JP3239957B2 - Thin film cavity resonator with pole piece - Google Patents

Thin film cavity resonator with pole piece

Info

Publication number
JP3239957B2
JP3239957B2 JP09290992A JP9290992A JP3239957B2 JP 3239957 B2 JP3239957 B2 JP 3239957B2 JP 09290992 A JP09290992 A JP 09290992A JP 9290992 A JP9290992 A JP 9290992A JP 3239957 B2 JP3239957 B2 JP 3239957B2
Authority
JP
Japan
Prior art keywords
cavity
resonator
magnetic field
cavity resonator
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09290992A
Other languages
Japanese (ja)
Other versions
JPH05288821A (en
Inventor
昭男 中西
菜穂子 菅原
和雄 中川
誠 常田
敦司 糠信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Hitachi Metals Ltd
Original Assignee
Nikkiso Co Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd, Sumitomo Special Metals Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP09290992A priority Critical patent/JP3239957B2/en
Publication of JPH05288821A publication Critical patent/JPH05288821A/en
Application granted granted Critical
Publication of JP3239957B2 publication Critical patent/JP3239957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空洞共振器に関し、よ
り詳しくは、電子スピン共鳴装置における測定スペクト
ルの安定度、感度向上を図ったポールピース付き薄膜空
洞共振器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cavity resonator, and more particularly to a thin-film cavity resonator with a pole piece for improving the stability and sensitivity of a measured spectrum in an electron spin resonance apparatus.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】電子スピ
ン共鳴装置において、磁場変調のための高周波磁場が、
空洞共振器側壁を透過するとき、側壁に発生する渦電流
は、印加静磁場と干渉し、空洞共振器に振動を惹起す
る。この振動の周波数は磁場変調周波数と等しいので、
感度への影響が大きい。これに対しては既に、G.Feher
がガラス製空洞に銀をコーティングし、渦電流を低減
し、この影響が避けられると提案している(B.S.T.J.,Ma
rch,1957) 。
2. Description of the Related Art In an electron spin resonance apparatus, a high-frequency magnetic field for modulating a magnetic field is
When passing through the side wall of the cavity resonator, the eddy current generated on the side wall interferes with the applied static magnetic field, and causes vibration in the cavity resonator. Since the frequency of this vibration is equal to the magnetic field modulation frequency,
Significant effect on sensitivity. G. Feher has already
Proposes that glass cavities can be coated with silver to reduce eddy currents and avoid this effect (BSTJ, Ma
rch, 1957).

【0003】しかしこの提案は、その後、市販装置とし
て採用されることなく、従来の空洞共振器は、銅等の金
属製ブロックを用い、これに所要の寸法形状の空洞を穿
ち、内面に防錆のための金メッキ等を施して共鳴検出用
の空洞共振器となっている。磁場変調による振動は、コ
イルを空洞内部に配置することにより、変調磁場の空洞
側壁への貫通を避け、加えてジャッキ等で空洞共振器を
ポールピースに圧着固定して凌いでいる。
However, this proposal was not adopted as a commercially available device, but the conventional cavity resonator used a metal block made of copper or the like, bored a cavity having a required size and shape, and provided rust prevention on the inner surface. For this reason, a cavity resonator for resonance detection is formed by applying gold plating or the like. By virtue of the magnetic field modulation, the coil is disposed inside the cavity to prevent the modulated magnetic field from penetrating into the side wall of the cavity.

【0004】G.Feher の時代には事実上工業化の困難で
あった彼の提案も現在では、真空成形によるガラスの精
密仕上げ等により可能となっているが、さらに高分子材
料、セラミックス材料の発達によっても、必要な精度で
空洞共振器を製作できるようになった。そのように製作
された非導電体製の空洞共振器本体の内壁を、銅、金の
ような導電度の良い金属で覆い、その厚さを、(1) マイ
クロ波の表皮効果の厚さ(Xバンドで約0.5μm)よ
りは充分厚く、(2) 磁場変調周波数の表皮効果の厚さ
(100kHzで約157μm)よりは充分に薄く、仕
上げることにより、渦電流による振動を避けることがで
きる。
[0004] His proposal, which was practically difficult to industrialize in the era of G. Feher, is now possible by precision finishing of glass by vacuum forming, etc. Has made it possible to manufacture a cavity resonator with the required accuracy. The inner wall of the non-conductive cavity resonator body manufactured in such a manner is covered with a metal having good conductivity such as copper or gold, and its thickness is defined as (1) the thickness of the skin effect of the microwave ( The thickness is sufficiently thicker than about 0.5 μm in the X band, and (2) sufficiently thinner than the thickness of the skin effect of the magnetic field modulation frequency (about 157 μm at 100 kHz). .

【0005】この効果は、本願空洞共振器においても、
なお保持され得ることは言うまでもない。
[0005] This effect can be obtained even in the cavity resonator of the present invention.
Needless to say, it can be retained.

【0006】先に述べた空洞内部に変調コイルを配置す
る従来の多くの方式では、次のような問題が付随する。
[0006] Many of the above-described conventional methods of disposing a modulation coil inside a cavity have the following problems.

【0007】(1)共振空洞内部に設けられた変調コイ
ルのために、共振空洞のQが低下する。
(1) The Q of the resonant cavity is reduced due to the modulation coil provided inside the resonant cavity.

【0008】(2)上記Qの低下のため、内部変調コイ
ルは、効率のよい巻数、形状を制約される。実用されて
いる巻数は、僅か1〜2ターンに過ぎない。このため、
過大な変調電流を供給しなければならない。
(2) Due to the reduction in Q, the number of turns and shape of the internal modulation coil are restricted efficiently. The number of turns in practical use is only 1-2 turns. For this reason,
Excessive modulation current must be supplied.

【0009】(3)コイルは共振空洞内壁を貫通するた
め、マイクロ波の漏洩を生じ、細心な操作が要求され
る。また貫通部には、過大な変調電流によるコイルの温
度上昇のために、しばしば緩みを生じる等々の問題があ
る。
(3) Since the coil penetrates through the inner wall of the resonance cavity, microwave leakage occurs, and careful operation is required. In addition, there is a problem in the through portion that the coil is often loosened due to an increase in coil temperature due to an excessive modulation current.

【0010】さらに他の対策として、従来、しばしば用
いられたのが、変調周波数を下げ、渦電流による損失を
避けた外部変調法である。たとえば、80Hz、270
Hz等の変調周波数が用いられている。
[0010] As another measure, an external modulation method often used in the past is to lower the modulation frequency and avoid loss due to eddy current. For example, 80 Hz, 270
A modulation frequency such as Hz is used.

【0011】この場合には、Qの低下は避けられるが、
検波器雑音の多い低周波で、マイクロ波を検波すること
になるので、装置の感度低下は覆うべくもない。
In this case, although a decrease in Q can be avoided,
Since microwaves are detected at a low frequency with a large amount of detector noise, a decrease in the sensitivity of the apparatus cannot be covered.

【0012】従来装置に見られたこのような諸問題は、
非導電性材料による空洞本体内面に導電性薄膜を施した
共振器によって、過大な高周波出力装置を備える事な
く、またQ値の低下を招く変調コイルを空洞内に設け
ず、外部から印加した高周波磁界を有効に空洞共振器内
に透過させることができる。
[0012] These problems encountered in the conventional device are as follows.
By using a resonator with a conductive thin film on the inner surface of the cavity body made of non-conductive material, there is no excessive high-frequency output device, and no modulation coil that reduces the Q value is provided in the cavity. The magnetic field can be effectively transmitted into the cavity resonator.

【0013】電子スピン共鳴では、極めて高い安定度の
分極磁場を必要とする。
[0013] Electron spin resonance requires a polarization field of extremely high stability.

【0014】分極磁場の温度依存性は、温度による磁束
密度の変化と磁場分布の変化に分けられる。そしてこの
原因となる温度の変化は周囲温度の変化が基本要因であ
るが、特に永久磁石を使用する装置の場合、磁場掃引お
よび磁場変調に伴うそれらコイルの発熱に影響されるこ
とが多い。
The temperature dependence of the polarization magnetic field can be divided into a change in magnetic flux density and a change in magnetic field distribution due to temperature. The change in temperature that causes this is basically a change in ambient temperature, but particularly in the case of a device using a permanent magnet, it is often affected by heat generated by those coils due to magnetic field sweeping and magnetic field modulation.

【0015】このうち、磁束密度の温度変化は、マグネ
ットの磁気特性の変化もあるが、磁極間隙の変化が大き
く影響している。したがって、膨張係数の非常に低い空
洞共振器母材の両側にポールピースが固定されれば、温
度の変化にもかかわらず、磁極間隙は不変に保たれ、温
度による磁束密度の変化は軽減される。
Among these changes in temperature of the magnetic flux density, there is a change in the magnetic properties of the magnet, but a change in the magnetic pole gap has a great effect. Therefore, if the pole pieces are fixed on both sides of the cavity resonator base material having a very low expansion coefficient, the magnetic pole gap is kept constant despite the temperature change, and the change in the magnetic flux density due to the temperature is reduced. .

【0016】さらに磁場掃引コイル、磁場変調コイルを
も低膨張係数の空洞本体部分に配置すれば、空洞本体は
発熱に影響されることが少なく、ポールピースとマグネ
ット磁極との間隙に伝導が妨げられて、発熱がマグネッ
トの磁極等に温度変化を与えることも軽減される。そし
てコイルの発熱は、前記間隙および空洞本体に加えられ
る適切な対流または通風により装置外に放散される。
Further, if the magnetic field sweeping coil and the magnetic field modulating coil are also arranged in the hollow main body having a low expansion coefficient, the hollow main body is less affected by heat generation, and conduction is hindered by the gap between the pole piece and the magnet magnetic pole. Thus, it is also possible to reduce the occurrence of temperature change in the magnetic poles of the magnet due to heat generation. The heat generated by the coil is then radiated out of the device by appropriate convection or ventilation applied to the gap and the cavity body.

【0017】磁場分布の変化は、ポールピースの平行度
の変化によることが多い。本発明によれば、ポールピー
スの平行面は膨張係数の非常に低い母材によって定まる
ので、平行度の変化、したがって磁場分布の変化もまた
著しく軽減される。
Changes in the magnetic field distribution are often due to changes in the parallelism of the pole pieces. According to the invention, the parallel plane of the pole piece is determined by the base material having a very low coefficient of expansion, so that the change in the parallelism and therefore the change in the magnetic field distribution are also significantly reduced.

【0018】このように、非導電性材料を母体とし、平
行平面に仕上げた両側面にポールピースを固定し、その
中心に空洞を穿ち、内面を導電性薄膜で覆った空洞共振
器を形成することにより、振動、静磁場のドリフト、磁
場均一度の変化等信号検出に影響する諸要因を、同時に
除去または軽減し、装置の感度・安定度を著しく向上す
ることができる。
As described above, a pole resonator is fixed to both sides of a base made of a non-conductive material, finished in parallel planes, a cavity is formed at the center thereof, and a cavity resonator is formed in which the inner surface is covered with a conductive thin film. As a result, various factors affecting signal detection, such as vibration, drift of a static magnetic field, and change in magnetic field uniformity, can be eliminated or reduced at the same time, and the sensitivity and stability of the apparatus can be significantly improved.

【0019】上述したように従来においては、Qの低
下、感度低下、温度変化の影響等、種々の問題がある。
As described above, in the prior art, there are various problems such as a decrease in Q, a decrease in sensitivity, and an influence of a temperature change.

【0020】そこで、本発明は、感度、安定度が良好な
空洞共振器を提供することを目的とするものである。
Therefore, an object of the present invention is to provide a cavity resonator having good sensitivity and stability.

【0021】[0021]

【課題を解決するための手段】本発明は、電子スピン共
鳴装置に用いられる空洞共振器であって、膨脹係数が僅
少の非導電体材料を母材とし、内部に所要のマイクロ波
共振が得られる空洞を設けこの空洞の壁面に高導電率の
金属薄膜を付着するとともに対向する両端面を平行平面
に仕上げた共振器本体と、この共振器本体の両端面に各
々密着固定した分極磁場用のポールピースとを具備する
ものである。
SUMMARY OF THE INVENTION The present invention relates to a cavity resonator used in an electron spin resonance apparatus, which is made of a non-conductive material having a small expansion coefficient as a base material and has a required microwave resonance inside. A cavity body with a high conductivity metal thin film attached to the wall surface of the cavity, and opposing both end faces of which are finished to be parallel planes, and a polarization magnetic field fixed to both end faces of the resonator body in close contact with each other. And a pole piece.

【0022】[0022]

【作用】本発明によれば、非導電材料を母材とする平行
平面に仕上げた共振器本体の両端面にポールピースを固
定し、また、共振器本体の内部に所要のマイクロ波共振
が得られる空洞を設け、この空洞の壁面に高導電率の金
属薄膜を付着したので、振動、静磁場のドリフト、磁場
均一度の変化等信号検出に影響する諸要因を同時に除去
又は軽減し、感度、安定度を著しく向上することができ
る。
According to the present invention, pole pieces are fixed to both end faces of a resonator body finished in a parallel plane using a nonconductive material as a base material, and required microwave resonance is obtained inside the resonator body. Since a metal thin film of high conductivity is attached to the wall of this cavity, various factors affecting signal detection such as vibration, drift of static magnetic field, change in magnetic field uniformity are eliminated or reduced at the same time, sensitivity, The stability can be significantly improved.

【0023】また、過大な高周波出力装置を備えること
なく、また、Q値の低下を招く変調コイルを空洞内に設
けていないので外部から印加した高周波磁界を有効に共
振器本体内に透過させることができる。
Also, since there is no excessive high-frequency output device and no modulation coil that causes a decrease in the Q value is provided in the cavity, it is possible to effectively transmit an externally applied high-frequency magnetic field into the resonator body. Can be.

【0024】[0024]

【実施例】以下に本発明の実施例を図面を参照して詳述
する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0025】図1、図2に示す本実施例の空洞共振器1
は、円筒空洞共振器でありXバンドTE011 モードで後
述する電子スピン共鳴装置100に用いられるものであ
る。
The cavity resonator 1 of this embodiment shown in FIGS. 1 and 2
Is a cylindrical cavity resonator used in an electron spin resonance apparatus 100 described later in an X-band TE0111 mode.

【0026】この空洞共振器1は、膨脹係数が僅少の非
導電体材料を母材とし、内部に所要のマイクロ波共振が
得られる円筒状の空洞3を設け、この空洞3の壁面に高
導電率の金属薄膜4を付着するとともに対向する両端面
を平行平面に仕上げた全体として直方体状又は立方体状
の共振器本体2と、この共振器本体2の両端面に各々密
着固定した分極磁場用の一対のポールピース5A、5B
とを具備している。
This cavity resonator 1 is made of a non-conductive material having a small expansion coefficient as a base material, and has a cylindrical cavity 3 inside which a required microwave resonance is obtained. And a rectangular parallelepiped or cubic resonator main body 2 having oppositely finished metal thin films 4 adhered thereto and both opposing end faces thereof being made into parallel planes, and a polarizing magnetic field tightly fixed to both end faces of the resonator main body 2 respectively. A pair of pole pieces 5A, 5B
Is provided.

【0027】前記共振器本体2の母材としては、膨脹係
数が僅少の非導電体材料である石英ガラスを挙げること
ができるが、これに限らず、低膨脹係数のセラミックス
又は高分子材料を用いることもできる。
Examples of the base material of the resonator body 2 include quartz glass which is a non-conductive material having a small expansion coefficient, but is not limited thereto, and a ceramic or a polymer material having a low expansion coefficient is used. You can also.

【0028】前記円筒状の空洞3は、直径約42mm程
度に形成され、この空洞3の両端部には、図2に示すよ
うに、円盤状の一対の端板6A、6Bを設けている。
The cylindrical cavity 3 is formed to have a diameter of about 42 mm, and a pair of disk-shaped end plates 6A and 6B are provided at both ends of the cavity 3, as shown in FIG.

【0029】一対の端板6A、6Bは、図2には明示し
てないが、ねじ結合構造により各々前記空洞3の穿設方
向に微動可能で、これにより、共振周波数の微調整がで
きるようになっている。
Although not explicitly shown in FIG. 2, the pair of end plates 6A and 6B can be finely moved in the direction in which the cavity 3 is formed by a screw connection structure, so that the resonance frequency can be finely adjusted. It has become.

【0030】一対の端板6A、6Bの各直径は空洞3の
直径よりも幾分小さく、かつ、いわゆるλ/4チョ−ク
構造部6C、6Dを設けている。
The diameter of each of the pair of end plates 6A and 6B is somewhat smaller than the diameter of the cavity 3, and is provided with so-called λ / 4 choke structures 6C and 6D.

【0031】即ち、端板6A、6Bは、空洞3を形成す
る内壁とは直接接触していないが、マイクロ波的には良
好な接触状態を形成しており、この結果、空洞3内にお
いて高いQをもった空洞共振が得られるようになってい
る。
That is, the end plates 6A and 6B are not in direct contact with the inner wall forming the cavity 3, but form a good contact condition in terms of microwaves. A cavity resonance having Q is obtained.

【0032】尚、前記端板6A、6Bには、前記共振器
本体2の両端面に配置する磁場変調コイル7による磁場
がかからないので、この端板6A、6Bを絶縁体でも金
属でも形成することができる。
Since no magnetic field is applied to the end plates 6A and 6B by the magnetic field modulation coils 7 arranged on both end surfaces of the resonator body 2, the end plates 6A and 6B may be formed of either an insulator or a metal. Can be.

【0033】前記空洞3の内面、前記端板6A、6Bの
内面及びλ/4チョ−ク構造部6C、6Dには、厚さ5
乃至10μmの金属薄膜4を付着している。
The inner surface of the cavity 3, the inner surfaces of the end plates 6A and 6B and the λ / 4 choke structures 6C and 6D have a thickness of 5 mm.
A metal thin film 4 of about 10 μm is attached.

【0034】前記共振器本体2の外側の端面は平行度の
高い平面に仕上げられ、各々円盤状のポールピース5
A、5Bが密着配置されている。
The outer end face of the resonator body 2 is finished to a plane with high parallelism, and each of the pole pieces 5 has a disk shape.
A and 5B are arranged in close contact.

【0035】ポールピース5A、5Bと共振器本体2と
は非磁性材料(ステンレス)のボルト9、ナット10に
より固定されている。
The pole pieces 5A and 5B and the resonator body 2 are fixed by bolts 9 and nuts 10 made of a non-magnetic material (stainless steel).

【0036】前記磁場変調コイル7に高周波電流を流す
ことにより、空洞外から前記空洞3内に磁場変調をかけ
るようになっている。また、共鳴測定のための磁場掃引
は図示しない磁場掃引コイルに掃引電流を流すことによ
り行われる。
By applying a high-frequency current to the magnetic field modulation coil 7, the magnetic field is modulated from outside the cavity into the cavity 3. The magnetic field sweep for resonance measurement is performed by passing a sweep current through a magnetic field sweep coil (not shown).

【0037】前記共振器本体2には、結合孔12が穿設
され、この結合孔12に導波管13を接続している。結
合孔12は、マイクロ波エネルギーを供給し、共鳴信号
を取り出すために設けるものである。
A coupling hole 12 is formed in the resonator body 2, and a waveguide 13 is connected to the coupling hole 12. The coupling hole 12 is provided for supplying microwave energy and extracting a resonance signal.

【0038】さらに、前記端板6A、6Bの中心部に
は、測定試料を挿入するための試料孔14を対称配置に
設けている。
Further, sample holes 14 for inserting a measurement sample are provided symmetrically at the center of the end plates 6A and 6B.

【0039】上述した構成の空洞共振器1によれば、非
導電材料を母材とする平行平面に仕上げた共振器本体2
の両端面にポールピース5A、5Bを固定しているの
で、この空洞共振器1のさらに外側に配置する磁極の間
隔は殆ど不変に保たれ、温度による磁束密度の変化も殆
ど無くなる。
According to the cavity resonator 1 having the above-described configuration, the resonator main body 2 is formed into a parallel plane using a non-conductive material as a base material.
The pole pieces 5A and 5B are fixed to both end surfaces of the cavity resonator 1, so that the distance between the magnetic poles disposed further outside the cavity resonator 1 is kept almost unchanged, and the change in the magnetic flux density due to the temperature is almost eliminated.

【0040】また、前記磁場変調コイル7、図示しない
磁場掃引コイルを空洞共振器1内に配置しているが、膨
脹係数の僅少な共振器本体2を用いているので、共振器
本体2は発熱に影響されることはない。前記磁場変調コ
イル7、磁場掃引コイルの発熱は、共振器本体2に適切
な対流又は通風を行うことで外部に放散することができ
る。
Although the magnetic field modulation coil 7 and the magnetic field sweeping coil (not shown) are arranged in the cavity resonator 1, since the resonator body 2 having a small expansion coefficient is used, the resonator body 2 generates heat. It is not affected by. Heat generated by the magnetic field modulation coil 7 and the magnetic field sweeping coil can be radiated to the outside by performing appropriate convection or ventilation on the resonator main body 2.

【0041】このように、本実施例の空洞共振器1によ
れば、振動、静磁場のドリフト、磁場均一度の変化等信
号検出に影響する諸要因を同時に除去又は軽減し、感
度、安定度を著しく向上することができる。
As described above, according to the cavity resonator 1 of this embodiment, various factors affecting signal detection, such as vibration, drift of a static magnetic field, and change in magnetic field uniformity, are simultaneously eliminated or reduced, and sensitivity and stability are improved. Can be significantly improved.

【0042】また、過大な高周波出力装置を備えること
なく、しかも、Q値の低下を招く変調コイル7を空洞3
内に設けていないので、外部から印加した高周波磁界を
有効に共振器本体2内に透過させることができる。
Further, the modulation coil 7 which does not have an excessively high-frequency output device and causes a decrease in the Q value is provided in the cavity 3.
Since it is not provided inside, the high-frequency magnetic field applied from the outside can be effectively transmitted into the resonator main body 2.

【0043】次に、本発明の他の実施例を図3、図4を
参照して説明する。
Next, another embodiment of the present invention will be described with reference to FIGS.

【0044】図3に示す空洞共振器1Aは、直六面体空
洞共振器でありXバンドTE102 モードで動作するもの
である。
The cavity shown in FIG. 3 1A is for operating at X-band TE 102 mode is hexahedral cavity resonator.

【0045】この空洞共振器1Aにおいて、前記空洞共
振器1Aと同一の機能を有するものには同一の符号を付
して示す。
In this cavity resonator 1A, those having the same functions as those of the cavity resonator 1A are denoted by the same reference numerals.

【0046】同図に示す空洞共振器1Aは、前記共振器
本体2の代りに、図4にも示す2分割構成の共振器本体
20を具備することが特徴である。
The cavity resonator 1A shown in FIG. 3 is characterized in that a resonator body 20 having a two-part structure shown in FIG.

【0047】即ち、共振器本体20は、有底で上部が開
口した直方体状に形成され内部に下空洞21aを有する
受体21と、この受体21の側面及び上面を包囲する下
側が開口した蓋体22とを重ね合わせることにより構成
している。蓋体22の内部上側には前記下空洞21aと
同じ形状の上空洞22aを設けている。
That is, the resonator main body 20 is formed in a rectangular parallelepiped shape having a bottom and an upper part opened and has a lower cavity 21a therein, and a lower part surrounding the side surface and the upper surface of the receiver 21 is opened. It is configured by overlapping the lid 22. An upper cavity 22a having the same shape as the lower cavity 21a is provided on the upper inside of the lid 22.

【0048】下空洞21aと上空洞22aとにより、直
六面体状の空洞23を形成している。 前記下空洞21
a、上空洞22aの内面には、各々金属薄膜を付着して
いる。 また、蓋体22の下側部には前記受体21の側
面外周を覆う下側片22bを設けている。
The lower cavity 21a and the upper cavity 22a form a rectangular hexahedral cavity 23. The lower cavity 21
a, a metal thin film is attached to the inner surface of the upper cavity 22a. A lower piece 22b that covers the outer periphery of the side surface of the receiver 21 is provided on the lower side of the lid 22.

【0049】前記受体21の上端部には半円状の下孔1
2bが、また、蓋体22の上空洞22aを形成する下端
面には半円状の上孔12aが各々設けられ、蓋体22を
受体21に重ね合わせたとき、前記上孔12aと下孔1
2bとで結合孔12を形成するようになっている。
The upper end of the receiver 21 has a semicircular pilot hole 1.
2b, a semicircular upper hole 12a is provided at the lower end surface forming the upper cavity 22a of the lid 22. When the lid 22 is overlapped with the receiver 21, the upper hole 12a and the lower hole Hole 1
2b is formed with the coupling hole 12.

【0050】さらに、前記受体21、蓋体22には、各
々測定試料を挿入するための試料孔14を対称配置に設
けている。
Further, the receiver 21 and the lid 22 are provided with symmetrically arranged sample holes 14 for inserting a measurement sample.

【0051】このような共振器本体20を具備する空洞
共振器1Aの場合、共振器本体20が金属薄膜付着のた
め2分割構成であるが、分割方向はいわゆるE面中心線
に沿っているため、このE面中心線を横切る方向にはマ
イクロ波管壁電流は流れないので、空洞共振器1AのQ
の低下はない。
In the case of the cavity resonator 1A provided with such a resonator main body 20, the resonator main body 20 is divided into two parts because a metal thin film is adhered, but the dividing direction is along the so-called E-plane center line. The microwave tube wall current does not flow in the direction crossing the center line of the E plane.
Does not decrease.

【0052】尚、前記共振器本体20の両外側面に磁場
変調コイル7やポールピース5A、5Bが固定されるこ
とは前記空洞共振器1の場合と同様である。
The magnetic field modulation coil 7 and the pole pieces 5A and 5B are fixed to both outer surfaces of the resonator main body 20, as in the case of the cavity resonator 1.

【0053】このような共振器本体20を具備する空洞
共振器1Aの場合、前記空洞共振器1ほどのQ値は得ら
れないが、空洞共振器1と比較すると空洞容積がかなり
小さいこと、マイクロ波磁界分布が広いこと及び所要磁
極間隔が狭く分極磁場で供給する磁石を小型化すること
ができることという特長がある。
In the case of the cavity resonator 1A having such a resonator main body 20, the Q value of the cavity resonator 1 cannot be obtained, but the cavity volume is considerably smaller than that of the cavity resonator 1, It has the characteristics that the wave magnetic field distribution is wide, the required magnetic pole interval is narrow, and the magnet supplied by the polarizing magnetic field can be downsized.

【0054】この結果、前記空洞共振器1は高感度測定
用に、前記空洞共振器1Aは小型磁石を使用した一般測
定装置用及び水溶液試料測定等の特殊測定用に各々重用
される。
As a result, the cavity resonator 1 is used for high-sensitivity measurement, and the cavity resonator 1A is used for general measurement devices using small magnets and for special measurements such as measurement of an aqueous solution sample.

【0055】次に、前記空洞共振器1(又は空洞共振器
1A)を用いた電子スピン測定装置100について図5
を参照して説明する。
Next, an electron spin measuring apparatus 100 using the above-described cavity resonator 1 (or cavity resonator 1A) will be described with reference to FIG.
This will be described with reference to FIG.

【0056】この電子スピン測定装置100は、マイク
ロ波発信器電源30により駆動され所定の周波数のマイ
クロ波を出力するマイクロ波発信器31と、このマイク
ロ波発信器31から反射波が発振器に入ることを防ぐア
イソレータ32と、このアイソレータ32からのマイク
ロ波出力を測定試料に適切なレベルに調整する第1の減
衰器33と、この第1の減衰器33からのマイクロ波を
増幅するマイクロ波電力増幅器34と、このマイクロ波
電力増幅器34により増幅されたマイクロ波を空洞共振
器1に供給するとともに空洞共振器1からの共鳴信号を
増幅器36に送出するサーキュレータ35と、前記アイ
ソレータ32からのマイクロ波を検波器39,40に適
切なバイアスを与えるための第2の減衰器37と、この
第2の減衰器37からのマイクロ波の周波数移相を行う
第1の移相器38と、前記増幅器36により増幅した共
鳴信号と前記第1の移相器38により周波数移相を行っ
たマイクロ波とをハイブリッドティ45を経て入力し、
所謂ホモダイン検波を行う検波器39、40と、検波さ
れた信号をこれを増幅する信号増幅器41を経て入力す
る位相検波器44と、前記空洞共振器1の磁場変調コイ
ル7に変調電流を供給する変調周波発信器42と、この
変調周波発信器42からの変調信号の周波数移相を行う
第2の移相器43と、この第2の移相器43の出力信号
を基に前記信号増幅器41からの出力信号の位相検波を
行い検波結果を電子スピン測定装置100の出力信号と
して送出する第1の位相検波器44とを具備している。
The electron spin measuring apparatus 100 includes a microwave transmitter 31 which is driven by a microwave transmitter power supply 30 and outputs a microwave of a predetermined frequency, and a reflected wave from the microwave transmitter 31 enters an oscillator. , A first attenuator 33 for adjusting the microwave output from the isolator 32 to an appropriate level for the measurement sample, and a microwave power amplifier for amplifying the microwave from the first attenuator 33 34, a circulator 35 for supplying the microwave amplified by the microwave power amplifier 34 to the cavity resonator 1 and transmitting a resonance signal from the cavity resonator 1 to the amplifier 36, and a microwave from the isolator 32. A second attenuator 37 for applying an appropriate bias to the detectors 39 and 40, and a second attenuator 37 A first phase shifter 38 for performing a frequency phase shift of the microwaves, a hybrid tee 45 that combines the resonance signal amplified by the amplifier 36 and the microwaves whose frequency has been phase shifted by the first phase shifter 38. And enter
A modulation current is supplied to detectors 39 and 40 for performing so-called homodyne detection, a phase detector 44 for inputting the detected signal through a signal amplifier 41 for amplifying the detected signal, and a magnetic field modulation coil 7 of the cavity resonator 1. A modulation frequency transmitter 42, a second phase shifter 43 for performing a phase shift of the frequency of the modulation signal from the modulation frequency transmitter 42, and the signal amplifier 41 based on an output signal of the second phase shifter 43. And a first phase detector 44 for performing phase detection of an output signal from the electronic spin measuring device 100 and transmitting a detection result as an output signal of the electron spin measuring device 100.

【0057】また、前記空洞共振器1の各ポールピス5
A、5Bの両側には各々永久磁石の磁極45A、45B
を配置している。前記空洞共振器1の図示しない掃引コ
イルは磁場掃引電源46により励磁するようになってい
る。
Each pole piece 5 of the cavity resonator 1
A and 5B have permanent magnet poles 45A and 45B respectively on both sides.
Has been arranged. The sweep coil (not shown) of the cavity resonator 1 is excited by a magnetic field sweep power supply 46.

【0058】さらに、空洞共振器1の共鳴信号は整流器
47により整流された後、増幅器48で増幅され、第2
の位相検波器49により位相検波されて前記マイクロ波
発信器電源30の発信周波数を制御する制御信号として
用いられるようになっている。 尚、前記マイクロ波発
信器電源30は自動周波数制御(AFC)発信器50に
より駆動され、また、前記第2の位相検波器49は、前
記自動周波数制御発信器50の発信出力の周波数移相を
行う第3の移相器51により駆動されるようになってい
る。
Further, the resonance signal of the cavity resonator 1 is rectified by the rectifier 47, and then amplified by the amplifier 48.
And is used as a control signal for controlling the oscillation frequency of the microwave oscillator power supply 30. Note that the microwave transmitter power supply 30 is driven by an automatic frequency control (AFC) transmitter 50, and the second phase detector 49 detects the frequency phase shift of the transmission output of the automatic frequency control transmitter 50. The third phase shifter 51 performs the driving.

【0059】このような電子スピン測定装置100に本
実施例の空洞共振器1(又は空洞共振器1A)を用いる
ことで、既述したように、振動、静磁場のドリフト、磁
場均一度の変化等信号検出に影響する諸要因を同時に除
去又は軽減し、感度、安定度を著しく向上した動作を発
揮させることができる。
As described above, by using the cavity resonator 1 (or the cavity resonator 1A) of the present embodiment in such an electron spin measuring apparatus 100, as described above, the vibration, the drift of the static magnetic field, and the change in the magnetic field uniformity are obtained. Various factors affecting the detection of the equal signal can be eliminated or reduced at the same time, and an operation with significantly improved sensitivity and stability can be exhibited.

【0060】本発明は、上述した実施例の他、その要旨
の範囲内で種々の変形が可能である。
The present invention can be variously modified within the scope of the gist, in addition to the above-described embodiment.

【0061】[0061]

【発明の効果】以上詳述した本発明によれば、上述した
構成としたことにより、振動、静磁場のドリフト、磁場
均一度の変化等信号検出に影響する諸要因を同時に除去
又は軽減し、感度、安定度を著しく向上し得る空洞共振
器を提供することができる。
According to the present invention described in detail above, by employing the above-described configuration, various factors affecting signal detection, such as vibration, drift of a static magnetic field, and change in magnetic field uniformity, can be eliminated or reduced at the same time. A cavity resonator capable of significantly improving sensitivity and stability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施例である空洞共振器の一部
を切欠して示す上面図である。
FIG. 1 is a partially cutaway top view showing a cavity resonator according to an embodiment of the present invention.

【図2】図2は本発明の実施例である空洞共振器の一部
を切欠して示す側面図である。
FIG. 2 is a partially cutaway side view of a cavity resonator according to an embodiment of the present invention.

【図3】図3は本発明の他の実施例である空洞共振器の
分解斜視図である。
FIG. 3 is an exploded perspective view of a cavity resonator according to another embodiment of the present invention.

【図4】図4は本発明の他の実施例である空洞共振器の
共振器本体を示す分解斜視図である。
FIG. 4 is an exploded perspective view showing a resonator main body of a cavity resonator according to another embodiment of the present invention.

【図5】図5は本発明の実施例である空洞共振器を用い
た電子スピン測定装置の構成ブロック図である。
FIG. 5 is a block diagram showing a configuration of an electron spin measuring device using a cavity resonator according to an embodiment of the present invention.

【符号の説明】 1 空洞共振器 1A 空洞共振器 2 共振器本体 3 空洞 4 金属薄膜 5A ポールピース 5B ポールピース 100 電子スピン測定装置[Description of Signs] 1 Cavity resonator 1A Cavity resonator 2 Resonator main body 3 Cavity 4 Metal thin film 5A Pole piece 5B Pole piece 100 Electron spin measurement device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 和雄 東京都渋谷区恵比寿3丁目43番2号 日 機装株式会社内 (72)発明者 常田 誠 東京都渋谷区恵比寿3丁目43番2号 日 機装株式会社内 (72)発明者 糠信 敦司 東京都渋谷区恵比寿3丁目43番2号 日 機装株式会社内 (56)参考文献 特開 昭53−15883(JP,A) 特公 昭47−1434(JP,B1) アルガー著、「電子スピン共鳴」、第 1刷、吉岡書店、1973年4月、p.142 −146及びp.189−193 (58)調査した分野(Int.Cl.7,DB名) G01N 24/00 - 24/14 G01N 22/00 - 22/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuo Nakagawa, Inventor Kazuo 3-43-2 Ebisu, Shibuya-ku, Tokyo Inside Machinery Co., Ltd. (72) Inventor Makoto Tsuneda 3-43-2, Ebisu, Shibuya-ku, Tokyo Sun Inside Kiso Co., Ltd. (72) Inventor Atsushi Nukanobu 3-43-2 Ebisu, Shibuya-ku, Tokyo Japan Kiso Co., Ltd. (56) References JP-A-53-15883 (JP, A) Japanese Patent Publication No. 47 -1434 (JP, B1) by Algar, "Electron Spin Resonance", 1st printing, Yoshioka Shoten, April 1973, p. 142-146 and p. 189-193 (58) Field surveyed (Int.Cl. 7 , DB name) G01N 24/00-24/14 G01N 22/00-22/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電子スピン共鳴装置に用いられる空洞共
振器であって、膨脹係数が僅少の非導電体材料を母材と
し、内部に所要のマイクロ波共振が得られる空洞を設
け、この空洞の内壁面に高導電率の金属薄膜を形成した
共振器本体のその対向する外側両端面を平行平面に仕上
げてなり、この外側両端面に分極磁場用のポールピース
を密着固定してなることを特徴とする空洞共振器。
1. A cavity resonator used in an electron spin resonance apparatus, wherein a non-conductive material having a small expansion coefficient is used as a base material.
And a cavity for obtaining the required microwave resonance
A high conductivity metal thin film was formed on the inner wall of the cavity.
Finish the opposing outer end faces of the resonator body in parallel planes
The pole pieces for the polarizing magnetic field
Characterized by being fixedly adhered to a cavity.
JP09290992A 1992-04-13 1992-04-13 Thin film cavity resonator with pole piece Expired - Lifetime JP3239957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09290992A JP3239957B2 (en) 1992-04-13 1992-04-13 Thin film cavity resonator with pole piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09290992A JP3239957B2 (en) 1992-04-13 1992-04-13 Thin film cavity resonator with pole piece

Publications (2)

Publication Number Publication Date
JPH05288821A JPH05288821A (en) 1993-11-05
JP3239957B2 true JP3239957B2 (en) 2001-12-17

Family

ID=14067616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09290992A Expired - Lifetime JP3239957B2 (en) 1992-04-13 1992-04-13 Thin film cavity resonator with pole piece

Country Status (1)

Country Link
JP (1) JP3239957B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589529B1 (en) * 2005-11-14 2009-09-15 Active Spectrum, Inc. Method of and apparatus for in-situ measurement of degradation of automotive fluids and the like by micro-electron spin resonance (ESR) spectrometry
EP4019995B1 (en) * 2020-12-22 2023-08-16 Bruker BioSpin GmbH Epr spectrometer with at least one pole piece made at least partially of a function material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
アルガー著、「電子スピン共鳴」、第1刷、吉岡書店、1973年4月、p.142−146及びp.189−193

Also Published As

Publication number Publication date
JPH05288821A (en) 1993-11-05

Similar Documents

Publication Publication Date Title
Courtney Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators
US6675645B1 (en) Electromagnetic method of and apparatus for electromagnetic parameters of material (thin films and bulks) monitoring
US5465047A (en) Electron spin resonator having variable resonance frequency and error detecting automatic frequency control
JPH0923109A (en) Non-radioactive dielectric line device and characteristic measuring tool for circuit board
US4464691A (en) Magnetic reproducing system
JP3691812B2 (en) Method for measuring complex permittivity using a resonator and apparatus for carrying out said method
US4404852A (en) Frost sensor
US4704739A (en) Receiving circuit for converting signals comprising at least two ferromagnetic resonators
US4455527A (en) Magnetic resonance apparatus
JP3239957B2 (en) Thin film cavity resonator with pole piece
US3748605A (en) Tunable microwave filters
JPH05341027A (en) Sheet cavity resonator for electronic spin resonance
Strandberg et al. Recording Magnetic‐Resonance Spectrometer
US4290017A (en) Apparatus and method for nondestructive evaluation of surface flaws in conductive materials
US4340861A (en) Method of measuring magnetic field characteristics of magnetic materials
US5030914A (en) Electron paramagnetic resonance instrument with superconductive cavity
JPS62132159A (en) Triplate type resonator
US3490034A (en) Magnetometer utilizing the delaying effect of a magnetic transmission line
US3529235A (en) Magnetic induction spectrometer employing a pair of coupled resonant cavities
US4366517A (en) Magnetic erasing head
RU2099854C1 (en) Gyromagnetic shf crossmultiplier
RU2707421C1 (en) Sensitive element of a ferromagnetic resonance scanning spectrometer with frequency tuning
JPH0378591B2 (en)
JPS6017370A (en) Magnetic resonance apparatus
Slade et al. An ESR spectrometer operating at 4 mm wavelength for the investigation of large zero field splittings

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010831

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071012

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 11