JP3236332B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device

Info

Publication number
JP3236332B2
JP3236332B2 JP00682492A JP682492A JP3236332B2 JP 3236332 B2 JP3236332 B2 JP 3236332B2 JP 00682492 A JP00682492 A JP 00682492A JP 682492 A JP682492 A JP 682492A JP 3236332 B2 JP3236332 B2 JP 3236332B2
Authority
JP
Japan
Prior art keywords
metal
cathode
alloy
organic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00682492A
Other languages
Japanese (ja)
Other versions
JPH05121172A (en
Inventor
剛直 真貝
均 佐藤
徹 並木
健一 永山
輝一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP00682492A priority Critical patent/JP3236332B2/en
Priority to US07/961,506 priority patent/US5429884A/en
Publication of JPH05121172A publication Critical patent/JPH05121172A/en
Application granted granted Critical
Publication of JP3236332B2 publication Critical patent/JP3236332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は有機エレクトロルミネッセンス素
子(以下、有機EL素子と称する)に関する。
TECHNICAL FIELD The present invention relates to an organic electroluminescence device (hereinafter, referred to as an organic EL device).

【0002】[0002]

【背景技術】有機EL素子として、図1に示すように、
陰極である金属電極1と陽極である透明電極2との間に
有機化合物からなり互いに積層された発光層としての有
機蛍光体薄膜3と有機正孔輸送層4とが配された2層構
造のものがある。ここで、有機正孔輸送層4は陽極から
正孔を注入され易くする機能と電子をブロックする機能
とを有している。透明電極2の外側にはガラス基板6が
配されており、金属電極1から注入された電子と透明電
極2から注入された正孔との再結合によって励起子が生
じ、この励起子が放射失活する過程で光を放ち、この光
が透明電極2及びガラス基板6を介して外部に放出され
る。
BACKGROUND ART As an organic EL device, as shown in FIG.
It has a two-layer structure in which an organic phosphor thin film 3 as a light emitting layer and an organic hole transport layer 4 which are made of an organic compound and are laminated on each other are disposed between a metal electrode 1 as a cathode and a transparent electrode 2 as an anode. There is something. Here, the organic hole transport layer 4 has a function of facilitating injection of holes from the anode and a function of blocking electrons. A glass substrate 6 is disposed outside the transparent electrode 2, and excitons are generated by recombination of electrons injected from the metal electrode 1 and holes injected from the transparent electrode 2, and the excitons are radiated by radiation. Light is emitted in the process of activation, and this light is emitted to the outside via the transparent electrode 2 and the glass substrate 6.

【0003】ところで、従来の有機EL素子において
は、電子注入に有効な材料なので陰極の金属電極1とし
て3エレクトロンボルト以下の仕事関数の低い金属材料
(低仕事関数金属という)を用いることが望ましい。し
かし、この低仕事関数金属の陰極はその成膜の容易性、
安定性等に問題が有るので、3エレクトロンボルトを越
える高い仕事関数を有する金属材料(高仕事関数金属と
いう)が、現状としてアルミニウム、マグネシウムやマ
グネシウムインジウム合金、マグネシウムアルミニウム
合金、マグネシウム銀合金等の単独材料または共蒸着さ
れた合金材料が、陰極に用いられている(特開昭第63
−295695号公報参照)。
In the conventional organic EL device, it is desirable to use a metal material having a low work function of 3 electron volts or less (referred to as a low work function metal) as the metal electrode 1 of the cathode because it is a material effective for electron injection. However, this low work function metal cathode is easy to form,
Due to problems in stability and the like, metal materials having a high work function exceeding 3 electron volts (referred to as high work function metals) are currently used alone as aluminum, magnesium, magnesium indium alloy, magnesium aluminum alloy, magnesium silver alloy, etc. A material or a co-deposited alloy material is used for the cathode (Japanese Patent Application Laid-Open No. 63-63).
-295695).

【0004】かかる従来の有機EL素子においては、低
仕事関数金属を第1金属とし、さらに成膜性及び安定性
を有する高仕事関数金属を第2金属として第1及び第2
金属の合金材料を陰極とする場合、両者を共蒸着して形
成される。この合金陰極において、第1金属を主成分と
して第2金属は全体金属の1ないし10%程度を存在さ
せている。すなわち、合金陰極全体が共蒸着により均一
混合された薄膜となっている。第2金属は、共蒸着にお
ける第1金属の蒸着を補助する役割を果たしている。
In such a conventional organic EL device, a first metal is used as a low work function metal and a second metal is used as a high work function metal having film forming property and stability.
When a metal alloy material is used as the cathode, both are formed by co-evaporation. In this alloy cathode, the first metal is the main component and the second metal is present in about 1 to 10% of the whole metal. That is, a thin film is obtained in which the entire alloy cathode is uniformly mixed by co-evaporation. The second metal plays a role in assisting the deposition of the first metal in the co-deposition.

【0005】しかしながら、従来の合金陰極を有する有
機EL素子は、低駆動電圧で輝度を高くすることは難し
く、その環境安定性も十分とはいえない。
However, it is difficult to increase the luminance of a conventional organic EL device having an alloy cathode at a low driving voltage, and its environmental stability is not sufficient.

【0006】[0006]

【発明の目的】本発明の目的は、発光効率及び輝度が高
くかつ環境安定性の高い有機EL素子を提供することで
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an organic EL device having high luminous efficiency and luminance and high environmental stability.

【0007】[0007]

【発明の構成】本発明は、陽極と陰極の間に有機化合物
からなる有機層を配する有機エレクトロルミネッセンス
素子であって、前記陰極は、3エレクトロンボルト以下
の仕事関数を有する低仕事関数金属である第1金属及び
前記第1金属を安定化せしめる第2金属からなりかつ前
有機層及び前記陰極の界面に接する合金領域を有し、
前記第1金属はリチウムであり、前記第2金属がアルミ
ニウムであり、前記合金領域は、前記アルミニウムの1
00重量部に対して前記リチウムの濃度を0.005〜
0.3重量部好ましくは0.01重量部以上0.1重量
部以下の重量比で含むことを特徴とする。
The present invention relates to an organic compound between an anode and a cathode.
An organic electroluminescence device having an organic layer comprising: a cathode formed of a first metal that is a low work function metal having a work function of 3 electron volts or less and a second metal that stabilizes the first metal. Having an alloy region in contact with the interface between the organic layer and the cathode,
The first metal is lithium, the second metal is aluminum, and the alloy region includes one of the aluminum.
0.005 parts by weight of the lithium
It is characterized by containing 0.3 parts by weight, preferably 0.01 part by weight or more and 0.1 part by weight or less.

【0008】本発明は、陽極と陰極の間に有機化合物か
らなる有機層を配する有機エレクトロルミネッセンス素
子であって、前記陰極は、3エレクトロンボルト以下の
仕事関数を有する低仕事関数金属である第1金属及び前
記第1金属を安定化せしめる第2金属からなりかつ前記
有機層及び前記陰極の界面に接する合金領域を有し、前
記第1金属はストロンチウムであり、前記第2金属がマ
グネシウムであり、前記合金領域は、前記マグネシウム
の100重量部に対して前記ストロンチウムの濃度を
0〜40重量部好ましくは10重量部以上25重量部以
下の重量比で含むことを特徴とする。
[0008] The present invention relates to an organic compound between an anode and a cathode.
An organic electroluminescence device having an organic layer comprising: a first metal which is a low work function metal having a work function of 3 electron volts or less and a second metal which stabilizes the first metal. And an alloy region in contact with the interface between the organic layer and the cathode, wherein the first metal is strontium, the second metal is magnesium, and the alloy region is based on 100 parts by weight of magnesium. The strontium concentration is 1
It is characterized in that it is contained in an amount of 0 to 40 parts by weight, preferably 10 to 25 parts by weight.

【0009】本発明は、陽極と陰極の間に有機層を配す
る有機エレクトロルミネッセンス素子であって、前記陰
極は、3エレクトロンボルト以下の仕事関数を有する低
仕事関数金属である第1金属及び前記第1金属を安定化
せしめる第2金属からなり、前記陰極上に積層された保
護電極を有していることを特徴とする。
According to the present invention , an organic layer is disposed between an anode and a cathode.
Organic electroluminescent device, wherein
The pole has a low work function of less than 3 electron volts.
Stabilizing a first metal that is a work function metal and the first metal
Made of a second metal which is laminated on the cathode.
A protective electrode .

【0010】[0010]

【発明の作用】本発明によれば、環境安定性の高い高輝
度で低電圧駆動の有機EL素子が得られる。
According to the present invention, a high-luminance, low-voltage driven organic EL device having high environmental stability can be obtained.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照しつつ詳
細に説明する。図2に示した本発明による有機EL素子
においては、合金陰極11と陽極である透明電極12と
の間に、有機化合物からなり互いに積層された発光層と
しての有機蛍光体薄膜13と有機正孔輸送層14とが配
されている。透明電極2の外側にはガラス基板16が配
されている。保護電極17は、仕事関数、成膜性及び安
定性、さらにコストを考慮すると合金陰極11の組成に
拘らずアルミニウム(Al)またはマグネシウム(Mg)から形
成されることが好ましい。また、第1金属はリチウム(L
i)、ストロンチウム(Sr)等の低仕事関数のアルカリ金属
やアルカリ土類金属であることが好ましい。保護電極1
7の存在によって、合金陰極11における高仕事関数金
属の第2金属の成分割合を増やすことができる。さら
に、かかる構成によって第2金属の効果として第1金属
を安定化せしめるのに加えて、陰極及び保護電極全体の
シート抵抗を減少させている。
Embodiments of the present invention will be described below in detail with reference to the drawings. In the organic EL device according to the present invention shown in FIG. 2, between the alloy cathode 11 and the transparent electrode 12 as an anode, an organic phosphor thin film 13 as a light emitting layer, which is made of an organic compound and is laminated on each other, and an organic hole are formed. A transport layer 14 is provided. A glass substrate 16 is provided outside the transparent electrode 2. The protection electrode 17 is preferably formed of aluminum (Al) or magnesium (Mg) irrespective of the composition of the alloy cathode 11 in consideration of the work function, film formability and stability, and cost. The first metal is lithium (L
It is preferable to use low work function alkali metals or alkaline earth metals such as i) and strontium (Sr). Protection electrode 1
By virtue of the presence of 7, the component ratio of the second metal of the high work function metal in the alloy cathode 11 can be increased. Further, with such a configuration, in addition to stabilizing the first metal as an effect of the second metal, the sheet resistance of the entire cathode and protection electrode is reduced.

【0012】この合金陰極11の膜厚は合金陰極11及
び保護電極17全体の厚さの2分の1ないし3分の2
で、保護電極17は薄い膜厚であることが好ましい。な
お合金陰極11及び保護電極17全体の厚さは1000
ないし3000オングストローム(Å)であることが好
ましい。また、第1金属と第2金属とを共蒸着した合金
陰極11は、蒸着された合金全体の10ないし30wt%
の第1金属成分を含み、残り70ないし90wt%が第2
金属である。ここでも、低仕事関数金属を第1金属と
し、さらに成膜性及び安定性を有する高仕事関数金属を
第2金属としている。
The thickness of the alloy cathode 11 is one half to two thirds of the total thickness of the alloy cathode 11 and the protection electrode 17.
It is preferable that the protective electrode 17 has a small thickness. The total thickness of the alloy cathode 11 and the protective electrode 17 is 1000
To 3,000 angstroms (Å). In addition, the alloy cathode 11 in which the first metal and the second metal are co-deposited accounts for 10 to 30% by weight of the entire deposited alloy.
Of the first metal component, and the remaining 70 to 90 wt% is the second metal component.
Metal. Also in this case, the first metal is a low work function metal, and the second metal is a high work function metal having film formability and stability.

【0013】保護電極17はアルミニウムまたはマグネ
シウムから形成されることが好ましいが、アルミニウム
またはマグネシウムを合金陰極11の第2金属成分とし
て、この第2金属から蒸着された単層とすることも好ま
しい。これによって、保護電極17は同一装置で合金陰
極11から続けて成膜が可能となる。具体的に、実施例
1及び2として表1及び2に示す如き合金陰極及び保護
電極の成膜条件の範囲内でそれぞれ成膜し有機EL素子
を製造した。
The protection electrode 17 is preferably formed of aluminum or magnesium. However, it is also preferable that aluminum or magnesium is used as the second metal component of the alloy cathode 11 to form a single layer deposited from the second metal. Thus, the protective electrode 17 can be formed continuously from the alloy cathode 11 by the same apparatus. More specifically, as Examples 1 and 2, an organic EL device was manufactured by forming a film within the range of the film forming conditions of the alloy cathode and the protective electrode as shown in Tables 1 and 2, respectively.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 図3において、製造された有機EL素子の駆動電圧に対
する輝度の特性をグラフに示す。図において、実施例1
のリチウムアルミニウム合金陰極及びアルミニウム保護
電極を有する素子の輝度を○にて示し、実施例2のスト
ロンチウムアルミニウム合金陰極及びアルミニウム保護
電極を有する素子の輝度を◎にて示す。なお、図4にお
いて、比較例として作成したアルミニウム単体からなる
陰極のみを有する有機EL素子の輝度を●にて示す。
[Table 2] FIG. 3 is a graph showing a luminance characteristic with respect to a driving voltage of the manufactured organic EL element. Referring to FIG.
The luminance of the element having the lithium aluminum alloy cathode and the aluminum protective electrode of Example 2 is indicated by ○, and the luminance of the element having the strontium aluminum alloy cathode and the aluminum protective electrode of Example 2 is indicated by ◎. In FIG. 4, the luminance of the organic EL element having only the cathode made of aluminum alone prepared as a comparative example is indicated by ●.

【0016】図4から明らかなように、これら実施例の
有機EL素子においては、低駆動電圧で高い輝度が得ら
れた。このように、駆動電圧の低下をもたらした。さら
に、他の試験によれば素子の発光中の電圧上昇率を低下
させ、輝度の減衰率をも低下させている。また、合金陰
極中のリチウムまたはストロンチウムが存在しても陰極
の水酸化、酸化は防止される。すなわち、第1金属をリ
チウムとして第2金属をマグネシウムとしてリチウム−
マグネシウムの重量比を変化させて合金陰極を形成し上
記構成の有機EL素子を種々作成して、乾燥雰囲気中で
200時間保存する試験を行った。合金陰極のリチウ
ム:マグネシウムの重量比を50:1000、90:1
000、100:1000、115:1000、30
0:1000と変化させた場合に、重量比90:100
0、100:1000、115:1000及び300:
1000の合金陰極を有する素子は発光能力を維持して
保存出来なかったが、重量比50:1000の合金陰極
を有する素子は保存でき、更に、600時間も発光能力
の保存が出来た。即ち、第2金属マグネシウムが100
0重量部に対して第1金属リチウムを50重量部以下の
重量比であることが好ましい。
As is apparent from FIG. 4, in the organic EL devices of these examples, high luminance was obtained at a low driving voltage. Thus, the driving voltage was reduced. Further, according to other tests, the rate of voltage rise during light emission of the element is reduced, and the rate of decay of luminance is also reduced. Also, even if lithium or strontium is present in the alloy cathode, hydroxylation and oxidation of the cathode are prevented. That is, lithium is used as the first metal and lithium as the second metal.
An alloy cathode was formed by changing the weight ratio of magnesium, and various organic EL devices having the above-described structure were prepared, and a test was conducted in which the devices were stored in a dry atmosphere for 200 hours. The lithium: magnesium weight ratio of the alloy cathode is 50: 1000, 90: 1.
000, 100: 1000, 115: 1000, 30
When the ratio is changed to 0: 1000, the weight ratio is 90: 100.
0, 100: 1000, 115: 1000 and 300:
The device having the 1000 alloy cathode could not be preserved while maintaining the luminous ability, but the device having the 50: 1000 alloy cathode by weight ratio could be preserved, and the luminous ability could be preserved for 600 hours. That is, the second metal magnesium is 100
It is preferable that the weight ratio of the first metal lithium is 50 parts by weight or less with respect to 0 parts by weight.

【0017】同様に、第1金属をストロンチウムとして
第2金属をマグネシウムとしてストロンチウム−マグネ
シウムの重量比を変化させて合金陰極を形成し上記構成
の有機EL素子を種々作成して、乾燥雰囲気中で200
時間保存する試験を行った。合金陰極のストロンチウ
ム:マグネシウムの重量比を400:1000、50
0:1000、600:1000と変化させた場合に、
重量比500:1000及び600:1000の合金陰
極を有する素子は発光能力を維持して保存出来なかった
が、重量比400:1000の合金陰極を有する素子は
保存できた。即ち、第2金属マグネシウムが1000重
量部に対して第1金属ストロンチウムを400重量部以
下の重量比であることが好ましい。
Similarly, an alloy cathode is formed by changing the weight ratio of strontium-magnesium with strontium as the first metal and magnesium as the second metal, and various organic EL devices having the above structure are prepared.
A time-saving test was performed. The strontium: magnesium weight ratio of the alloy cathode is 400: 1000,50.
When changing to 0: 1000 and 600: 1000,
The devices having the alloy cathodes with the weight ratios of 500: 1000 and 600: 1000 could not be preserved while maintaining the luminous ability, but the devices having the alloy cathodes with the weight ratio of 400: 1000 could be preserved. That is, it is preferable that the weight ratio of the first metal strontium is 400 parts by weight or less with respect to 1000 parts by weight of the second metal magnesium.

【0018】他の実施例3として図4に示すように、A
l−Li合金領域Aを有する電極1と、インジウムスズ
酸化物(ITO)からなる陽極透明電極2と、これらの
間に有機化合物からなり互いに積層されたトリス(8−
キノリノール)アルミニウム(Alq3)からなる有機
蛍光体薄膜3及びN,N′−ジフェニル−N,N′−ビ
ス(3メチルフェニル)−1,1′−ビフェニル−4,
4′−ジアミン(TPD)からなる有機正孔輸送層4と
をガラス基板6上に積層して構成された、保護電極を設
けない2層構造のEL素子を製造した。この素子のAl
−Li陰極薄膜中のLi濃度に関しては、陰極膜と有機
層との界面からの陰極膜の厚さ0Åを越え1500Å以
下の合金領域A範囲内に含まれるLiの濃度を0.00
wt%以上0.3wt%以下という微小な量に制御す
る。なお、Liの濃度をこの合金領域内に収めるために
は、共蒸着法ではなく、あらかじめ適当な組成比でAl
−Liの合金母材を作っておき、これを一源の抵抗加熱
蒸着あるいは電子ビーム法にて形成することが望まし
い。
As another embodiment 3, as shown in FIG.
An electrode 1 having an l-Li alloy region A, an anode transparent electrode 2 made of indium tin oxide (ITO), and a tris (8-
Organic phosphor thin film 3 made of (quinolinol) aluminum (Alq3) and N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,
An organic EL element having a two-layer structure without a protective electrode, which was formed by laminating an organic hole transport layer 4 made of 4'-diamine (TPD) on a glass substrate 6, was manufactured. Al of this element
-Regarding the Li concentration in the Li cathode thin film, the thickness of the cathode film from the interface between the cathode film and the organic layer, which is more than 0 ° and not more than 1500 ° and the Li concentration contained in the alloy region A is 0.00
It is controlled to a minute amount of 5 wt% or more and 0.3 wt% or less. In order to keep the concentration of Li within this alloy region, the co-evaporation method is not used, but the Al
It is desirable to prepare an alloy base material of -Li and form it by resistance heating evaporation of one source or an electron beam method.

【0019】この実施例によれば、Al-Li陰極薄膜
中のLi濃度の範囲を厳しく制御することにより、素子
作成の安定性が増すと共に、更に高輝度、高効率な発光
特性が得られる。また、Li濃度を微量化にすることか
ら環境安定性、成膜性に優れたEL素子が提供できる。
更に、合金陰極膜の作製をAlとLiとを別々の蒸発源
から同時に飛ばす共蒸着ではなく、あらかじめ適当な組
成比でAl-Li合金母材を作っておき、これを蒸発材
料とすれば、膜作製時の制御が容易になり、安定した素
子を供給し易い、材料の保管、材料の蒸着ボートへの供
給が容易になる、というメリットがある。また、合金陰
極膜中の膜厚方向へのLi濃度の勾配をつけることが容
易にできる。例えば、Li濃度を陰極膜と有機EL層と
の界面へ向けて漸次高くする又は低くすることができ
る。これによって一つの蒸着源からAl-Li陰極膜の
作製及び保護膜の作製を連続して行なうことも可能とな
る。
According to this embodiment, by strictly controlling the range of the Li concentration in the Al-Li cathode thin film, the stability of device fabrication is increased, and furthermore, high-luminance and high-efficiency light-emitting characteristics can be obtained. Further, since the Li concentration is reduced to a small amount, an EL element having excellent environmental stability and film forming properties can be provided.
Further, instead of co-evaporation of simultaneously manufacturing Al and Li from separate evaporation sources to produce an alloy cathode film, if an Al-Li alloy base material is prepared in advance with an appropriate composition ratio and this is used as an evaporation material, There are advantages in that control during film formation is facilitated, stable elements can be easily supplied, materials can be easily stored, and materials can be easily supplied to a deposition boat. Further, it is possible to easily give a gradient of the Li concentration in the thickness direction of the alloy cathode film. For example, the Li concentration can be gradually increased or decreased toward the interface between the cathode film and the organic EL layer. This makes it possible to continuously produce an Al-Li cathode film and a protective film from one evaporation source.

【0020】具体的に図1に示す保護電極を設けない2
層構造のEL素子を製造した。なお、Al-Li合金領
域電極1を1500Å(即ち、Al-Li合金領域のみからな
る電極1)、Alq3薄膜3を550Å、及びTPD層4を700Åの
膜厚にてそれぞれ積層した。表3に、かかるEL素子に
おけるAl-Li陰極のLi濃度を0.024wt%,0.58wt
%,5.6wt%にした時及び純Al陰極の時の300cd/m2
光時の発光効率を示す。また、表4に、EL素子におけ
る合金領域のLi濃度を0.024wt%,0.048wt
%,0.065wt%にしたときの300cd/m2発光時
の発光効率を示す。
More specifically, FIG.
An EL device having a layer structure was manufactured. The Al-Li alloy region electrode 1 was laminated to a thickness of 1500 Å (that is, the electrode 1 composed of only the Al-Li alloy region), the Alq 3 thin film 3 was laminated to a thickness of 550 Å, and the TPD layer 4 was laminated to a thickness of 700 そ れ ぞ れ. Table 3 shows that the Li concentration of the Al—Li cathode in the EL device was 0.024 wt% and 0.58 wt%.
%, 5.6 wt%, and luminous efficiency at 300 cd / m 2 when using a pure Al cathode. Table 4 shows that the concentration of Li in the alloy region in the EL element was 0.024 wt% and 0.048 wt%.
%, And 0.065 wt% when the emission efficiency is 300 cd / m 2 .

【0021】図5に、かかるEL素子における合金領域
のLi濃度0wt%(純Al),0.007wt%,0.01
6wt%,0.024wt%,0.048wt%,0.065wt
%,0.08wt%,0.2wt%,0.58wt%,及び5.6
wt%に対応する300cd/m2発光時の発光効率をプロ
ットしたグラフを示す。
FIG. 5 shows a Li concentration of 0 wt% (pure Al), 0.007 wt%, 0.01
6wt%, 0.024wt%, 0.048wt%, 0.065wt
%, 0.08 wt%, 0.2 wt%, 0.58 wt%, and 5.6
4 shows a graph in which luminous efficiency at 300 cd / m 2 emission corresponding to wt% is plotted.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 表3及び4並びに図5から明らかなように、輝度300
cd/m の時に1.5(1m/W)以上と高い効率が
得られるのは、Li濃度が0.005〜0.3wt%好
ましくは0.01wt%以上0.1wt%以下の範囲内
であり、また0.024wt%の時に最大の発光効率が
得られ、表4並びに図5から明らかなように、この範囲
内で陰極を形成すればEL素子の特性上非常にばらつき
の小さい安定した素子が得られることがわかる。
[Table 4] Table 3 and 4 and as is clear from FIG. 5, the luminance 300
High efficiency of 1.5 (1 m / W) or more at cd / m 2
What is obtained is that the Li concentration is preferably 0.005 to 0.3 wt%.
Mashiku the Ri der within the following 0.1 wt% or more 0.01 wt%, and the maximum luminous efficiency is obtained when the 0.024Wt%, as is clear from Table 4 and FIG. 5, in the range It can be seen that the formation of the cathode makes it possible to obtain a stable element with a very small variation in the characteristics of the EL element.

【0024】図6において、EL素子のAl−Li陰極
のLi濃度を0.01wt%以上0.1wt%以下の範
囲,0.007wt%,0.58wt%,5.6wt%
にした時及び純Al陰極の時の輝度(cd/m2)に対
する発光効率(1m/W)をグラフに示す。図から明ら
かなように、これら実施例の電極の合金領域内のLi濃
度が0.005wt%以上0.3wt%以下の範囲内で
ある有機EL素子においては、高い発光効率が得られ
た。
In FIG. 6, the Li concentration of the Al—Li cathode of the EL element is in the range of 0.01 wt% to 0.1 wt%, 0.007 wt%, 0.58 wt%, and 5.6 wt%.
The luminous efficiency (1 m / W) with respect to the luminance (cd / m 2) in the case of using a pure Al cathode is shown in the graph. As is clear from the figures, high luminous efficiency was obtained in the organic EL devices in which the Li concentration in the alloy region of the electrodes of these examples was in the range of 0.005 wt% or more and 0.3 wt% or less. .

【0025】更に図7において、EL素子のAl−Li
陰極のLi濃度を0.065wt%,0.48wt%,
5.6wt%にした時及び純Al陰極の時における、そ
れぞれの輝度の経時変化により劣化する割合(輝度割
合)をグラフに示す。図から明らかなように、これら実
施例の電極の合金領域内のLi濃度が0.005〜0.
3wt%好ましくは0.01wt%以上0.1wt%以
下の範囲内のLi濃度0.065wt%である有機EL
素子においては、経時変化による輝度劣化が少なく長寿
命化された。
Further, in FIG. 7, the Al-Li
The Li concentration of the cathode was 0.065 wt%, 0.48 wt%,
The graphs show the ratios (luminance ratios) of the deterioration with the lapse of time of the respective luminances when 5.6 wt% and the pure Al cathode are used. As is clear from the figures, the Li concentration in the alloy region of the electrodes of these examples was 0.005 to 0.5.
Organic EL having a Li concentration of 0.065 wt% in a range of 3 wt%, preferably 0.01 wt% or more and 0.1 wt% or less.
In the device, the life was prolonged with less luminance deterioration due to aging.

【0026】一方、他の実施例4としては、図4に示す
合金領域Aを有する陰極を有する有機EL素子と同様
に、Al−Liに代えて合金領域Aの組成をMg−Sr
とした電極1と、ITOからなる陽極透明電極2と、こ
れらの間にAlq3からなる有機蛍光体薄膜3及びTP
Dからなる有機正孔輸送層4とから構成された、保護電
極を設けない2層構造のEL素子を製造した。この素子
のMg−Sr陰極薄膜中のSr濃度に関しては、陰極膜
と有機層との界面からの陰極膜の厚さ0Åを越え150
0Å以下の合金領域A範囲内に含まれるSrの濃度を1
0wt%以上40wt%以下という量に制御する。な
お、Srの濃度をこの合金領域内に収めるためには、共
蒸着法ではなく、あらかじめ適当な組成比でMg−Sr
の合金母材を作っておき、これを一源の抵抗加熱蒸着あ
るいは電子ビーム法にて形成することが望ましい。
On the other hand, in another embodiment 4, similarly to the organic EL device having the cathode having the alloy region A shown in FIG. 4, the composition of the alloy region A is changed to Mg-Sr instead of Al-Li.
Electrode 1, an anode transparent electrode 2 made of ITO, an organic phosphor thin film 3 made of Alq3 and TP
Thus, an EL device having a two-layer structure without the protective electrode and comprising the organic hole transport layer 4 made of D was manufactured. Regarding the Sr concentration in the Mg—Sr cathode thin film of this device, the thickness of the cathode film from the interface between the cathode film and the organic layer exceeds 0 ° and the thickness exceeds 150 °.
The concentration of Sr contained in the alloy region A of 0 ° or less is 1
The amount is controlled to be 0 wt% or more and 40 wt% or less. In order to keep the concentration of Sr within this alloy region, it is not necessary to use a co-evaporation method, but to use Mg—Sr
It is preferable to prepare an alloy base material and form it by a single source resistance heating evaporation or an electron beam method.

【0027】この実施例によれば、Mg-Sr陰極薄膜
中のSr濃度の範囲を厳しく制御することにより、素子
作成の安定性が増すと共に、更に高輝度高効率な発光特
性が得られる。また、環境安定性、成膜性に優れたEL
素子が提供できる。更に、合金陰極膜の作製をMgとS
rを別々の蒸発源から同時に飛ばす共蒸着ではなく、あ
らかじめ適当な組成比でMg-Sr合金母材を作ってお
き、これを蒸発材料とすれば、膜作製時の制御が容易に
なり、安定した素子を供給し易い、材料の保管、材料の
蒸着ボートへの供給が容易になる、というメリットがあ
る。
According to this embodiment, by strictly controlling the range of the Sr concentration in the Mg—Sr cathode thin film, the stability of the device fabrication is increased, and the light emission characteristics with higher luminance and higher efficiency are obtained. EL with excellent environmental stability and film forming properties
An element can be provided. Further, the production of the alloy cathode film was performed using Mg and S
Rather than co-evaporation in which r is simultaneously emitted from different evaporation sources, if a Mg-Sr alloy base material is prepared in advance with an appropriate composition ratio and this is used as the evaporation material, control during film formation becomes easy and stable. There are advantages in that the element can be easily supplied, that the material can be stored and that the material can be easily supplied to the evaporation boat.

【0028】また、合金陰極膜中の膜厚方向へのSr濃
度の勾配をつけることが容易にできる。例えば、Sr濃
度を陰極膜と有機EL層との界面へ向けて漸次高くする
又は低くすることができる。これによって一つの蒸着源
からMg-Sr陰極膜の作製及び保護膜の作製を連続し
て行なうことも可能となる。具体的に図1に示す保護電
極を設けない2層構造のEL素子を製造した。なお、M
g-Sr合金領域電極1を1500Å(即ち、Mg-Sr合金
領域のみからなる電極1)、Alq3薄膜3を550Å、及びTP
D層4を700Åの膜厚にてそれぞれ積層した。表5に、こ
の時のMg-Sr陰極のSr濃度を20.5wt%,35.6wt%
にした時の300cd/m2発光時の効率を示す。また表6に、
Sr濃度を9.37wt%,20.5wt%,26.8wt%にした時の30
0cd/m2発光時の効率を示す。
Further, it is possible to easily provide a gradient of the Sr concentration in the thickness direction of the alloy cathode film. For example, the Sr concentration can be gradually increased or decreased toward the interface between the cathode film and the organic EL layer. This makes it possible to continuously produce the Mg—Sr cathode film and the protective film from one evaporation source. Specifically, an EL device having a two-layer structure without the protective electrode shown in FIG. 1 was manufactured. Note that M
The g-Sr alloy region electrode 1 was 1500 ° (that is, the electrode 1 consisting of only the Mg—Sr alloy region), the Alq 3 thin film 3 was 550 °, and TP
D layer 4 was laminated in a thickness of 700 °. Table 5 shows the Sr concentration of the Mg—Sr cathode at this time as 20.5 wt% and 35.6 wt%.
The efficiency at the time of light emission of 300 cd / m 2 is shown. In Table 6,
When the Sr concentration was 9.37 wt%, 20.5 wt%, 26.8 wt%
The efficiency at the time of light emission of 0 cd / m 2 is shown.

【0029】図8に、かかるEL素子における合金領域
のSr濃度3.0wt%,9.37wt%,14.0wt%,2
0.5wt%,26.8wt%,35.6wt%,及び41.0w
t%に対応する300cd/m2発光時の発光効率をプロ
ットしたグラフを示す。
FIG. 8 shows an Sr concentration of 3.0% by weight, 9.37% by weight, 14.0% by weight, 2% by weight in the alloy region in the EL device.
0.5 wt%, 26.8 wt%, 35.6 wt%, and 41.0 w
5 is a graph plotting luminous efficiency at the time of light emission of 300 cd / m 2 corresponding to t%.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 表5及び6並びに図8から明らかなように、輝度300
cd/m の時に1.5(1m/W)以上と高い効率が
得られるのは、Mg−Sr陰極膜中のSr濃度が10〜
40wt%好ましくは10wt%以上25wt%以下の
範囲にある場合であり、この中で発光効率が最大にして
かつEL素子特性上非常にばらつきの小さい安定な特性
を有するEL素子を得ることができることがわかる。
[Table 6] Table 5 and 6 and as is clear from FIG. 8, intensity 300
High efficiency of 1.5 (1 m / W) or more at cd / m 2
What is obtained is that the Sr concentration in the Mg—Sr cathode film is 10 to 10.
This is the case where it is in the range of 40 wt%, preferably 10 wt% or more and 25 wt% or less . In this case, it is possible to obtain an EL device having a maximum luminous efficiency and having stable characteristics with very little variation in EL device characteristics. Understand.

【0032】図9において、EL素子のMg-Sr陰極
のSr濃度を10wt%以上25wt%以下の範囲,3wt%,36w
t%,63wt%にした時の輝度(cd/m2)に対する発光効率(lm
/W)をグラフに示す。図から明らかなように、これら実
施例の電極の合金領域内のSr濃度が10wt%以上25
wt%以下の範囲内である有機EL素子においては、高い
発光効率が得られた。
In FIG. 9, the Sr concentration of the Mg—Sr cathode of the EL element is in the range of 10% to 25% by weight, 3% by weight, and 36% by weight.
Luminous efficiency (lm) for luminance (cd / m 2 ) when t% and 63 wt%
/ W) is shown in the graph. As is apparent from the figure, the Sr concentration in the alloy region of the electrodes of these examples is 10 wt% or more and 25 wt% or more.
High luminous efficiency was obtained in the organic EL device within the range of wt% or less.

【0033】更に図10において、EL素子のMg−S
r陰極のSr濃度を13.9wt%,17.8wt%,
24.8wt%,及び33.2wt%にした時におけ
る、それぞれの輝度の経時変化により劣化する割合(輝
度割合)をグラフに示す。図から明らかなように、これ
ら実施例の電極の合金領域内のSr濃度が10〜40w
t%好ましくは10wt%以上25wt%以下の範囲内
の有機EL素子においては、経時変化による輝度劣化が
少なく長寿命化された。
Further, in FIG. 10, the Mg-S
The Sr concentration of the r cathode was 13.9 wt%, 17.8 wt%,
The graphs show the ratios (luminance ratios) of deterioration due to the temporal change of the respective luminances at 24.8 wt% and 33.2 wt%. As is clear from the figure, the Sr concentration in the alloy region of the electrodes of these examples is 10 to 40 watts.
In the organic EL element in the range of t%, preferably in the range of 10 wt% or more and 25 wt% or less, there was little luminance deterioration due to aging and the life was extended.

【0034】Sr濃度から40wt%以上になるとSr
濃度の増加に従い発光効率は低下し、環境安定性も急激
に悪くなる。また、Sr濃度が10wt%以下になると
Mgの成膜性の悪さを改善することが困難となり、安定
したEL素子を提供することができない。上記した本発
明の実施例においては、製造中の有機EL素子の保存す
るために、素子の周囲を密閉してにアルゴン、窒素等の
不活性ガスを封止して行うか、または、大気をともに封
止する場合は素子の近傍に素子から遮断して五酸化二燐
を存在させて封入する。
When the Sr concentration exceeds 40 wt%, Sr
As the concentration increases, the luminous efficiency decreases and the environmental stability rapidly deteriorates. Further, when the Sr concentration is less than 10 wt%, it is difficult to improve the poor film formability of Mg, and a stable EL element cannot be provided. In the above-described embodiment of the present invention, in order to preserve the organic EL element during manufacture, the periphery of the element is sealed and sealed with an inert gas such as argon or nitrogen, or the atmosphere is evacuated. When both are sealed, they are cut off from the element in the vicinity of the element, and diphosphorus pentoxide is present and sealed.

【0035】なお、上記した本発明の実施例において
は、2層構造の有機EL素子について説明したが、本発
明はこれに限らない。本発明は、有機層として有機蛍光
体薄膜及び有機正孔輸送層の他に、合金陰極から電子を
注入させ易くするために有機蛍光体薄膜及び陰極間に有
機電子輸送層を備えた3層構造のものにも適用すること
ができる。
In the above-described embodiment of the present invention, the organic EL device having a two-layer structure has been described, but the present invention is not limited to this. The present invention provides a three-layer structure including an organic phosphor thin film and an organic hole transport layer as an organic layer, and an organic electron transport layer between the organic phosphor thin film and the cathode to facilitate injection of electrons from the alloy cathode. Can also be applied to

【0036】[0036]

【発明の効果】以上の如く、本発明によれば、第1金属
Li及び安定化第2金属Alからなる合金陰極と有機層
との界面からの所定膜厚(0Å以上1500Å以下)の
合金領域内に含まれる第1金属Liの濃度を0.01w
t%以上0.1wt%以下という微小な量に制御するの
で、輝度300cd/m の時の発光効率が1.5(1
m/W)以上と発光効率及び輝度が高くかつ素子の製造
上バラツキを抑えることのできる環境安定性の高い有機
EL素子が得られる。また、本発明によれば、第1金属
Sr及び安定化第2金属Mgからなる合金陰極と有機層
との界面からの所定膜厚(0Åを越え1500Å以下)
の合金領域内に含まれる第1金属Srの濃度を10wt
%以上40wt%以下という微小な量に制御するので、
発光効率及び輝度が高くかつ環境安定性の高い有機EL
素子が得られる。
As described above, according to the present invention, the first metal
The concentration of the first metal Li contained in the alloy region of a predetermined film thickness (0 ° or more and 1500 ° or less) from the interface between the alloy cathode composed of Li and the stabilized second metal Al and the organic layer is 0.01 w
Since it is controlled to a very small amount of not less than t% and not more than 0.1 wt% , the luminous efficiency at a luminance of 300 cd / m 2 is 1.5 (1
m / W) or more and high luminous efficiency and luminance, and manufacture of devices
An organic EL element having high environmental stability and capable of suppressing the above variation can be obtained. Also, according to the present invention, the first metal
A predetermined thickness from the interface between the organic cathode and the alloy cathode composed of Sr and the stabilized second metal Mg (more than 0 ° and 1500 ° or less)
The concentration of the first metal Sr contained in the alloy region of
% To 40 wt% or less.
Organic EL with high luminous efficiency, high brightness and high environmental stability
An element is obtained.

【0037】更に、本発明の有機EL素子においては、
基板上に積層された透明陽極、正孔輸送層、発光層、並
びに第1金属及び第2金属からなる合金陰極からなる素
子において、保護電極を合金陰極上に積層しているの
で、低駆動電圧で輝度を高くすることが出来、さらに合
金陰極を完全に被覆することにより環境安定性を高くす
ることができる。
Further, in the organic EL device of the present invention,
In a device composed of a transparent anode, a hole transport layer, a light emitting layer, and an alloy cathode composed of a first metal and a second metal laminated on a substrate, the protective electrode is laminated on the alloy cathode. In this case, the brightness can be increased, and the environmental stability can be enhanced by completely covering the alloy cathode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】有機EL素子を示す構造図である。FIG. 1 is a structural diagram showing an organic EL element.

【図2】実施例1及び2の有機EL素子を示す構造図で
ある。
FIG. 2 is a structural diagram showing the organic EL elements of Examples 1 and 2.

【図3】実施例1及び2並びに比較例の有機EL素子の
輝度駆動電圧特性を示すグラフである。
FIG. 3 is a graph showing luminance driving voltage characteristics of the organic EL elements of Examples 1 and 2 and Comparative Example.

【図4】実施例3及び4の有機EL素子を示す構造図で
ある。
FIG. 4 is a structural diagram showing the organic EL elements of Examples 3 and 4.

【図5】実施例3の合金領域のLi濃度に対する発光効
率特性を示すグラフである。
FIG. 5 is a graph showing luminous efficiency characteristics with respect to Li concentration in an alloy region of Example 3.

【図6】実施例3の輝度に対する発光効率特性を示すグ
ラフである。
FIG. 6 is a graph showing luminous efficiency characteristics with respect to luminance in Example 3.

【図7】実施例3のEL素子の輝度の経時変化を示すグ
ラフである。
FIG. 7 is a graph showing a change over time in luminance of the EL element of Example 3.

【図8】実施例4の合金領域のSr濃度に対する発光効
率特性を示すグラフである。
FIG. 8 is a graph showing luminous efficiency characteristics with respect to Sr concentration in an alloy region of Example 4.

【図9】実施例4の輝度に対する発光効率特性を示すグ
ラフである。
FIG. 9 is a graph showing luminous efficiency characteristics with respect to luminance in Example 4.

【図10】実施例3のEL素子の輝度の経時変化を示す
グラフである。
FIG. 10 is a graph showing a change over time in luminance of the EL element of Example 3.

【主要部分の符号の説明】[Description of Signs of Main Parts]

1 陰極 2 透明電極 3 有機蛍光体薄膜 4 有機正孔輸送層 6 ガラス基板 11 合金陰極 12 透明電極 13 有機蛍光体薄膜 14 有機正孔輸送層 16 ガラス基板 17 保護電極 A 合金領域 Reference Signs List 1 cathode 2 transparent electrode 3 organic phosphor thin film 4 organic hole transport layer 6 glass substrate 11 alloy cathode 12 transparent electrode 13 organic phosphor thin film 14 organic hole transport layer 16 glass substrate 17 protective electrode A alloy region

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永山 健一 埼玉県鶴ヶ島市富士見6丁目1番1号パ イオニア株式会社 総合研究所内 (72)発明者 渡辺 輝一 埼玉県鶴ヶ島市富士見6丁目1番1号パ イオニア株式会社 総合研究所内 (56)参考文献 特開 昭60−165771(JP,A) 特開 平2−139893(JP,A) 特開 平2−15595(JP,A) 特開 平4−212287(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05B 33/00 - 33/28 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kenichi Nagayama 6-11, Fujimi, Tsurugashima-shi, Saitama Prefecture Pioneer Corporation (72) Inventor Teruichi Watanabe 6-1-1, Fujimi, Tsurugashima-shi, Saitama (56) References JP-A-60-166571 (JP, A) JP-A-2-139893 (JP, A) JP-A-2-15595 (JP, A) JP-A-4 −212287 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H05B 33/00-33/28

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽極と陰極の間に有機化合物からなる有
機層を配する有機エレクトロネミネッセンス素子であっ
て、前記陰極は、3エレクトロンボルト以下の仕事関数
を有する低仕事関数金属である第1金属及び前記第1金
属を安定化せしめる第2金属からなりかつ前記有機層及
び前記陰極の界面に接する合金領域を有し、前記第1金
属はリチウムであり、前記第2金属がアルミニウムであ
り、前記合金領域は、前記アルミニウムの100重量部
に対して前記リチウムの濃度を0.005重量部以上
0.3重量部以下の重量比で含みかつ、前記有機層及び
前記陰極の界面から1500Å以下の厚さ範囲に存在す
ること、並びに前記合金陰極上に積層された保護電極を
有し、前記合金陰極の膜厚は前記合金陰極及び前記保護
電極全体の厚さの2分の1ないし3分の2であることを
特徴とする有機エレクトロルミネッセンス素子。
1. An organic electroluminescence device having an organic layer made of an organic compound disposed between an anode and a cathode, wherein the cathode is a low work function metal having a work function of 3 electron volts or less. An alloy region made of one metal and a second metal for stabilizing the first metal and having an interface with an interface between the organic layer and the cathode, wherein the first metal is lithium, and the second metal is aluminum; , the alloy region, the lithium concentration 0.005 part by weight to 0.3 parts by weight of the weight ratio containing Mikatsu per 100 parts by weight of the aluminum, the organic layer and
Exists in a thickness range of 1500 ° or less from the interface of the cathode.
And a protective electrode laminated on the alloy cathode
Having a thickness of the alloy cathode and the protection of the alloy cathode
An organic electroluminescent device, wherein the thickness of the organic electroluminescent device is one half to two thirds of the total thickness of the electrode .
【請求項2】 陽極と陰極の間に有機層を配する有機エ
レクトロネミネッセンス素子であって、前記陰極は、3
エレクトロンボルト以下の仕事関数を有する低仕事関数
金属である第1金属及び第1金属を安定化せしめる第2
金属からなりかつ前記有機層及び前記陰極の界面に接す
る合金領域を有し、前記第1金属はストロンチウムであ
り、前記第2金属がマグネシウムであり、前記合金領域
は、前記マグネシウムの100重量部に対して前記スト
ロンチウムの濃度を10重量部以上40重量部以下の重
量比で含むことを特徴とする有機エレクトロネミネッセ
ンス素子。
2. An organic electroluminescence device having an organic layer disposed between an anode and a cathode, wherein the cathode has 3 layers.
A first metal that is a low work function metal having a work function of less than electron volts and a second metal that stabilizes the first metal;
An alloy region made of metal and in contact with an interface between the organic layer and the cathode, wherein the first metal is strontium, the second metal is magnesium, and the alloy region is 100 parts by weight of the magnesium. An organic electroluminescence device comprising the strontium concentration in a weight ratio of 10 parts by weight or more and 40 parts by weight or less.
【請求項3】 前記合金領域は、前記発光層及び前記陰
極の界面から1500Å以下の厚さ範囲に存在すること
を特徴とする請求項記載の有機エレクトロネミネッセ
ンス素子。
3. The organic electroluminescence device according to claim 2 , wherein the alloy region exists in a thickness range of 1500 ° or less from an interface between the light emitting layer and the cathode.
【請求項4】 前記合金陰極上に積層された保護電極を
有していることを特徴とする請求項記載の有機エレク
トロルミネッセンス素子。
4. The organic electroluminescent device according to claim 2 , further comprising a protective electrode laminated on said alloy cathode.
【請求項5】 陽極と陰極の間に有機層を配する有機エ
レクトロネミネッセンス素子であって、前記陰極は、3
エレクトロンボルト以下の仕事関数を有する低仕事関数
金属である第1金属及び前記第1金属を安定化せしめる
第2金属からなる合金陰極であり、前記合金陰極上に積
層された保護電極を有し、前記合金陰 極の膜厚は前記合
金陰極及び前記保護電極全体の厚さの2分の1ないし3
分の2であることを特徴とする有機エレクトロネミネッ
センス素子。
5. An organic electroluminescence device having an organic layer disposed between an anode and a cathode, wherein the cathode comprises 3
An alloy cathode made of a second metal which allowed to stabilize a first metal and the first metal is a low work function metal having a work function of electron volts, have a protective electrode which is stacked on the alloy cathode, thickness of the alloy negative electrode is the case
1/2 to 3 times the thickness of the gold cathode and the entire protective electrode
The organic electroluminescence Nemi net sensing element, wherein the minute is 2.
【請求項6】 前記第1金属はリチウムであることを特
徴とする請求項記載の有機エレクトロルミネッセンス
素子。
6. The organic electroluminescence device according to claim 5, wherein the first metal is lithium.
【請求項7】 前記合金陰極の前記第1及び第2金属の
重量比は、前記第2金属が1000重量部に対してリチ
ウムが50重量部以下の重量比であることを特徴とする
請求項記載の有機エレクトロルミネッセンス素子。
7. The weight ratio of the first metal and the second metal in the alloy cathode is such that the weight ratio of the second metal is 1000 parts by weight and lithium is 50 parts by weight or less. 7. The organic electroluminescent device according to 6 .
【請求項8】 前記第1金属はストロンチウムであるこ
を特徴とする請求項記載の有機エレクトロルミネッ
センス素子。
8. The method according to claim 1, wherein the first metal is strontium.
The organic electroluminescent device according to claim 5, wherein the door.
【請求項9】 前記合金陰極の前記第1及び第2金属の
重量比は、前記第2金属が1000重量部に対してスト
ロンチウムが400重量部以下の重量比であることを特
徴とする請求項記載の有機エレクトロルミネッセンス
素子。
9. The weight ratio of the first and second metals in the alloy cathode is such that the weight ratio of strontium to the second metal is 1000 parts by weight and that of strontium is 400 parts by weight or less. 9. The organic electroluminescence device according to 8 .
【請求項10】 第2金属はアルミニウムまたはマグネ
シウムであることを特徴とする請求項5ないし9のいず
れか1記載の有機エレクトロルミネッセンス素子。
10. The organic electroluminescence device according to claim 5, wherein the second metal is aluminum or magnesium.
【請求項11】 前記保護電極は前記第2金属からなる
ことを特徴とする請求項5ないし10のいずれか1記載
の有機エレクトロルミネッセンス素子。
11. The organic electroluminescence device according to claim 5, wherein the protection electrode is made of the second metal.
JP00682492A 1991-01-29 1992-01-17 Organic electroluminescence device Expired - Fee Related JP3236332B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP00682492A JP3236332B2 (en) 1991-01-29 1992-01-17 Organic electroluminescence device
US07/961,506 US5429884A (en) 1992-01-17 1992-10-15 Organic electroluminescent element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP885891 1991-01-29
JP3-8858 1991-01-29
JP00682492A JP3236332B2 (en) 1991-01-29 1992-01-17 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JPH05121172A JPH05121172A (en) 1993-05-18
JP3236332B2 true JP3236332B2 (en) 2001-12-10

Family

ID=26341023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00682492A Expired - Fee Related JP3236332B2 (en) 1991-01-29 1992-01-17 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP3236332B2 (en)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701738B2 (en) * 1994-05-17 1998-01-21 日本電気株式会社 Organic thin film EL device
JP3428152B2 (en) * 1994-07-13 2003-07-22 松下電器産業株式会社 Manufacturing method of organic EL element
JP3249297B2 (en) * 1994-07-14 2002-01-21 三洋電機株式会社 Organic electroluminescent device
JP2809175B2 (en) * 1996-02-28 1998-10-08 日本電気株式会社 Organic thin film EL display
WO1998024272A1 (en) * 1996-11-27 1998-06-04 Tdk Corporation Organic el element
DE69723538T2 (en) * 1996-11-29 2004-06-09 Idemitsu Kosan Co. Ltd. Organic electroluminescent device
US6172458B1 (en) 1997-04-30 2001-01-09 Tdk Corporation Organic electroluminescent device with electrode of aluminum-lithium alloy
JPH10321374A (en) * 1997-05-20 1998-12-04 Tdk Corp Organic el(electroluminescent)element
US6452218B1 (en) * 1997-06-10 2002-09-17 Uniax Corporation Ultra-thin alkaline earth metals as stable electron-injecting electrodes for polymer light emitting diodes
JPH11102786A (en) 1997-09-29 1999-04-13 Minolta Co Ltd Organic electroluminescence element
JP3736071B2 (en) 1997-09-30 2006-01-18 コニカミノルタホールディングス株式会社 Organic electroluminescence device
JP2914361B2 (en) 1997-10-09 1999-06-28 日本電気株式会社 Organic thin film EL device
US6558817B1 (en) 1998-09-09 2003-05-06 Minolta Co., Ltd. Organic electroluminescent element
JP3492535B2 (en) * 1998-12-22 2004-02-03 日本電気株式会社 Organic thin film EL device and method of manufacturing the same
JP2000208255A (en) 1999-01-13 2000-07-28 Nec Corp Organic electroluminescent display and manufacture thereof
US7288420B1 (en) 1999-06-04 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
JP4094437B2 (en) * 1999-06-04 2008-06-04 株式会社半導体エネルギー研究所 Method for manufacturing electro-optical device
US6660409B1 (en) 1999-09-16 2003-12-09 Panasonic Communications Co., Ltd Electronic device and process for producing the same
EP1255422A4 (en) 2000-01-13 2006-11-29 Matsushita Electric Ind Co Ltd Electrode body, thin-film el device comprising the same, method for manufacturing the same, and display and illuminator comprising the thin-film el device
EP1173049B1 (en) 2000-02-02 2015-05-27 Mitsubishi Chemical Corporation Organic electroluminescent element
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
US6794061B2 (en) * 2002-01-31 2004-09-21 Eastman Kodak Company Organic electroluminescent device having an adhesion-promoting layer for use with a magnesium cathode
US7605534B2 (en) 2003-12-02 2009-10-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element having metal oxide and light-emitting device using the same
TW200528536A (en) 2003-12-19 2005-09-01 Showa Denko Kk Boron-containing polymer compound and organic light emitting device using the same
EP2562840A1 (en) 2005-03-16 2013-02-27 UDC Ireland Limited Platinum complex compound and organic electroluminescent device
WO2007042956A1 (en) * 2005-10-07 2007-04-19 Philips Intellectual Property & Standards Gmbh Voltage-operated layer arrangement
JP5484690B2 (en) 2007-05-18 2014-05-07 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP2009004753A (en) 2007-05-18 2009-01-08 Fujifilm Corp Organic electroluminescent device
JP4995137B2 (en) 2007-06-11 2012-08-08 富士フイルム株式会社 Gas barrier film and organic device using the same
JP2009076865A (en) 2007-08-29 2009-04-09 Fujifilm Corp Organic electroluminescence device
JP2010006039A (en) 2007-09-05 2010-01-14 Fujifilm Corp Gas barrier film, and method for sealing display element using gas barrier film
KR101548382B1 (en) 2007-09-14 2015-08-28 유디씨 아일랜드 리미티드 Organic electroluminescence device
US8067085B2 (en) 2007-09-14 2011-11-29 Fujifilm Corporation Gas barrier film, and display device comprising the same
US8586189B2 (en) 2007-09-19 2013-11-19 Fujifilm Corporation Gas-barrier film and organic device comprising same
US8033882B2 (en) 2007-09-19 2011-10-11 Fujifilm Corporation Light-emitting device or display device, and method for producing them
US20090075034A1 (en) 2007-09-19 2009-03-19 Nobuhiro Nishita Patterning method and display device
JP2009076232A (en) 2007-09-19 2009-04-09 Fujifilm Corp Environment-sensitive device, and method for sealing environment-sensitive element
JP5438941B2 (en) 2007-09-25 2014-03-12 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP5489445B2 (en) 2007-11-15 2014-05-14 富士フイルム株式会社 Thin film field effect transistor and display device using the same
JP5489446B2 (en) 2007-11-15 2014-05-14 富士フイルム株式会社 Thin film field effect transistor and display device using the same
JP5438955B2 (en) 2007-12-14 2014-03-12 ユー・ディー・シー アイルランド リミテッド Platinum complex compound and organic electroluminescence device using the same
JP4555358B2 (en) 2008-03-24 2010-09-29 富士フイルム株式会社 Thin film field effect transistor and display device
JP4531836B2 (en) 2008-04-22 2010-08-25 富士フイルム株式会社 Organic electroluminescent device, novel platinum complex compound and novel compound that can be a ligand
JP5117422B2 (en) 2008-07-15 2013-01-16 富士フイルム株式会社 Light emitting device and manufacturing method thereof
JP5117326B2 (en) 2008-08-29 2013-01-16 富士フイルム株式会社 Color display device and manufacturing method thereof
JP2010153820A (en) 2008-11-21 2010-07-08 Fujifilm Corp Organic electroluminescent element
JP2010182449A (en) 2009-02-03 2010-08-19 Fujifilm Corp Organic electroluminescent display device
JP2010186723A (en) 2009-02-13 2010-08-26 Fujifilm Corp Organic el device and method of manufacturing the same
JP2010205650A (en) 2009-03-05 2010-09-16 Fujifilm Corp Organic el display device
JP5650889B2 (en) 2009-03-26 2015-01-07 ユー・ディー・シー アイルランド リミテッド Inorganic materials, devices and organic electroluminescent elements
WO2010110347A1 (en) 2009-03-27 2010-09-30 富士フイルム株式会社 Organic electroluminescent element and process for manufacturing organic electroluminescent element
KR20120001734A (en) 2009-03-27 2012-01-04 후지필름 가부시키가이샤 Coating solution for organic electroluminescent element
EP2415833A4 (en) 2009-03-30 2014-06-18 Udc Ireland Ltd Conductive polymer composition, conductive cured film, and organic electroluminescent element
JP2010272515A (en) 2009-04-20 2010-12-02 Fujifilm Corp Organic electroluminescence display device
JP2011060549A (en) 2009-09-09 2011-03-24 Fujifilm Corp Optical member for organic el device, and organic el device
JP5657243B2 (en) 2009-09-14 2015-01-21 ユー・ディー・シー アイルランド リミテッド Color filter and light emitting display element
JP5473506B2 (en) 2009-09-14 2014-04-16 ユー・ディー・シー アイルランド リミテッド Color filter and light emitting display element
WO2013141182A1 (en) 2012-03-23 2013-09-26 宇部興産株式会社 Benzobis(thiadiazole) derivative and organic electronics device using same
TWI637958B (en) 2013-09-20 2018-10-11 宇部興產股份有限公司 Benzobis-(thiadiazole) derivative, ink containing thereof, and organic electronics device using thereof
EP3140871B1 (en) 2014-05-08 2018-12-26 Universal Display Corporation Stabilized imidazophenanthridine materials
KR102584846B1 (en) 2015-05-05 2023-10-04 유니버셜 디스플레이 코포레이션 Organic electroluminescent materials and devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
JPH05121172A (en) 1993-05-18

Similar Documents

Publication Publication Date Title
JP3236332B2 (en) Organic electroluminescence device
US5429884A (en) Organic electroluminescent element
US5276381A (en) Organic electroluminescent device
JP2815472B2 (en) EL device
JP2891783B2 (en) Organic electroluminescence device
JPH10125469A (en) Organic electroluminescent element
JP2001237079A (en) Organic electroluminescence element
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
JPH06163158A (en) Organic electroluminescence element
JPH1131590A (en) Organic el element
JP2001237080A (en) Organic electroluminescence element
JP2772019B2 (en) EL device
JP2914361B2 (en) Organic thin film EL device
JP3254570B2 (en) Organic thin film EL device
JPH1167444A (en) Organic el element
JPH1140365A (en) Organic el element and its manufacture
JP2881212B2 (en) EL device
US6187457B1 (en) Organic EL element and method of producing the same
JP3300065B2 (en) Organic electroluminescence device
JP2888740B2 (en) Organic electroluminescence device
JPH1140352A (en) Organic el element and manufacture thereof
JP3226581B2 (en) Organic electroluminescence device
JPH0997676A (en) Organic electroluminescent element
JPH04298989A (en) Organic thin film type electroluminescence element
JPH11135264A (en) Organic el element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees