly in the normal operation, and differs at the time of start-up as described later. That is, if the cooling operation has been performed up to that time, the refrigerant is conducted to the outdoor heat exchanger 3. In the heating operation, the outdoor heat exchanger 3
Refrigerant is not guided to Therefore, when the operation is switched from the cooling operation to the heating operation, the refrigerant is stored (stores down) in the outdoor heat exchanger 3 as it is, and the refrigerant amount becomes insufficient in the actual refrigeration cycle.

【0032】そこで、図2に示すように、暖房立上がり
時には冷媒回収時間として、圧縮機1を運転し、四方弁
2を暖房切換にして、二方弁10および二方弁16を閉
成し、燃焼ユニットAの電磁ポンプ13を停止する。
Therefore, as shown in FIG. 2, when the heating is started, the compressor 1 is operated, the four-way valve 2 is switched to the heating mode, the two-way valve 10 and the two-way valve 16 are closed, and the refrigerant is recovered. The electromagnetic pump 13 of the combustion unit A is stopped.

【0033】室外熱交換器3および冷媒加熱器11が負
圧側になるが、冷房運転時には冷媒加熱器11に冷媒が
導かれておらず、したがって室外熱交換器3に溜った冷
媒が迅速に回収される。
Although the outdoor heat exchanger 3 and the refrigerant heater 11 are on the negative pressure side, the refrigerant is not guided to the refrigerant heater 11 during the cooling operation, so that the refrigerant accumulated in the outdoor heat exchanger 3 is quickly recovered. Is done.

【0034】この冷媒回収を所定時間継続した後は、ガ
スバランス時間として、圧縮機1を所定時間停止し、冷
媒加熱器11上流側の二方弁10を開放する。したがっ
て、圧縮機1の吐出側と吸込側の圧力がバランスして、
実質的な暖房立上がりとなる、圧縮機1の再起動が容易
になる。
After the refrigerant recovery is continued for a predetermined time, the compressor 1 is stopped for a predetermined time as a gas balance time, and the two-way valve 10 on the upstream side of the refrigerant heater 11 is opened. Therefore, the pressures on the discharge side and the suction side of the compressor 1 are balanced,
It is easy to restart the compressor 1 when the heating is substantially started.

【0035】このガスバランスが所定時間行われた後、
圧縮機1が再起動され、暖房運転が立ち上がる。燃焼ユ
ニットAの電磁ポンプ13は、はじめ燃料供給量を絞る
よう制御され、弱燃焼による加熱量と、冷凍サイクルを
循環する冷媒の受熱量のバランスをとる。
After the gas balance has been performed for a predetermined time,
The compressor 1 is restarted, and the heating operation starts. The electromagnetic pump 13 of the combustion unit A is first controlled to reduce the fuel supply amount, and balances the amount of heating by weak combustion and the amount of heat received by the refrigerant circulating in the refrigeration cycle.

【0036】燃焼ユニットAにより冷媒加熱器11が加
熱され、ここに導かれる冷媒の温度が所定温度に上昇す
るようになったら、暖房安定運転に移行する。この場
合、バイパス回路15の二方弁16を開放して、圧縮機
1の吐出冷媒一部を図中破線矢印に示すように直接冷媒
加熱器11に導き、冷媒循環量を増大するとともに、電
磁ポンプ13の燃料供給量を増大し、強燃焼運転として
バランスをとる。
When the refrigerant heater 11 is heated by the combustion unit A, and the temperature of the refrigerant guided thereto rises to a predetermined temperature, the operation shifts to a stable heating operation. In this case, the two-way valve 16 of the bypass circuit 15 is opened, and a part of the refrigerant discharged from the compressor 1 is guided directly to the refrigerant heater 11 as shown by a broken line arrow in the figure, thereby increasing the refrigerant circulation amount and electromagnetically. The fuel supply amount of the pump 13 is increased, and the balance is set as the strong combustion operation.

【0037】ただし、暖房立ち上がり運転時間は、いわ
ば初期制御時間tとなり、バイパス回路15の二方弁1
6閉成継続時間と、電磁ポンプ13の弱燃焼継続時間
は、先に図1に示した、冷媒加熱器11上流側の温度セ
ンサ(TEIセンサ)17の検知温度信号にもとづく制御
回路20によって設定制御される。
However, the heating start-up operation time is the initial control time t, so to speak, and the two-way valve 1 of the bypass circuit 15
6. The closing duration and the weak combustion duration of the electromagnetic pump 13 are determined by the control circuit 20 based on the detected temperature signal of the temperature sensor ( TEI sensor) 17 on the upstream side of the refrigerant heater 11 shown in FIG. Settings are controlled.

【0038】すなわち、制御回路20は図3に示すよう
に、温度センサ17の検知温度TEIと、あらかじめ記憶
する設定温度To と比較する。検知温度TEIが設定温度
oより低いか、もしくは等しい場合には、初期制御時
間tをt1 に設定し、検知温度TEIが設定温度To より
高い場合には初期制御時間tをt2 に設定する。
[0038] That is, the control circuit 20, as shown in FIG. 3, compares the detected temperature T EI temperature sensor 17, and the set temperature T o for storing in advance. Sensing the temperature or T EI is lower than the set temperature T o, or if equal, sets the initial control time t to t 1, the detected temperature T EI is the set temperature T o when higher initial control time t a t Set to 2 .

【0039】上記t1 およびt2 は、いずれも定数であ
って、原則として t1 > t2の関係にある。すな
わち、検知温度TEIが設定温度To より低いか、もしく
は等しい場合には、暖房立ち上がり時間を長くとる必要
があると判断して、長い初期制御時間t1 とする。逆の
場合は、短い初期制御時間t2 ですむ。
The above-mentioned t 1 and t 2 are both constants, and have a relationship of t 1 > t 2 in principle. That is, when the detected temperature T EI is lower than or equal to the set temperature T o , it is determined that it is necessary to increase the heating rising time, and the long initial control time t 1 is set. In the opposite case, taking less initial control time t 2.

【0040】その結果、室内温度あるいは室外温度が大
きく変化しても、燃焼ユニットAにおけるガスバーナ1
2の加熱量と、冷凍サイクルを循環する冷媒が受ける受
熱量とのバランスが常に安定して、過熱状態や、加熱不
足状態による液バックの発生がない。
As a result, even if the indoor temperature or the outdoor temperature greatly changes, the gas burner 1 in the combustion unit A
The balance between the heating amount of No. 2 and the amount of heat received by the refrigerant circulating in the refrigeration cycle is always stable, and there is no occurrence of liquid back due to overheating or insufficient heating.

【0041】[0041]

【発明の効果】以上述べたように、本発明によれば、暖
房運転の立上がり時に、冷媒加熱器上流側の検知温度に
もとづいて、バイパス回路の二方弁の閉成継続時間と、
冷媒加熱器の燃焼ユニットの弱燃焼継続時間を設定する
ようにしたから、暖房運転立上がり時において室内外温
度の変動があっても、冷媒加熱器の過熱状態や、加熱不
足による液バックの発生を確実に阻止して、冷凍サイク
ル的な信頼性の向上を図り、特に暖房効率の向上を図れ
るなどの効果を奏する。
As described above, according to the present invention, when the heating operation is started, the closing duration of the two-way valve of the bypass circuit is determined based on the detected temperature on the upstream side of the refrigerant heater.
Since the weak burning duration of the combustion unit of the refrigerant heater is set, even if the indoor and outdoor temperatures fluctuate at the start of heating operation, the occurrence of overheating of the refrigerant heater and the occurrence of liquid back due to insufficient heating may occur. This reliably prevents the refrigeration cycle, thereby improving the reliability, and in particular, improving the heating efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、一実施例を示す、冷凍サイクルおよ
び制御回路の構成図。
FIG. 1 is a configuration diagram of a refrigeration cycle and a control circuit, showing one embodiment of the present invention.

【図2】同実施例の、タイミングチャート図。FIG. 2 is a timing chart of the embodiment.

【図3】同実施例の、動作フロー図。FIG. 3 is an operation flowchart of the embodiment.

【図4】従来の、動作フロー図。FIG. 4 is a conventional operation flowchart.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…室外熱交換器、5…減圧
器(冷房用キャピラリーチューブ)、8…室内熱交換
器、10…(回収用)二方弁、11…冷媒加熱器、A…
燃焼ユニット、13…電磁ポンプ、16…二方弁、15
…バイパス回路、17…温度センサ(TEIセンサ)、2
0…制御回路。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 5 ... Decompressor (cooling capillary tube), 8 ... Indoor heat exchanger, 10 ... (Recovery) two-way valve, 11 ... Refrigerant heater , A ...
Combustion unit, 13: electromagnetic pump, 16: two-way valve, 15
... bypass circuit, 17 ... temperature sensor ( TEI sensor), 2
0: Control circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機の吐出冷媒を四方弁、室外熱交換
器、減圧器、室内熱交換器に通して圧縮機に戻し、冷房
運転を実行する手段と、 圧縮機の吐出冷媒を室内熱交換器、冷媒加熱器に通して
圧縮機に戻し、暖房運転を実行する手段と、 前記圧縮機の吐出口から冷媒加熱器上流側を連通し、中
途に二方弁に有するバイパス回路を設けた冷凍サイクル
と、 暖房運転の立上がり時に、バイパス回路の二方弁を閉成
し、前記冷媒加熱器を加熱する燃焼ユニットを弱燃焼を
なすよう制御し、暖房安定運転時には上記二方弁を開放
するとともに、燃焼ユニットを負荷に応じた運転をなす
よう制御する手段と、 上記冷媒加熱器上流側の冷媒温度を検知する手段と、 暖房運転の立上がり時に、前記冷媒加熱器上流側の検知
温度を受け、この検知温度にもとづいて、前記バイパス
回路の二方弁の閉成継続時間と、燃焼ユニットの弱燃焼
継続時間を設定する手段とを備えたことを特徴とする空
気調和機。
1. A means for passing refrigerant discharged from a compressor through a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger to return to the compressor, and performing a cooling operation. An exchanger, a means for performing a heating operation by returning to the compressor through the refrigerant heater, and a bypass circuit having a two-way valve in the middle, communicating the refrigerant heater upstream from the discharge port of the compressor. Refrigeration cycle, at the start of heating operation, closes the two-way valve of the bypass circuit, controls the combustion unit that heats the refrigerant heater to perform weak combustion, and opens the two-way valve during stable heating operation. Means for controlling the operation of the combustion unit in accordance with the load, means for detecting the refrigerant temperature upstream of the refrigerant heater, and receiving the detected temperature upstream of the refrigerant heater at the start of the heating operation. , Based on this detected temperature There are, air conditioner characterized by comprising a closure duration of the two-way valve of the bypass circuit, and means for setting the weak combustion duration of combustion units.
JP17557293A 1993-07-15 1993-07-15 Air conditioner Expired - Fee Related JP3242221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17557293A JP3242221B2 (en) 1993-07-15 1993-07-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17557293A JP3242221B2 (en) 1993-07-15 1993-07-15 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0727438A JPH0727438A (en) 1995-01-27
JP3242221B2 true JP3242221B2 (en) 2001-12-25

Family

ID=15998430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17557293A Expired - Fee Related JP3242221B2 (en) 1993-07-15 1993-07-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP3242221B2 (en)

Also Published As

Publication number Publication date
JPH0727438A (en) 1995-01-27

Similar Documents

Publication Publication Date Title
JP2005528283A (en) Automotive air conditioner
JPH05272829A (en) Air-conditioner
US5088296A (en) Air conditioner system with refrigerant condition detection for refrigerant recovering operation
JPH05272817A (en) Air conditioner
JPH0849930A (en) Heat pump equipment
WO2022038870A1 (en) Battery temperature control system
JP2001073952A (en) Heating device for compressor
JP2964705B2 (en) Air conditioner
JP3242221B2 (en) Air conditioner
WO2022038869A1 (en) Battery temperature regulation system
JPH04190062A (en) Freezing-cycle control device for air-conditioner
JP6771508B2 (en) Air conditioner
JP3804712B2 (en) Air conditioner
JP2912811B2 (en) Air conditioner
JPH07132729A (en) Air conditioner
JP3126420B2 (en) Air conditioner
JP3327685B2 (en) Refrigerant heating / cooling machine
JP2814642B2 (en) Heating and cooling machine
JP2669069B2 (en) Heating and cooling machine
JP2848686B2 (en) Heating and cooling machine
JPH06272971A (en) Air conditioner
JP2998514B2 (en) Refrigerant heating and cooling machine
JPS6330929Y2 (en)
JPS6015084Y2 (en) Refrigeration equipment
JP4023385B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees