JP3242005B2 - Operation control method of oxidation ditch type wastewater treatment plant - Google Patents

Operation control method of oxidation ditch type wastewater treatment plant

Info

Publication number
JP3242005B2
JP3242005B2 JP23667096A JP23667096A JP3242005B2 JP 3242005 B2 JP3242005 B2 JP 3242005B2 JP 23667096 A JP23667096 A JP 23667096A JP 23667096 A JP23667096 A JP 23667096A JP 3242005 B2 JP3242005 B2 JP 3242005B2
Authority
JP
Japan
Prior art keywords
ditch
raw water
amount
pumps
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23667096A
Other languages
Japanese (ja)
Other versions
JPH1080695A (en
Inventor
敬藏 渡邉
Original Assignee
株式会社渡辺コンサルタンツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社渡辺コンサルタンツ filed Critical 株式会社渡辺コンサルタンツ
Priority to JP23667096A priority Critical patent/JP3242005B2/en
Publication of JPH1080695A publication Critical patent/JPH1080695A/en
Application granted granted Critical
Publication of JP3242005B2 publication Critical patent/JP3242005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、下水管路が集水した
原水(下水)をオキシデーションディッチ式(本書では
OD式とも記す)廃水処理場のディッチで曝気処理し、
その処理水をディッチに設けた堰板を溢流させて沈殿槽
に供給し、沈殿槽から消毒、放流槽を経て放流するOD
式廃水処理場の豪雨などによる異常増水に対応した運転
制御方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an aeration treatment of raw water (sewage) collected by a sewer pipe in an oxidation ditch type (hereinafter also referred to as OD type) wastewater treatment plant ditch,
The treated water overflows the weir plate provided in the ditch and is supplied to the sedimentation tank. The OD is disinfected from the sedimentation tank and discharged through the discharge tank.
The present invention relates to an operation control method corresponding to an abnormal increase in water level due to heavy rain in a wastewater treatment plant.

【0002】[0002]

【従来の技術】OD式廃水処理装置は、本特許出願人が
提案した特開平7−232191号公報に記載したよう
に、活性汚泥法や生物膜法による廃水処理装置と共に、
人口約1000〜2000人、250〜500戸程度の
生活廃水を処理する農業集落向きの下水処理装置とし
て、又、小規模都市の下水処理装置として普及しつゝあ
る。図1,2はOD式廃水処理装置の代表的な一例を示
すもので、下水管路21から原水槽10に流入した原水
は、連続的に槽内のポンプで、一方向循環流路からなる
ディッチ11に供給する。原水はディッチ内を循環して
いる間に曝気装置12で曝気され、ディッチ内の微生物
の働きにより原水中の主として有機物を分解除去され
る。曝気装置12は、図では水面上に配置され、回転す
るロータの羽根の一部が浸漬して水を攪拌し、曝気量は
ロータの回転数、羽根の浸漬深さ、ロータの断続回転等
によって加減調整できる機械式表面攪拌曝気装置を示し
たが、他の型式の曝気装置でもよい。ディッチ内の水位
は堰板13により定められ、原水はディッチ内に約24
〜36時間循環滞溜して処理水になり、処理水は原水槽
からの原水の供給量宛、堰板13をオーバーフローして
沈殿槽14に流入し、こゝで汚泥を沈殿分離し、上澄水
が、塩素消毒器16を有する消毒、放流槽15を経て放
流される。原水槽からディッチへの原水の1日当りの供
給量と、ディッチから沈殿槽に流出する上澄み処理水の
1日当りの流出量は、多少の時間差はあるがほゞ同じで
ある。尚、ディッチ11の大きさは、対象人口1800
人程度の場合、長軸約35m、短軸約8.5m、深さ約
2.5mの楕円形で、容積は約650m3 位である。町
や村の各地区のそれぞれの家庭から出る廃水は、その地
区から廃水処理場に向かって敷設された下水管路で廃水
処理場の原水槽に流入する。図1の下水管路21は、そ
のうちの1本を示すものである。
2. Description of the Related Art As described in Japanese Patent Application Laid-Open No. 7-232191 proposed by the present applicant, an OD type wastewater treatment apparatus is used together with a wastewater treatment apparatus based on an activated sludge method or a biofilm method.
It has been widely used as a sewage treatment device for agricultural settlements for treating domestic wastewater of about 1,000 to 2,000 people and about 250 to 500 households and as a sewage treatment device for small cities. 1 and 2 show a typical example of an OD-type wastewater treatment apparatus. Raw water flowing into a raw water tank 10 from a sewage pipe 21 is continuously pumped in the tank and formed of a one-way circulation flow path. Supply to the ditch 11. The raw water is aerated by the aeration device 12 while circulating in the ditch, and mainly organic matter in the raw water is decomposed and removed by the action of microorganisms in the ditch. The aeration device 12 is disposed on the water surface in the figure, and a part of the blades of the rotating rotor is immersed to agitate the water, and the amount of aeration is determined by the number of rotations of the rotor, the immersion depth of the blades, the intermittent rotation of the rotor, and the like. Although a mechanical surface stirring and aeration device that can be adjusted is shown, other types of aeration devices may be used. The water level in the ditch is determined by the weir plate 13, and the raw water
The wastewater is circulated and retained for about 36 hours to become treated water. The treated water flows into the sedimentation tank 14 by overflowing the weir plate 13 to the supply amount of the raw water from the raw water tank, thereby separating and separating the sludge. The clear water is discharged through a disinfection and discharge tank 15 having a chlorine disinfector 16. The daily supply of raw water from the raw water tank to the ditch and the daily flow of supernatant treated water flowing out of the ditch to the sedimentation tank are almost the same, although there is some time difference. The size of the dich 11 is 1800 for the target population.
In the case of a human, it is an ellipse having a major axis of about 35 m, a minor axis of about 8.5 m, and a depth of about 2.5 m, and has a volume of about 650 m 3 . Wastewater from each household in each district of a town or village flows into the raw water tank of the wastewater treatment plant via a sewer pipe laid from that region to the wastewater treatment plant. The sewer pipe 21 in FIG. 1 shows one of them.

【0003】原水槽10からポンプでディッチ11に原
水を供給する流路には流量指示積算計(入口側流量計と
も記す。)3が設けてあり、これによりディッチに供給
した24時間当りの原水の全供給量と、時間毎の、例え
ば10分毎の供給量が分かり、この出力を制御盤2を経
て演算器1、例えばパソコン、シーケンサに入力し、演
算器はそれを記録、記憶する。
In a flow path for supplying raw water from a raw water tank 10 to a ditch 11 by a pump, a flow rate integrator (also referred to as an inlet-side flow meter) 3 is provided, whereby raw water supplied to the ditch per 24 hours is provided. The total supply amount and the supply amount per hour, for example, every 10 minutes are known, and this output is input to the arithmetic unit 1, for example, a personal computer or a sequencer, through the control panel 2, and the arithmetic unit records and stores it.

【0004】24時間当りのCOD排出量を演算して求
めるため、消毒、放流槽15には塩素の影響を受けるこ
とがないように消毒器16の上流にCOD測定器4、例
えばCOD計、UV計などを設ける他、消毒、放流槽か
らポンプで処理水を放流する流路に流量指示積算計(出
口側流量計とも記す。)5を設け、COD測定器と、出
口側流量計の出力を例えば1時間毎に前記制御盤2を経
て演算器1に入力し、演算器は1時間毎のCOD排出量
と、24時間当りのCOD総排出量を演算して記録、記
憶する。
Since the amount of COD emission per 24 hours is calculated and obtained, the COD measuring device 4, for example, a COD meter, UV, is disposed upstream of the disinfecting device 16 so that the disinfecting and discharging tank 15 is not affected by chlorine. In addition to providing a flow meter, a flow indicator integrator (also referred to as an outlet flow meter) 5 is provided in the flow path for discharging treated water from the disinfection and discharge tank by a pump, and the output of the COD measuring device and the outlet flow meter is provided. For example, the data is input to the arithmetic unit 1 via the control panel 2 every hour, and the arithmetic unit calculates and records and stores the COD emission amount per hour and the total COD emission amount per 24 hours.

【0005】又、原水槽からディッチへの原水の供給量
と、ディッチから堰板を溢流して沈殿槽に流出する処理
水の流出量はほゞ同じなので、本特許出願人が前記特開
平7−232191号公報で提案したように入口側流量
計3と、COD測定器4の出力を1時間毎に制御盤を経
て演算器に入力し、1時間毎のCOD排出量と、24時
間当りのCOD総排出量を演算して記録、記憶させ、高
価な出口側流量指示積算計の使用を省略してもよい。
尚、いずれの場合も、COD測定器4は、消毒、放流槽
ではなく、消毒、放流槽以降の処理水の放流流路中の、
塩素の影響が無くなる地点に設けてもよい。
Further, since the amount of raw water supplied from the raw water tank to the ditch is almost the same as the amount of treated water flowing out of the ditch and overflowing the weir plate to the sedimentation tank, the applicant of the present invention has disclosed in the Japanese Patent Application Laid-Open No. As proposed in Japanese Unexamined Patent Publication No. 232191, the outputs of the inlet-side flow meter 3 and the COD measuring device 4 are input to the arithmetic unit via the control panel every hour, and the amount of COD emission per hour and the The total COD emission may be calculated, recorded and stored, and the use of an expensive outlet-side flow indicator integrator may be omitted.
In any case, the COD measuring device 4 is not provided in the disinfection and discharge tank, but in the discharge channel of the treated water after the disinfection and discharge tank.
It may be provided at a point where the influence of chlorine disappears.

【0006】この廃水処理場の原水槽10に流入する原
水(下水)の日平均流入量(Q)は約480m3 、その
通常流入パターンないし、原水槽からディッチに供給さ
れる供給パターンは図4の実線に示す通りで、深夜から
早朝5時頃までは流入量はほゞ0、流入のピークは朝7
時頃から10時頃までと、夕方6時頃から8時頃までの
2回、昼間は朝、夕のピークの谷間で、昼食後に小さな
ピークがあるが、他の時間はダラダラと流入する。この
通常流入パターンは集中豪雨等の異常気象が起らない限
り毎日繰返す。
The daily average inflow (Q) of raw water (sewage) flowing into the raw water tank 10 of this wastewater treatment plant is about 480 m 3 , and its normal inflow pattern or the supply pattern supplied from the raw water tank to the ditch is shown in FIG. As shown by the solid line in the figure, the amount of inflow is almost 0 from midnight to about 5 o'clock in the early morning, and the peak of inflow is 7 in the morning.
Twice from about 10:00 to about 10:00, and twice from about 6:00 to about 8:00 in the evening, there is a small peak after lunch in the valley between the morning and evening peaks in the daytime, but it flows in at other times. This normal inflow pattern is repeated every day unless abnormal weather such as torrential rain occurs.

【0007】図3(A)に示す原水槽10の水位H−L
間の容量は時間最大流入量(Qmax)の15分程度
(日平均流入量Qの約45分程度)で、Q=480m3
/日、Qmax=57.8m3 /時として14.4m3
である。原水槽10には流入した原水を短時間で汲み上
げることができる吐出量、正確には時間最大流入量(Q
max)を汲み上げることができる常用と、予備の2台
の水中ポンプP1 ,P1′が設けてある。常用ポンプP1
は水位が1.5mのHになると運転を開始し、水位が
0mのLに下がると停止する。原水槽は前述したように
容量が小さく、且つポンプの吐出量は大なので、常用ポ
ンプは頻繁にON,OFFを繰返す。予備ポンプP1′
は水位が2.0mのHHに上昇すると運転を開始し、水
位が1.5mのHに下がると停止する。原水槽が警報を
発するANN水位は2.5mである。
The water level HL of the raw water tank 10 shown in FIG.
The capacity between them is about 15 minutes of the maximum time inflow (Qmax) (about 45 minutes of the daily average inflow Q), and Q = 480 m 3
/ Day, Qmax = 57.8m 3 / sometimes 14.4m 3
It is. The discharge amount that allows the raw water that has flowed into the raw water tank 10 to be pumped in a short time, more precisely, the maximum inflow amount (Q
Two submersible pumps P1 and P1 'are provided, one for normal use and the other for submersible pumps max. Service pump P1
Starts the operation when the water level becomes 1.5 m H, and stops when the water level falls to 0 m L. As described above, since the capacity of the raw water tank is small and the discharge amount of the pump is large, the service pump is repeatedly turned on and off frequently. Backup pump P1 '
Starts when the water level rises to 2.0 m HH and stops when the water level falls to 1.5 m HH. The ANN water level at which the raw water tank issues an alarm is 2.5 m.

【0008】前述した図4の実線の通常流入パターンで
原水が原水槽に流入すると、原水槽の常用ポンプP1 は
原水を汲み上げてディッチに供給し、水位が2.0mの
HHに上昇すると予備ポンプP1′も原水を汲み上げて
ディッチに供給する。そして、ディッチからは内部を2
4〜36時間循環滞流した曝気処理水が、原水槽からの
供給量とほゞ同じ量だけ垂れ流し式に堰板をオーバーフ
ローして沈殿槽14に流入する。従って、ディッチから
沈殿槽への処理水の通常の流出パターンの水量は、時間
的に差があるが図4の実線の通常流入パターンとほゞ同
じである。
When raw water flows into the raw water tank according to the normal flow pattern shown by the solid line in FIG. 4, the service pump P1 of the raw water tank pumps the raw water and supplies it to the ditch. P1 'also pumps up raw water and supplies it to the ditch. And from the ditch, the inside is 2
The aerated treated water circulated and retained for 4 to 36 hours overflows the weir plate in a flow-down manner by the same amount as the supply amount from the raw water tank, and flows into the sedimentation tank 14. Therefore, the amount of water in the normal outflow pattern of the treated water from the ditch to the sedimentation tank is substantially the same as the normal inflow pattern of the solid line in FIG.

【0009】これに対し、例えば前日の午後11時頃か
ら雨が降り始め、早朝の3時から5時頃に集中豪雨にな
り、6時頃まで降って止んだ場合、原水槽には短い時間
の遅れで図4の破線に示す異常流入パターンで水が流入
する。即ち3時から5時頃迄の集中豪雨は、原水槽へは
4時から6時頃に流入量の増大となって表れる。原水槽
への0時から2時迄の流入量は10m3 /時、2時から
3時迄の流入量は20m3 /時で、それが3時からは8
0m3 /時、更に4時からはピークの160m3 /時に
なり、5時からは120m3 /時、6時からは80m3
/時と順次低下し、7時からは通常流入パターンに移行
する。
On the other hand, for example, when the rain starts to fall at about 11:00 pm on the previous day, and the heavy rain falls from about 3:00 to about 5:00 in the early morning, and the rain falls until about 6:00, the raw water tank has a short time. , Water flows in an abnormal inflow pattern shown by a broken line in FIG. That is, the torrential rain from 3:00 to 5:00 appears as an increase in the inflow into the raw water tank from 4:00 to 6:00. The amount of water flowing into the raw water tank from 0:00 to 2:00 is 10 m 3 / hour, the amount of water flowing from 2:00 to 3:00 is 20 m 3 / hour, and it is 8 from 3:00.
0 m 3 / h, peak 160 m 3 / h from 4:00, 120 m 3 / h from 5:00, 80 m 3 from 6:00
/ Hour, and then shifts to a normal inflow pattern from 7 o'clock.

【0010】[0010]

【発明が解決しようとする課題】このような異常流入パ
ターンになると、原水槽10は流入した原水ですぐに満
ちるので常用と予備の水中ポンプP1 ,P1′はフル運
転してディッチに原水を供給する。これによって、ディ
ッチには原水槽から0時から2時まで10m3 /時、2
時から3時迄は20m3 /時、3時からは80m3
時、4時からは160m3 /時、5時から120m3
時、6時からは80m3 /時の原水が供給され、これと
同量の水が垂れ流し式に堰板13をオーバーフローして
沈殿槽14に流入する。沈殿槽に流入する水は、ディッ
チで充分に処理された処理水以外に、滞流時間の不足で
処理が不十分な水や、雨水まじりのディッチに流入した
ばかりの水が混ざると共に、流入量は多量なので沈殿槽
の水面積負荷は急激に上昇して汚泥を充分に沈降分離で
きず、これにより槽内の汚泥の界面は上昇し、上澄み処
理水に汚泥が混ざって処理水の水質は急激に悪化し、水
質の悪化した処理水が消毒、放流槽に流れて放流される
ことになる。又、COD排出量も多くなり、放流基準を
満たせなくなる。
In such an abnormal inflow pattern, the raw water tank 10 is immediately filled with the raw water that has flowed in, so that the ordinary and spare submersible pumps P1 and P1 'operate fully to supply raw water to the ditch. I do. This allows the ditch to reach 10 m 3 / h from 0:00 to 2:00 from the raw water tank,
20m 3 / hour from 3 o'clock to 80m 3 / hour from 3 o'clock
Hour, 160m 3 / h from 4:00, 120m 3 / h from 5:00
At 6:00, raw water of 80 m 3 / hour is supplied from 6:00, and the same amount of water flows down the weir plate 13 in a flowing manner and flows into the sedimentation tank 14. The water that flows into the sedimentation tank is not only treated water that has been sufficiently treated by the ditch, but also water that is insufficiently treated due to insufficient residence time and water that has just flowed into the ditch that is mixed with rainwater. Is large, the water area load in the sedimentation tank rises rapidly, and the sludge cannot be settled and separated sufficiently.Therefore, the interface of the sludge in the tank rises, and the sludge mixes with the supernatant treated water and the quality of the treated water sharply increases. The treated water, whose quality has deteriorated, will be disinfected and discharged into the discharge tank. In addition, the COD emission increases, and the discharge standard cannot be satisfied.

【0011】[0011]

【課題を解決するための手段】本発明は、上記のような
異常増水の場合の問題点を解消するためのもので、請求
項1は、下水管路で原水槽に流入する原水を常用と予備
の2台のポンプP1 ,P1′でディッチに連続的に供給
し、ディッチ内で原水が循環流する過程で原水を曝気処
理し、ディッチに供給される原水の供給量に対応した量
の処理水をディッチの堰板を溢流させて沈殿槽に供給
し、消毒、放流槽を経て放流するオキシデーションディ
ッチ式廃水処理場の運転制御方法において、前記原水槽
の複数台のポンプP1 ,P1′に夫々運転信号を出力さ
せるようにすると共に、原水槽からディッチに供給され
る原水の時間毎の供給量を測定して出力する流量計を設
け、上記各ポンプP1 ,P1′の出力と、上記流量計の
出力を受ける演算器を設け、この演算器には通常の供給
パターンで原水槽から原水をディッチに供給する一日分
の時間毎の前記各ポンプP1 ,P1′の通常の運転パタ
ーンと、流量計の供給量とを記憶させ、演算器は、原水
槽の各ポンプP1 ,P1′が実際に出力する運転信号を
記憶している通常の運転パターンの同じ時間の運転信号
と比較し、実際の運転信号が記憶運転信号を上回ると異
常の監視態勢になり、演算器は監視態勢中に上記流量計
が出力して来る実際の原水のディッチへの時間毎の供給
量を、記憶している同じ時間の供給量と比較し、実際の
供給量が記憶供給量を所定量上回ると、演算器はディッ
チの堰板を下げ、ディッチ内の処理水を沈殿槽に溢流さ
せてディッチ内の水位を下げることを特徴とする。請求
項2は、下水管路で原水槽に流入する原水をポンプでデ
ィッチに連続的に供給し、ディッチ内で原水が循環流す
る過程で原水を曝気処理し、ディッチに供給される原水
の供給量に対応した量の処理水をディッチの堰板を溢流
させて沈殿槽に供給し、消毒、放流槽を経て放流するオ
キシデーションディッチ式廃水処理場の運転制御方法に
おいて、前記下水管路の途中に交互に運転されるポンプ
PA ,PB を備えたポンプ圧送場を設け、この両ポンプ
PA ,PB に夫々運転信号を出力させるようにすると共
に、原水槽からディッチに供給される原水の時間毎の供
給量を測定して出力する流量計を設け、上記ポンプ圧送
場の両ポンプの出力と、上記流量計の出力を受ける演算
器を設け、この演算器にはポンプ圧送場のポンプPA ,
PB が運転される1日分の時間毎の通常の運転パターン
と、通常の供給パターンで原水槽から原水をディッチに
供給する一日分の時間毎の流量計の供給量とを記憶さ
せ、演算器はポンプ圧送場が実際に出力するポンプPA
,PB の運転信号を記憶している通常の運転パターン
の同じ時間の運転信号と比較し、実際の運転信号が記憶
運転信号を所定量上回ると、演算器は異常の監視態勢に
なり、演算器は監視態勢中に上記流量計が出力して来る
実際の原水のディッチへの時間毎の供給量を、記憶して
いる同じ時間の供給量と比較し、実際の供給量が記憶供
給量を所定量上回ると、演算器はディッチの堰板を下
げ、ディッチ内の処理水を沈殿槽に溢流させてディッチ
内の水位を下げることを特徴とする。又、請求項3は下
水管路で原水槽に流入する原水をポンプでディッチに連
続的に供給し、ディッチ内で原水が循環流する過程で原
水を曝気処理し、ディッチに供給される原水の供給量に
対応した量の処理水をディッチの堰板を溢流させて沈殿
槽に供給し、消毒、放流槽を経て放流するオキシデーシ
ョンディッチ式廃水処理場の運転制御方法において、前
記下水管路の途中に交互に運転されるポンプPA ,PB
を備えたポンプ圧送場を設け、この両ポンプPA ,PB
に夫々運転信号を出力させるようにすると共に、原水槽
からディッチに供給される原水の時間毎の供給量を測定
して出力する流量計を設け、上記ポンプ圧送場の両ポン
プの出力と、上記流量計の出力を受ける演算器を設け、
この演算器には通常の供給パターンで原水槽から原水を
ディッチに供給する一日分の時間毎の流量計の供給量を
記憶させ、ポンプ圧送場の両ポンプPA ,PB が同時に
運転されたことを演算器に出力すると、演算器は異常の
監視態勢になり、演算器は監視態勢中に上記流量計が出
力して来る実際の原水のディッチへの時間毎の供給量
を、記憶している同じ時間の供給量と比較し、実際の供
給量が記憶供給量を所定量上回ると、演算器はディッチ
の堰板を下げ、ディッチ内の処理水を沈殿槽に溢流させ
てディッチ内の水位を下げることを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem in the case of abnormally increasing water. The first aspect of the present invention is to use raw water flowing into a raw water tank in a sewage pipe for regular use. Two spare pumps P1 and P1 'are continuously supplied to the ditch, the raw water is aerated in the course of the circulation of the raw water in the ditch, and the amount of the raw water is supplied to the ditch in an amount corresponding to the supply amount of the raw water. In an operation control method of an oxidation ditch type wastewater treatment plant in which water overflows through a ditch weir plate and is supplied to a sedimentation tank, and is discharged through a disinfection and discharge tank, a plurality of pumps P1 and P1 'of the raw water tank are provided. And a flow meter for measuring and outputting an hourly supply amount of raw water supplied from the raw water tank to the ditch, and providing an output of each of the pumps P1, P1 ', A computing unit that receives the output of the flow meter is provided. This arithmetic unit stores a normal operation pattern of each of the pumps P1 and P1 'for each day for supplying raw water from the raw water tank to the ditch in a normal supply pattern, and a supply amount of the flow meter, The arithmetic unit compares the operation signal actually output by each of the pumps P1 and P1 'of the raw water tank with the operation signal at the same time in the normal operation pattern in which the operation signal is stored, and when the actual operation signal exceeds the stored operation signal. During the monitoring state, the arithmetic unit compares the actual supply amount of raw water to the ditch, which is output by the flow meter during the monitoring state, with the stored supply amount at the same time. When the supply amount exceeds the storage supply amount by a predetermined amount, the computing unit lowers the weir plate of the ditch and overflows the treated water in the ditch into the sedimentation tank to lower the water level in the ditch. According to a second aspect of the present invention, the raw water flowing into the raw water tank through the sewage line is continuously supplied to the ditch by the pump, and the raw water is aerated in the course of circulating the raw water in the ditch to supply the raw water to the ditch. In the operation control method of the oxidation ditch type wastewater treatment plant, in which the treated water of the amount corresponding to the amount overflows the ditch weir plate and is supplied to the sedimentation tank, disinfected, and discharged through the discharge tank, A pump pumping station equipped with pumps PA and PB which are operated alternately is provided on the way to output an operation signal to each of the pumps PA and PB, and the time of raw water supplied from the raw water tank to the ditch is changed. A flow meter for measuring and outputting the supply amount of the pump is provided, and an arithmetic unit is provided for receiving the outputs of both pumps of the pumping and the output of the flow meter.
The normal operation pattern for each hour of the day when PB is operated and the supply amount of the flow meter for each day for supplying raw water from the raw water tank to the ditch in the normal supply pattern are stored and calculated. The pump PA is actually output by the pumping station.
, PB are compared with the driving signals of the same time stored in the normal driving pattern, and when the actual driving signal exceeds the stored driving signal by a predetermined amount, the arithmetic unit enters the monitoring state for abnormality, Compares the actual hourly supply of raw water to the ditch output from the flow meter during the monitoring operation with the stored supply at the same time, and the actual supply determines the stored supply. When the amount exceeds the fixed amount, the arithmetic unit lowers the weir plate of the ditch, and the treated water in the ditch overflows into the settling tank to lower the water level in the ditch. Further, claim 3 supplies the raw water flowing into the raw water tank through the sewage pipe continuously to the ditch by a pump, aeration-processes the raw water in the course of circulating the raw water in the ditch, and supplies the raw water to the ditch. An operation control method for an oxidation ditch type wastewater treatment plant in which an amount of treated water corresponding to a supply amount is supplied to a sedimentation tank by overflowing a ditch weir plate and disinfected and discharged through a discharge tank. Pumps PA and PB operated alternately during
A pumping pumping station equipped with a pump is provided.
In addition to outputting an operation signal to each, a flow meter for measuring and outputting the hourly supply amount of the raw water supplied to the ditch from the raw water tank is provided, and the outputs of both pumps of the pump pumping station, A computing unit that receives the output of the flow meter is provided,
This arithmetic unit stores the daily supply amount of the flow meter for supplying the raw water from the raw water tank to the ditch in the normal supply pattern, and the pumps PA and PB of the pumping station were operated simultaneously. Is output to the arithmetic unit, the arithmetic unit is in a state of monitoring for abnormality, and the arithmetic unit stores the actual supply amount of the raw water to the ditch, which is output by the flowmeter during the monitoring state, every hour. When the actual supply amount exceeds the stored supply amount by a predetermined amount compared with the supply amount at the same time, the computing unit lowers the weir plate of the ditch, overflows the treated water in the ditch into the sedimentation tank, and raises the water level in the ditch. It is characterized by lowering.

【0012】[0012]

【実施例】ディッチの堰板13は、流体圧、電動などの
機械的操作手段で上下動可能にし、常時はディッチ内の
水位を所定に保つ。例えば前述した人口約2000人を
対象とした深さ約2.5m、容積約650m3 のディッ
チの場合、堰板は水位を約2.5mに保つ。そして、堰
板を例えば10cm下げると処理水を25m3 多く沈殿
槽14に溢流させることができ、20cm下げると50
3 、30cm下げると75m3 、40cm下げると
100m3 多く沈殿槽に溢流させることができる。この
ように堰板を10〜40cm段階的に下げることにより
ディッチへの原水の日平均流入量(原水槽からの原水の
日平均供給量)の約10〜20%程度の処理水を沈殿槽
14に溢流させることができ、そして、堰板をこの程度
しか下げないのであれば沈殿槽に溢流する処理水は、既
にディッチ内で充分に処理された上澄み液であるため、
沈殿槽は充分に汚泥を沈降分離し、水質に問題が無い処
理水を消毒、放流槽に供給する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The ditch weir plate 13 is made movable up and down by mechanical operating means such as fluid pressure or electric power so that the water level in the ditch is always kept at a predetermined level. For example, in the case of the above-mentioned ditch having a depth of about 2.5 m and a volume of about 650 m 3 for a population of about 2000, the weir plate keeps the water level at about 2.5 m. If the weir plate is lowered, for example, by 10 cm, the treated water can overflow into the sedimentation tank 14 by 25 m 3 more.
If it is lowered by m 3 , 30 cm, it can be overflowed into the sedimentation tank by 75 m 3 , and if it is lowered by 40 cm, 100 m 3 more. By lowering the weir plate stepwise by 10 to 40 cm in this manner, about 10 to 20% of the treated water of about 10 to 20% of the daily average inflow of raw water into the ditch (the daily average supply of raw water from the raw water tank) is deposited in the sedimentation tank 14. If the weir plate is lowered only this much, the treated water that overflows into the sedimentation tank is a supernatant liquid that has already been sufficiently treated in the ditch,
The sedimentation tank sufficiently separates the sludge by sedimentation, disinfects treated water having no problem in water quality, and supplies it to the discharge tank.

【0013】請求項1は、原水槽の常用と予備の2台の
水中ポンプP1 ,P1′の運転信号を演算器に入力さ
せ、演算器はこの両ポンプの運転信号で最初の監視態勢
になるようにする。勿論、演算器には通常の供給パター
ンで原水槽からディッチに原水を供給する1日分の、例
えば10分毎の流量計の供給量を記憶させておく。原水
槽のポンプP1 ,P1′は10分毎に運転信号を出力
し、演算器1に制御盤を経て入力する。図4に実線で示
した原水槽への原水の通常の流入パターンでのポンプP
1 ,P1′の10分間毎の信号発生回数、つまり送水量
は既知で、その24時間の運転信号パターンは図4の実
線の原水槽への原水の通常の流入パターンと相似にな
る。従って、演算器1には通常の供給パターンで原水槽
のポンプP1 ,P1′が入力して来る10分間毎の運転
信号を記憶させておき、2台のポンプP1 ,P1′が入
力して来る10分毎の実際の運転信号を同じ時間の記憶
運転信号と比較演算し、実際の運転信号の値が記憶運転
信号の値を所定の数倍、例えば3倍上回り、その状態が
10分間毎、数回、例えば3回(30分間)続くと、演
算器は、入口側流量計3によって原水槽からディッチへ
の供給量の増減、及びディッチの堰板を下げるか、否か
を監視する監視態勢になり、必要ならば堰板を徐々に1
0cm下げ、原水槽からの原水の供給量よりも多くディ
ッチ内の処理水を沈殿槽に溢流させる。
According to the first aspect of the present invention, the operation signals of the two submersible pumps P1 and P1 'in the raw water tank are input to the arithmetic unit, and the arithmetic unit enters the first monitoring mode based on the operation signals of both pumps. To do. Of course, the arithmetic unit stores the supply amount of the flow meter for every day, for example, every 10 minutes for supplying raw water from the raw water tank to the ditch in a normal supply pattern. The pumps P1 and P1 'of the raw water tank output an operation signal every 10 minutes and input to the arithmetic unit 1 via the control panel. The pump P in the normal flow pattern of raw water into the raw water tank shown by the solid line in FIG.
1, the number of signal generations every 10 minutes, that is, the amount of water supply is known, and the operation signal pattern for the 24 hours is similar to the normal flow pattern of raw water into the raw water tank shown by the solid line in FIG. Therefore, the operation signal for every 10 minutes that the pumps P1 and P1 'of the raw water tank are inputted in the normal supply pattern is stored in the arithmetic unit 1, and the two pumps P1 and P1' are inputted. The actual operation signal every 10 minutes is compared with the stored operation signal at the same time, and the value of the actual operation signal exceeds the value of the stored operation signal by a predetermined multiple, for example, three times. After several times, for example, three times (for 30 minutes), the arithmetic unit monitors the inlet-side flow meter 3 to increase or decrease the supply amount from the raw water tank to the ditch, and to monitor whether or not to lower the ditch weir plate. And if necessary, gradually move the dam
Lower by 0 cm, and let the treated water in the ditch overflow into the sedimentation tank more than the supply amount of the raw water from the raw water tank.

【0014】監視態勢になって所定時間、例えば2時間
経ってもディッチへの原水の供給量が増加しないと監視
を止め、既に堰板を下げた場合は元通りに上げる。逆に
監視を始めて2時間以内に供給量が増加すると異常と判
断し、監視を続けながら増水の増加に応じてディッチの
堰板を10cm宛段階的に徐々に下げる(監視態勢にな
ったときに堰板を下げた場合は更に徐々に10cm宛下
げる)。そして、ディッチへの供給量が減少傾向を示す
と堰板を上げるための監視を開始し、その減少傾向が所
定時間、例えば2時間続くと演算器は堰板を元通りの高
さ迄徐々に上げ、監視を止める。尚、堰板を元のレベル
に戻す2時間の監視態勢中に、供給量が異常に増加し、
記憶供給量を所定量上回ると、演算器は堰板を下げたま
ゝで監視を更新し、更に2時間の監視を続け、ディッチ
への供給量が更に増加したら増加の程度に応じ堰板を更
に徐々に10cm宛段階的に下げ、供給量の減少傾向が
2時間続くと堰板を元のレベルに上昇させて監視を終
る。
If the supply of raw water to the ditch does not increase within a predetermined period of time, for example, 2 hours, the monitoring is stopped, and if the weir plate has already been lowered, it is raised again. Conversely, if the supply amount increases within 2 hours after starting monitoring, it is determined that there is an abnormality, and while monitoring continues, the ditch weir plate is gradually lowered in steps of 10 cm in accordance with the increase in water supply (when monitoring is started) If the weir plate is lowered, lower it by 10 cm gradually). When the amount of supply to the ditch shows a decreasing tendency, monitoring for raising the weir plate is started, and when the decreasing tendency continues for a predetermined time, for example, 2 hours, the arithmetic unit gradually moves the weir plate to the original height. Raise and stop monitoring. During the two-hour monitoring operation for returning the weir plate to the original level, the supply amount increased abnormally,
When the storage supply amount exceeds a predetermined amount, the arithmetic unit updates the monitoring while keeping the weir plate down, continues monitoring for another 2 hours, and further increases the weir plate according to the degree of increase when the supply amount to the ditch further increases. When the tendency of the decrease in the supply amount continues for 2 hours, the weir plate is raised to the original level and the monitoring is finished.

【0015】図4の破線の異常増水の場合、雨によって
0時頃から原水槽に10m3 /時で水が流入すると、当
初は常用ポンプP1 が1台で水をディッチに供給する
が、0時30分頃になると原水槽内の水位は2m以上に
なる。このため予備ポンプP1′も運転を開始し、通常
の供給パターンでは同時運転信号が0の時間帯に両ポン
プP1 ,P1′の同時運転信号が演算器に入力される。
この同時運転信号がその後、2回演算器に入力される
と、演算器は1時に異常と判断し、入口側流量計3によ
ってディッチへの供給量の増減、及びディッチの堰板を
下げるか、否かの2時間の監視態勢になり、必要ならば
堰板を徐々に10cm下げ、原水槽からの原水の供給量
よりも多くディッチ内の処理水を沈殿槽に溢流させる。
[0015] In the case of abnormal flooding of the broken line in FIG. 4, when the water in the 10m 3 / time from the raw water tank around 0:00 by rain flows, it is initially a common pump P1 for supplying water to the ditch on one, 0 At around 30:30, the water level in the raw water tank will be more than 2m. Therefore, the backup pump P1 'also starts operating, and in the normal supply pattern, the simultaneous operation signals of both pumps P1 and P1' are input to the arithmetic unit during the time period when the simultaneous operation signal is 0.
If this simultaneous operation signal is subsequently input to the computing unit twice, the computing unit determines that it is abnormal at 1:00, and the inlet-side flow meter 3 increases or decreases the supply amount to the ditch and lowers the ditch weir plate, The system is monitored for 2 hours, and if necessary, the weir plate is gradually lowered by 10 cm, and the treated water in the ditch overflows into the sedimentation tank more than the supply amount of raw water from the raw water tank.

【0016】そして、入口側流量計3がディッチへの供
給量が記憶供給量0m3 /時を40m3 /時上回ること
を演算器に入力して来た2時50分頃に、演算器はディ
ッチの堰板を更に10cm徐々に下げ、又、入口側流量
計が記憶供給量0m3 /時を80m3 /時上回ることを
入力してきた3時30分頃にディッチの堰体を更に10
cm徐々に下げる。従って、集中豪雨の雨水混ざりの原
水が原水槽からディッチに供給されても、それに先立っ
てディッチ内の処理水を沈殿槽に溢流させ、ディッチは
水位を下げているので、雨水混ざりの多量の原水を受入
れることができる。
At about 2:50, when the inlet side flow meter 3 inputs to the arithmetic unit that the supply amount to the ditch exceeds the storage supply amount of 0 m 3 / hour by 40 m 3 / hour, the arithmetic unit becomes The ditch weir plate is gradually lowered further by 10 cm, and the ditch weir body is further raised at around 3:30 when the inlet side flow meter has input that the stored supply amount is 80 m 3 / hour exceeding 0 m 3 / hour.
cm gradually lower. Therefore, even if the raw water mixed with the rainwater of the concentrated torrential rain is supplied from the raw water tank to the ditch, the treated water in the ditch overflows to the sedimentation tank prior to that, and the ditch lowers the water level. Raw water can be accepted.

【0017】そして、4時30分頃からディッチへの供
給量が減少傾向になると、ディッチの堰板を元のレベル
に戻すために演算器は例えば2時間の監視態勢になり、
6時30分頃に流入量の減少傾向はそのまゝ続いている
ので、異常事態は終ったとして演算器は堰板を元の高さ
に上昇させて監視を止める。尚、堰板を元のレベルに戻
す2時間の監視態勢中に、供給量が異常に増加し、記憶
供給量を所定量上回ると、演算器は堰板を下げたまゝで
監視を更新し、更に2時間の監視を続け、ディッチへの
供給量が更に増加したら堰板を更に10cm徐々に下
げ、供給量の減少傾向が2時間続くと堰板を元のレベル
に上昇させる監視を終る。
When the amount of supply to the ditch tends to decrease from about 4:30, the arithmetic unit is set to a monitoring state of, for example, two hours to return the ditch weir plate to the original level.
At around 6:30, the decreasing amount of the inflow continues, so the computing unit stops the monitoring by raising the weir plate to the original height assuming that the abnormal situation is over. When the supply amount increases abnormally and exceeds the storage supply amount by a predetermined amount during the 2-hour monitoring operation for returning the weir plate to the original level, the computing unit updates the monitoring while the weir plate is lowered, The monitoring is continued for another 2 hours, and when the supply amount to the ditch further increases, the barrier is gradually lowered further by 10 cm. When the supply amount decreases continuously for 2 hours, the monitoring for raising the barrier to the original level ends.

【0018】下水管路21の途中には、通常、ポンプ圧
送場(マンホールポンプ場とも称する。)22が設けて
ある。図1では途中のA,Bの2地点にポンプ圧送場2
2A,22Bが設けてあり、上流のA地点のポンプ圧送
場22Aは上り坂の地形に沿って下から上に下水を流す
ためのものであり、下流のB地点のポンプ圧送場22B
は河川の上を横断して下水を流すためのものである。ポ
ンプ圧送場は、そのほか、下水管の埋設深さが深くな
り、それ以上深く埋設するよりは下水を一旦ポンプで揚
水し、そこから再び自然流下させるほうがよいと判断さ
れる場合などにも設置し、通常のマンホール23に向か
って下水を流す。
In the middle of the sewage pipe 21, a pumping pumping station (also called a manhole pumping station) 22 is usually provided. In FIG. 1, two pumping stations 2 at A and B on the way
2A and 22B are provided, and the pumping station 22A at the upstream point A is for flowing sewage from bottom to top along the uphill terrain, and the pumping station 22B at the downstream point B is provided.
Is for draining sewage across rivers. Pump pumping stations should also be installed in cases where the burial depth of the sewer pipes becomes deeper and it is judged that it is better to pump the sewage once and pump it down from there rather than burying it deeper. Then, drain the sewage toward the normal manhole 23.

【0019】このポンプ圧送場は、図3(B)に示すよ
うに、一般的に直径約1.5m、深さ5m程度のマンホ
ールに交互運転用の2台の水中ポンプPA ,PB を内蔵
し、水位が0.8mのHになったらポンプPA ,PB は
交互に運転を行い、水位が0mのLに下がると運転を停
止する。そして、一方のポンプ、例えばPA の運転中に
水位が1.2mのHHに上昇すると他方のポンプPB も
運転を開始し、2台のポンプで揚水を行い、水位がHH
から0.8mのHに下がるとポンプPB は運転を停止
し、ポンプPA のみが揚水を続ける。ポンプ圧送場の水
位H〜L間の容積Vは計画時間最大流入量の10〜15
分間程度、ポンプPA ,PB の吐出量の2分間程度に設
計するのが一般的で、この計画時間最大流入量は通常の
水量の約3倍である。又、各水中ポンプPA ,PB の吐
水量は大で、1台で時間最大流入量を揚水できるものを
使用する。従って、ポンプPA ,PB は流入があるとす
ぐに交互に作動する。
As shown in FIG. 3B, this pumping pumping station generally has two submersible pumps PA and PB for alternate operation built in a manhole having a diameter of about 1.5 m and a depth of about 5 m. When the water level becomes 0.8 m of H, the pumps PA and PB operate alternately, and stop when the water level falls to 0 m of L. When the water level rises to 1.2 m HH during operation of one of the pumps, for example, PA, the other pump PB also starts to operate, pumps water with two pumps, and the water level becomes HH.
, The pump PB stops operating, and only the pump PA continues pumping. The volume V between the water levels H and L at the pumping station is 10-15 of the maximum inflow during the planned time.
In general, the pumps PA and PB are designed to have a discharge amount of about 2 minutes, and the maximum inflow during the planned time is about three times the normal water amount. Further, the submersible pumps PA and PB have a large water discharge amount, and a single pump capable of pumping the maximum inflow amount with time is used. Therefore, the pumps PA and PB are activated alternately as soon as there is an inflow.

【0020】請求項2では、ポンプ圧送場が水中ポンプ
PA ,PB の例えば10分毎の運転信号を電話回線24
などで出力し、廃水処理場の演算器1に制御盤2を経て
入力する。勿論、演算器には通常の供給パターンで原水
槽からディッチに原水を供給する1日分の、例えば10
分毎の流量計の供給量を記憶させておく。図4に実線で
示した原水槽への原水の通常の流入パターンでのポンプ
PA ,PB の10分間毎の信号の発生回数、つまり送水
量は既知で、その24時間の運転信号パターンは図4の
実線の原水槽への原水の通常の流入パターンと相似にな
る(但し、信号の発生時間はポンプ圧送場から廃水処理
場の原水槽に水が届く所要時間だけ、例えば1時間早
い)。従って、演算器1には通常の流入パターンでポン
プ圧送場の水中ポンプPA ,PB が発生する例えば10
分間毎の信号発生回数である運転信号を、ポンプ圧送場
から廃水処理場に水が届く所要時間早めて記憶させてお
き、ポンプ圧送場が出力する水中ポンプPA ,PB の1
0分毎の実際の信号回数である運転信号と比較演算し、
実際の信号の値が通常の流入パターンの同じ時間の信号
の値を所定の数倍、例えば3倍上廻り、その状態が10
分間毎、数回、例えば3回(30分間)続くと、演算器
は、入口側流量計3によって原水槽からディッチへの供
給量の増減、及びディッチの堰板を下げるか、否かを監
視する監視態勢になり、必要ならば堰板を徐々に10c
m下げ、原水槽からの原水の供給量よりも多くディッチ
内の処理水を沈殿槽に溢流させる。
According to the second aspect, the pumping station sends an operation signal of the submersible pumps PA and PB, for example, every 10 minutes to the telephone line 24.
And the like, and input to the computing unit 1 of the wastewater treatment plant via the control panel 2. Of course, the arithmetic unit has a normal supply pattern for supplying raw water from the raw water tank to the ditch for one day, for example, 10 units.
The supply amount of the flow meter per minute is stored. The number of signal generations of the pumps PA and PB every 10 minutes in the normal flow pattern of raw water into the raw water tank shown by the solid line in FIG. 4, that is, the amount of water supply is known, and the operation signal pattern for 24 hours is shown in FIG. (The signal generation time is the time required for the water to reach the raw water tank of the wastewater treatment plant from the pumping station, for example, one hour earlier). Accordingly, the submersible pumps PA and PB of the pumping station are generated in the arithmetic unit 1 in a normal inflow pattern.
The operation signal, which is the number of signal generations per minute, is stored earlier in the time required for water to reach the wastewater treatment plant from the pumping station, and one of the submersible pumps PA and PB output from the pumping station.
Compare with the operation signal, which is the actual number of signals every 0 minutes,
The value of the actual signal exceeds the value of the signal at the same time in the normal inflow pattern by a predetermined number of times, for example, three times, and the state becomes 10 times.
When the operation continues several times every minute, for example, three times (for 30 minutes), the arithmetic unit monitors whether the supply amount from the raw water tank to the ditch is increased or decreased by the inlet side flow meter 3 and whether or not the ditch weir plate is lowered. Monitoring, and if necessary, gradually raise the weir plate by 10c.
The treated water in the ditch overflows into the sedimentation tank more than the supply amount of the raw water from the raw water tank.

【0021】監視態勢になって所定時間、例えば2時間
経ってもディッチへの原水の供給量が増加しないと監視
を止め、堰板を下げた場合は元通りに上げる。逆に監視
を始めて2時間以内に供給量が増加すると異常と判断
し、監視を続けながら増水の増加に応じてディッチの堰
板を徐々に10cm宛段階的に下げる(監視態勢になっ
たときに堰板を下げた場合は更に徐々に10cm宛下げ
る)。そして、ディッチへの供給量が減少傾向を示すと
堰板を上げるための監視を開始し、その減少傾向が所定
時間、例えば2時間続くと演算器は堰板を元通りの高さ
に上げ、監視を止める。尚、堰板を元のレベルに戻す2
時間の監視態勢中に、供給量が異常に増加し、記憶供給
量を所定量上回ると、演算器は堰板を下げたまゝで監視
を更新し、更に2時間の監視を続け、ディッチへの供給
量が更に増加したら増加の程度に応じ堰板を更に徐々に
10cm宛段階的に下げ、供給量の減少傾向が2時間続
くと堰板を元のレベルに上昇させる。
If the supply of raw water to the ditch does not increase even after a predetermined time, for example, 2 hours, in the monitoring state, the monitoring is stopped, and when the weir plate is lowered, it is raised as before. Conversely, if the supply increases within 2 hours after starting monitoring, it is determined that the supply is abnormal, and while monitoring continues, the ditch weir plate is gradually lowered by 10 cm in accordance with the increase in water supply (when the system is ready for monitoring) If the weir plate is lowered, lower it by 10 cm gradually). Then, when the supply amount to the ditch shows a decreasing trend, monitoring for raising the dam plate is started, and when the decreasing trend continues for a predetermined time, for example, 2 hours, the arithmetic unit raises the dam plate to the original height, Stop monitoring. Return the dam to the original level 2
If the supply amount increases abnormally during the time monitoring operation and exceeds the storage supply amount by a predetermined amount, the arithmetic unit updates the monitoring while keeping the weir plate down, and continues the monitoring for another 2 hours, and monitors the ditch. When the supply amount further increases, the weir plate is gradually lowered in steps of 10 cm in accordance with the degree of the increase, and when the decreasing amount of the supply amount continues for 2 hours, the weir plate is raised to the original level.

【0022】図1の実施例では廃水処理場の原水槽に水
が届くのに1時間かゝる上流の地点Aのポンプ圧送場2
2AがポンプPA ,PB の運転信号を電話回線24で出
力し、廃水処理場のパソコン、シーケンサー等の演算器
1に制御盤2を経て入力する。例えば、通常の流入パタ
ーンでは流入量がほゞ0の0時頃から図4に破線で示し
た異常流入パターンによって原水槽に10m3 /時の流
入量があり、2時30分から10分毎に流入量が10m
3 /時宛増加すると、その1時間前の前夜の11時頃か
らA地点のポンプ圧送場22Aにはそれより水量は少な
いが雨水が流入し、その水中ポンプPA やPB は交互に
揚水を行い、ポンプ圧送場はその10分毎の実際の運転
信号を演算器1に入力する。通常の流入パターンの場合
は水中ポンプPA ,PB の運転信号が無いか、有っても
20〜30分間隔の時間帯に、大きな運転信号が演算器
に入力されるので、演算器は原水槽への流入量が10m
3/時から更に10m3 /時増加して20m3 /時にな
った1時30分頃のポンプPA ,PB の運転信号でディ
ッチへの供給量の増減、及び堰板を下げるか否かを入口
側流量計3で監視する2時間の異常監視態勢になり、必
要ならば堰板を徐々に10cm下げ、原水槽からの原水
の供給量よりも多くディッチ内の処理水を沈殿槽に溢流
させる。
In the embodiment shown in FIG. 1, the pumping station 2 at the upstream point A where it takes one hour for water to reach the raw water tank of the wastewater treatment plant 2
2A outputs the operation signals of the pumps PA and PB via the telephone line 24, and inputs the operation signals to the computing unit 1 such as a personal computer or a sequencer of the wastewater treatment plant via the control panel 2. For example, in the normal inflow pattern, from around 0 o'clock when the inflow amount is about 0, there is an inflow amount of 10 m 3 / h into the raw water tank due to the abnormal inflow pattern shown by the broken line in FIG. 10m inflow
3 / hour, the rainwater flows into the pumping station 22A at point A from 11 o'clock the previous night, one hour earlier, although the amount of water is smaller than that, and the submersible pumps PA and PB alternately pump water. , The pumping station inputs the actual operation signal every 10 minutes to the arithmetic unit 1. In the case of the normal inflow pattern, there is no operation signal of the submersible pumps PA and PB, or even if there is, a large operation signal is input to the arithmetic unit during a time period of 20 to 30 minutes. 10m inflow
3 / when the further 10 m 3 / h increased by 20 m 3 / pump PA of about 1:30 became time, the supply amount of the increase or decrease in the ditch in the operating signal PB, and whether lowering the weir plate inlet It becomes a state of abnormal monitoring for 2 hours, which is monitored by the side flow meter 3. If necessary, gradually lower the weir plate by 10 cm and allow the treated water in the ditch to overflow into the sedimentation tank more than the supply amount of raw water from the raw water tank. .

【0023】そして、入口側流量計が、ディッチへの供
給量が記憶供給量0m3 /時を40m3 /時上回ること
を演算器に入力してきた2時50分頃に、演算器はディ
ッチの堰板を更に10cm徐々に下げ、それ以降は段落
0016,0017と述べたと同様に入口側流量計で監
視を行って堰他を上げ、下げし、供給量の減少傾向が2
時間続くと堰板を元通りに上げ監視を終る。
At about 2:50, when the inlet side flow meter inputs to the arithmetic unit that the supply amount to the ditch exceeds the storage supply amount of 0 m 3 / hour by 40 m 3 / hour, the arithmetic unit turns off the ditch. The weir plate is further lowered gradually by 10 cm, and thereafter, as in paragraphs 0016 and 0017, monitoring is performed by the inlet side flow meter to raise and lower the weir and the like.
If the time continues, the weir plate is returned to its original state and monitoring is completed.

【0024】請求項3も、ポンプ圧送場の交互に運転さ
れるポンプPA ,PB の運転信号を電話回線24などで
出力し、廃水処理場の演算器1に制御盤を経て入力する
ようにする。勿論、演算器には通常の供給パターンで原
水槽からディッチに原水を供給する1日分の、例えば1
0分毎の流量計の供給量を記憶させておく。
According to a third aspect of the present invention, the operation signals of the pumps PA and PB which are alternately operated in the pumping pumping station are output via the telephone line 24 or the like, and are input to the calculator 1 of the wastewater treatment plant via the control panel. . Of course, the arithmetic unit has a normal supply pattern to supply raw water from the raw water tank to the ditch for one day, for example, one day.
The supply amount of the flow meter every 0 minutes is stored.

【0025】前述の段落0022で述べたように、異常
流入パターンによって前夜の11時頃からA地点のポン
プ圧送場22Aに雨水が入りポンプPA ,PB は交互に
揚水を行い、交互に運転信号を演算器1に入力する。そ
の後、雨水の流入量が増加し、ポンプPA ,PB が同時
に揚水を行い、同時運転の信号をポンプPA ,PB が演
算器1に入力すると、演算器1は入口側流量計3によっ
てディッチへの供給量の増減、及びディッチの堰板を下
げるか、否かの2時間の異常監視態勢になり、必要なら
ば堰板を徐々に10cm下げ、原水槽からの原水の供給
量よりも多くディッチ内の処理水を沈殿槽に溢流させ
る。
As described in the above paragraph 0022, due to the abnormal inflow pattern, the rainwater enters the pumping pumping station 22A at the point A from around 11 o'clock the previous night, and the pumps PA and PB alternately pump water and alternately output the operation signal. Input to arithmetic unit 1. Thereafter, when the inflow of rainwater increases, the pumps PA and PB pump water at the same time, and the pumps PA and PB input a signal of simultaneous operation to the arithmetic unit 1. Increase / decrease the supply amount, lower the ditch weir plate, and monitor the abnormality for 2 hours, and if necessary, gradually lower the weir plate by 10 cm if necessary, so that the inside of the ditch is larger than the supply amount of raw water from the raw water tank. Is allowed to flow into the settling tank.

【0026】そして、入口側流量計が、ディッチへの供
給量が記憶供給量0m3 /時を40m3 /時上回ること
を演算器に入力してきた2時50分頃に、演算器はディ
ッチの堰板を更に10cm徐々に下げ、それ以降は段落
0016,0017と述べたと同様に入口側流量計で監
視を行って堰他を上げ、下げし、供給量の減少傾向が2
時間続くと堰板を元通りに上げ監視を終る。
At about 2:50, when the inlet-side flow meter inputs to the computing unit that the supply amount to the ditch exceeds the storage supply amount of 0 m 3 / hour by 40 m 3 / hour, the computing unit sets The weir plate is further lowered gradually by 10 cm, and thereafter, as in paragraphs 0016 and 0017, monitoring is performed by the inlet side flow meter to raise and lower the weir and the like.
If the time continues, the weir plate is returned to its original state and monitoring is completed.

【0027】請求項1,2の場合、原水槽への通常の流
入パターンないし、ディッチへの通常の供給パターンの
ピーク時には、異常増水時の監視態勢になる量の原水が
原水槽や、ポンプ圧送場に流入し、ポンプP1 ,P
1′、PA ,PB はその水量を演算器に入力するが、演
算器はそのピーク時の時点での通常パターンの水量と比
較演算するので、監視態勢にはならない。しかし、通常
のパターンのピーク時に異常増水が発生すると、演算器
は通常のパターンのピーク時の水量と、増水した水量の
合計量をピーク時の水量と比較演算するため監視態勢に
なり、増水した水量の増加に応じディッチの堰板を段階
的に下げ、処理水を沈殿槽に溢流させる。
In the case of the first and second aspects, at the peak of the normal inflow pattern into the raw water tank or the normal supply pattern to the ditch, the amount of raw water that can be monitored when abnormally high water is supplied is supplied to the raw water tank or the pump. Pumps P1, P
1 ', PA and PB input the water amounts to the arithmetic unit, but the arithmetic unit compares and calculates the water amount of the normal pattern at the time of the peak, so that it is not in a monitoring state. However, if an abnormal increase in water occurs at the peak of the normal pattern, the calculator becomes a monitoring system to compare and calculate the amount of water at the peak of the normal pattern and the amount of water increased at the peak, and the amount of water increased. As the amount of water increases, the ditch weir plate is lowered gradually, and the treated water overflows into the settling tank.

【0028】これに対し、請求項3の場合は、ポンプ圧
送場に通常のパターンのピーク時にポンプPA ,PB が
同時運転する量の下水が流入し、ポンプは同時運転の信
号を演算器に入力するため、演算器は監視態勢になる。
しかし、演算器は入口側流量計が入力するピーク時の供
給量によって増水とは判断しないので監視態勢を2時間
続けて入口側流量計による流入パターンが異常とならな
い場合は監視を止める。逆に、通常のパターンのピーク
時に異常増水が発生すると、入口側流量計はピーク時の
水量と、増水した水量の合計量を演算器に出力するの
で、演算器は増水した水量の増加に応じ段階的にディッ
チの堰板を下げ、処理水を沈殿槽に溢流させる。
On the other hand, in the case of claim 3, the amount of sewage that the pumps PA and PB operate simultaneously at the peak of the normal pattern flows into the pumping pumping station, and the pump inputs a signal of the simultaneous operation to the arithmetic unit. Therefore, the arithmetic unit is in a monitoring state.
However, since the computing unit does not judge that the water is increased based on the supply amount at the peak time input by the inlet-side flow meter, monitoring is continued for two hours, and if the inflow pattern by the inlet-side flow meter does not become abnormal, the monitoring is stopped. Conversely, if an abnormal water increase occurs at the peak of the normal pattern, the inlet flow meter outputs the total amount of the peak water amount and the increased water amount to the computing unit. The ditch weir plate is lowered stepwise, and the treated water overflows into the settling tank.

【0029】尚、図示の実施例では原水槽10から2台
のポンプP1 ,P1′によって原水をディッチに直接供
給する場合を示したが、3台以上の複数のポンプで原水
をディッチに供給してもよい。又、原水槽からポンプP
1 ,P1′によって原水をディッチに直接供給する場合
を示したが、原水槽からポンプP1 ,P1′で原水を流
量調整槽に供給し、流量調整槽からポンプでディッチに
原水を供給するようにしたものにも本発明はそのまゝ実
施することができる。そして、流量調整槽内の水位も異
常増水に対処して低下させるには本特許出願人が提案し
た特願平7−68940号、同70476号を実施すれ
ばよい。更に、ポンプ圧送場のポンプを2台として交互
に運転する場合を示したが、3台以上のポンプを交互に
運転させてもよい。このようにポンプ圧送場のポンプを
3台以上とした場合、少なくとも2台のポンプが運転さ
れると、演算器は監視態勢に入ればよい。
In the illustrated embodiment, the raw water is directly supplied from the raw water tank 10 to the ditch by two pumps P1 and P1 '. However, the raw water is supplied to the ditch by a plurality of three or more pumps. You may. Pump P from raw water tank
1, the raw water is directly supplied to the ditch by P1 ', but the raw water is supplied from the raw water tank to the flow control tank by the pumps P1 and P1', and the raw water is supplied to the ditch by the pump from the flow control tank. However, the present invention can be implemented as it is. Then, in order to reduce the water level in the flow rate adjusting tank in response to the abnormal water increase, Japanese Patent Application Nos. 7-68940 and 70476 proposed by the present applicant may be implemented. Furthermore, the case where two pumps in the pumping station are alternately operated has been described, but three or more pumps may be alternately operated. As described above, when the number of pumps in the pumping station is three or more, if at least two pumps are operated, the computing unit may be ready for monitoring.

【0030】[0030]

【発明の効果】図5に示したように異常増水の際に、堰
板を下げない時のPと、本発明に則って監視態勢になり
増水に応じて堰板を下げたときのQとの面積、つまり沈
殿槽への溢流水量は同じであるが、本発明によればディ
ッチから沈殿槽への急激な溢流は防止できる。これによ
って、沈殿槽の水面積負荷(沈殿槽1m2 当りに流せる
1日当りの水量)の上昇を抑えることができるので、槽
内での汚泥と処理水の分離は良好に行え、沈殿汚泥が処
理水に混ざって流出するのを完全に防げる。同時に、消
毒、放流槽から放流する処理水のCODの上昇も防げ
る。
As shown in FIG. 5, P when the weir plate is not lowered at the time of abnormal water increase and Q when the weir plate is lowered according to the water increase due to monitoring according to the present invention. Area, that is, the amount of water overflowing into the sedimentation tank is the same, but according to the present invention, rapid overflow from the ditch to the sedimentation tank can be prevented. Thus, it is possible to suppress an increase in water area load settler (daily amount of water can flow per settler 1 m 2), the sludge of treated water separation in a bath satisfactorily performed, sedimentation sludge treatment It can be completely prevented from mixing with water and flowing out. At the same time, the COD of treated water discharged from the disinfection and discharge tank can be prevented from rising.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるOD式廃水処理場の設置状態の説
明図である。
FIG. 1 is an explanatory diagram of an installation state of an OD type wastewater treatment plant according to the present invention.

【図2】OD式廃水処理場の平面図である。FIG. 2 is a plan view of an OD type wastewater treatment plant.

【図3】(A)は原水槽の拡大断面図、(B)はポンプ
圧送場の拡大断面図である。
3A is an enlarged sectional view of a raw water tank, and FIG. 3B is an enlarged sectional view of a pumping station.

【図4】原水槽への原水の1日の通常流入パターンと、
或る異常増水流入パターンを示す図である。
FIG. 4 shows a normal daily inflow pattern of raw water into a raw water tank;
It is a figure which shows a certain abnormal increase water inflow pattern.

【図5】時間の経過に伴う沈殿槽の水面積負荷の変化を
示す図である。
FIG. 5 is a diagram showing a change in water area load of a sedimentation tank over time.

【符号の説明】[Explanation of symbols]

1 演算器 2 制御盤 3 入口側流量計 10 原水槽 11 ディッチ 12 曝気装置 13 ディッチの堰板 14 沈殿槽 15 消毒、放流槽 21 下水管路 22 ポンプ圧送場 P1 原水槽の常用ポンプ P1 ′ 原水槽の予備ポンプ PA ポンプ圧送場の交互に運転されるポンプ PB ポンプ圧送場の交互に運転されるポンプ DESCRIPTION OF SYMBOLS 1 Computing unit 2 Control panel 3 Inlet side flow meter 10 Raw water tank 11 Ditch 12 Aeration device 13 Ditch weir plate 14 Sedimentation tank 15 Disinfection and discharge tank 21 Sewage pipe 22 Pumping pumping station P1 Regular pump of raw water tank P1 'Raw water tank Alternating pumps of the pumping station PA Pumps operated alternately of pumping stations PB Pumps of alternating pumping stations

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下水管路で原水槽に流入する原水を常用
と予備の複数台のポンプP1 ,P1′でディッチに連続
的に供給し、ディッチ内で原水が循環流する過程で原水
を曝気処理し、ディッチに供給される原水の供給量に対
応した量の処理水をディッチの堰板を溢流させて沈殿槽
に供給し、消毒、放流槽を経て放流するオキシデーショ
ンディッチ式廃水処理場の運転制御方法において、前記
原水槽の複数台のポンプP1 ,P1′に夫々運転信号を
出力させるようにすると共に、原水槽からディッチに供
給される原水の時間毎の供給量を測定して出力する流量
計を設け、上記各ポンプP1 ,P1′の出力と、上記流
量計の出力を受ける演算器を設け、この演算器には通常
の供給パターンで原水槽から原水をディッチに供給する
一日分の時間毎の前記各ポンプP1 ,P1′の通常の運
転パターンと、流量計の供給量とを記憶させ、演算器
は、原水槽の両ポンプP1 ,P1′が実際に出力する運
転信号を記憶している通常の運転パターンの同じ時間の
運転信号と比較し、実際の運転信号が記憶運転信号を上
回ると異常の監視態勢になり、演算器は監視態勢中に上
記流量計が出力して来る実際の原水のディッチへの時間
毎の供給量を、記憶している同じ時間の供給量と比較
し、実際の供給量が記憶供給量を所定量上回ると、演算
器はディッチの堰板を下げ、ディッチ内の処理水を沈殿
槽に溢流させてディッチ内の水位を下げることを特徴と
するオキシデーションディッチ式廃水処理場の運転制御
方法。
1. Raw water flowing into a raw water tank through a sewage line is continuously supplied to a ditch by a plurality of ordinary and spare pumps P1 and P1 ', and the raw water is aerated while the raw water circulates in the ditch. Oxidation ditch-type wastewater treatment plant that treats and supplies treated water in an amount corresponding to the supply amount of raw water supplied to the ditch, overflows the ditch weir plate, supplies it to the sedimentation tank, and discharges it through the disinfection and discharge tank In the operation control method, an operation signal is output to each of the plurality of pumps P1 and P1 'of the raw water tank, and an amount of raw water supplied to the ditch from the raw water tank is measured and output at each time. And a calculator for receiving the output of each of the pumps P1, P1 'and the output of the flowmeter. The calculator is adapted to supply raw water from the raw water tank to the ditch in a normal supply pattern. Each time of minutes The normal operation pattern in which the normal operation patterns of the pumps P1 and P1 'and the supply amounts of the flow meters are stored, and the arithmetic unit stores the operation signals actually output by the two pumps P1 and P1' of the raw water tank. Compared with the operation signal at the same time of the pattern, if the actual operation signal exceeds the stored operation signal, it will be in a state of monitoring for abnormalities, and the arithmetic unit will switch to the actual raw water ditch output from the flow meter during the monitoring state. Is compared with the stored supply amount at the same time.If the actual supply amount exceeds the stored supply amount by a predetermined amount, the computing unit lowers the weir plate of the ditch and treats the treated water in the ditch. A method for controlling the operation of an oxidation ditch type wastewater treatment plant, wherein water is overflowed into a sedimentation tank to lower the water level in the ditch.
【請求項2】 下水管路で原水槽に流入する原水をポン
プでディッチに連続的に供給し、ディッチ内で原水が循
環流する過程で原水を曝気処理し、ディッチに供給され
る原水の供給量に対応した量の処理水をディッチの堰板
を溢流させて沈殿槽に供給し、消毒、放流槽を経て放流
するオキシデーションディッチ式廃水処理場の運転制御
方法において、前記下水管路の途中に交互に運転される
ポンプPA ,PB を備えたポンプ圧送場を設け、この両
ポンプPA ,PB に夫々運転信号を出力させるようにす
ると共に、原水槽からディッチに供給される原水の時間
毎の供給量を測定して出力する流量計を設け、上記ポン
プ圧送場の両ポンプの出力と、上記流量計の出力を受け
る演算器を設け、この演算器にはポンプ圧送場のポンプ
PA ,PB が運転される1日分の時間毎の通常の運転パ
ターンと、通常の供給パターンで原水槽から原水をディ
ッチに供給する一日分の時間毎の流量計の供給量とを記
憶させ、演算器はポンプ圧送場が実際に出力するポンプ
PA ,PB の運転信号を記憶している通常の運転パター
ンの同じ時間の運転信号と比較し、実際の運転信号が記
憶運転信号を所定量上回ると、演算器は異常の監視態勢
になり、演算器は監視態勢中に上記流量計が出力して来
る実際の原水のディッチへの時間毎の供給量を、記憶し
ている同じ時間の供給量と比較し、実際の供給量が記憶
供給量を所定量上回ると、演算器はディッチの堰板を下
げ、ディッチ内の処理水を沈殿槽に溢流させてディッチ
内の水位を下げることを特徴とするオキシデーションデ
ィッチ式廃水処理場の運転制御方法。
2. A raw water flowing into a raw water tank through a sewage line is continuously supplied to a ditch by a pump, and a raw water is aerated in a process of circulating the raw water in the ditch, and supplied to the ditch. In the operation control method of the oxidation ditch type wastewater treatment plant, in which the treated water of the amount corresponding to the amount overflows the ditch weir plate and is supplied to the sedimentation tank, disinfected, and discharged through the discharge tank, A pump pumping station equipped with pumps PA and PB which are operated alternately is provided on the way to output an operation signal to each of the pumps PA and PB, and the time of raw water supplied from the raw water tank to the ditch is changed. A flow meter for measuring and outputting the supply amount of water is provided, and an arithmetic unit is provided for receiving the outputs of both pumps of the pumping and the output of the flow meter. Is driven The normal operation pattern for each hour for one day and the supply amount of the flow meter for each day for supplying raw water from the raw water tank to the ditch in the normal supply pattern are stored. Compares the operation signals of the pumps PA and PB actually output with the operation signals at the same time in the stored normal operation pattern, and when the actual operation signal exceeds the stored operation signal by a predetermined amount, the arithmetic unit detects an abnormality. During the monitoring state, the computing unit compares the actual supply amount of raw water to the ditch, which is output from the flow meter during the monitoring state, with the stored supply amount at the same time, and calculates the actual supply amount. When the amount exceeds the memory supply amount by a predetermined amount, the arithmetic unit lowers the weir plate of the ditch and overflows the treated water in the ditch into the sedimentation tank to lower the water level in the ditch. Operation control method of the treatment plant.
【請求項3】 下水管路で原水槽に流入する原水をポン
プでディッチに連続的に供給し、ディッチ内で原水が循
環流する過程で原水を曝気処理し、ディッチに供給され
る原水の供給量に対応した量の処理水をディッチの堰板
を溢流させて沈殿槽に供給し、消毒、放流槽を経て放流
するオキシデーションディッチ式廃水処理場の運転制御
方法において、前記下水管路の途中に交互に運転される
ポンプPA ,PB を備えたポンプ圧送場を設け、この両
ポンプPA ,PB に夫々運転信号を出力させるようにす
ると共に、原水槽からディッチに供給される原水の時間
毎の供給量を測定して出力する流量計を設け、上記ポン
プ圧送場の両ポンプの出力と、上記流量計の出力を受け
る演算器を設け、この演算器には通常の供給パターンで
原水槽から原水をディッチに供給する一日分の時間毎の
流量計の供給量を記憶させ、ポンプ圧送場の両ポンプP
A ,PB が同時に運転されたことを演算器に出力する
と、演算器は異常の監視態勢になり、演算器は監視態勢
中に上記流量計が出力して来る実際の原水のディッチへ
の時間毎の供給量を、記憶している同じ時間の供給量と
比較し、実際の供給量が記憶供給量を所定量上回ると、
演算器はディッチの堰板を下げ、ディッチ内の処理水を
沈殿槽に溢流させてディッチ内の水位を下げることを特
徴とするオキシデーションディッチ式廃水処理場の運転
制御方法。
3. A raw water flowing into a raw water tank through a sewage pipe is continuously supplied to a ditch by a pump, and the raw water is aerated in a process of circulating the raw water in the ditch to supply the raw water to the ditch. In the operation control method of the oxidation ditch type wastewater treatment plant, in which the treated water of the amount corresponding to the amount overflows the ditch weir plate and is supplied to the sedimentation tank, disinfected, and discharged through the discharge tank, A pump pumping station equipped with pumps PA and PB which are operated alternately is provided on the way to output an operation signal to each of the pumps PA and PB, and the time of raw water supplied from the raw water tank to the ditch is changed. A flow meter that measures and outputs the supply amount of the pump is provided, and an arithmetic unit that receives the outputs of both pumps of the pump pressure feeding station and the output of the flow meter is provided, and the arithmetic unit has a normal supply pattern from the raw water tank. Raw water Ji to stores the supplied amount of the flow meter per day worth of time to supply both pump P of pumping field
When A and PB are simultaneously operated and output to the computing unit, the computing unit is in a state of monitoring for abnormalities, and the computing unit is in the monitoring state every time the actual raw water ditch output from the flow meter is output. Is compared with the stored supply amount at the same time, and when the actual supply amount exceeds the stored supply amount by a predetermined amount,
An operation control method for an oxidation ditch type wastewater treatment plant, wherein the arithmetic unit lowers a weir plate of the ditch and overflows treated water in the ditch into the sedimentation tank to lower the water level in the ditch.
JP23667096A 1996-09-06 1996-09-06 Operation control method of oxidation ditch type wastewater treatment plant Expired - Fee Related JP3242005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23667096A JP3242005B2 (en) 1996-09-06 1996-09-06 Operation control method of oxidation ditch type wastewater treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23667096A JP3242005B2 (en) 1996-09-06 1996-09-06 Operation control method of oxidation ditch type wastewater treatment plant

Publications (2)

Publication Number Publication Date
JPH1080695A JPH1080695A (en) 1998-03-31
JP3242005B2 true JP3242005B2 (en) 2001-12-25

Family

ID=17004051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23667096A Expired - Fee Related JP3242005B2 (en) 1996-09-06 1996-09-06 Operation control method of oxidation ditch type wastewater treatment plant

Country Status (1)

Country Link
JP (1) JP3242005B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410314B (en) * 2020-04-30 2020-11-03 中原环保股份有限公司 Pre-control method and device for denitrification and dephosphorization by improved oxidation ditch process
EP4098816A1 (en) * 2021-06-03 2022-12-07 Xylem Europe GmbH Method for determining a pump station capacity measure

Also Published As

Publication number Publication date
JPH1080695A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
US7485221B2 (en) System for treating wastewater
JPWO2002081050A1 (en) Rainwater treatment apparatus and combined backwash method in combined sewer system
JP3242005B2 (en) Operation control method of oxidation ditch type wastewater treatment plant
JP5945984B2 (en) Sand removal method and sand removal apparatus for sand basin
JP6476405B2 (en) Sand removal method for sand basin
JP3134177B2 (en) Operation control method of wastewater treatment plant
JP3116214B2 (en) Operation control method of batch type wastewater treatment plant
JP3314575B2 (en) Sedimentation equipment
JP3134176B2 (en) Operation control method of wastewater treatment plant
JP3512348B2 (en) Operation control method of run-down wastewater treatment plant
US20210094852A1 (en) Sequencing Batch Reactor Systems and Methods
JP4908333B2 (en) Pump control device
JP7103598B2 (en) Water treatment control device and water treatment system
JP4364955B2 (en) Operation control method of aeration equipment and sludge extraction pump
CN217460747U (en) Production hydrologic cycle clean pond system
RU2812186C1 (en) Unit for wastewater biological treatment
JP3413935B2 (en) Return water control device for rainwater reservoir
JP3018220B2 (en) Oxidation ditch type wastewater treatment apparatus and its centralized management method
JPH01148396A (en) Operation of batch type filthy water treating apparatus
JP2003053349A (en) Stainless steel made water purification equipment
JPH0957284A (en) Septic tank
RU2064811C1 (en) Filter for water purification
JP2019055405A (en) Method for removing sand in sedimentation basin
JP2000185296A (en) Control method of operation of sludge withdrawing pump
JP2005034763A (en) Reconstruction method of existing sewage treatment plant

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees