JP3236315B2 - Pure water electrolysis tank with an intermediate chamber - Google Patents

Pure water electrolysis tank with an intermediate chamber

Info

Publication number
JP3236315B2
JP3236315B2 JP21547191A JP21547191A JP3236315B2 JP 3236315 B2 JP3236315 B2 JP 3236315B2 JP 21547191 A JP21547191 A JP 21547191A JP 21547191 A JP21547191 A JP 21547191A JP 3236315 B2 JP3236315 B2 JP 3236315B2
Authority
JP
Japan
Prior art keywords
pure water
cathode
chamber
electrolytic cell
intermediate chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21547191A
Other languages
Japanese (ja)
Other versions
JPH05339769A (en
Inventor
修生 澄田
寿正 橋本
Original Assignee
修生 澄田
寿正 橋本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 修生 澄田, 寿正 橋本 filed Critical 修生 澄田
Priority to JP21547191A priority Critical patent/JP3236315B2/en
Publication of JPH05339769A publication Critical patent/JPH05339769A/en
Application granted granted Critical
Publication of JP3236315B2 publication Critical patent/JP3236315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、純水または超純水と呼
ばれる電導率の小さい水を対象とし、プラス・マイナス
二つの電極が設けられた槽の中間に新たな中間室を設け
ることで、電解効率を向上させた電解槽、及びこれを用
いて溶液中の不純物を除去する方法に関し、より詳しく
は、カソード室とアノード室の間に粒状の固体電解質、
例えばH−型のふっ素樹脂系陽イオン交換樹脂などを充
填した中間槽を設けることにより、アノード極で生成し
た、酸素、オゾン、などの酸化作用の強い物質がカソー
ド室に拡散移動する事を防止し、かつカソード室での水
素発生を容易なものとして、還元性の強いカソード液を
得ることができる電解槽に関する。
BACKGROUND OF THE INVENTION The present invention is directed to pure water or ultrapure water, which has a small electric conductivity, and is provided with a new intermediate chamber in the middle of a tank provided with two positive and negative electrodes. An electrolytic cell with improved electrolysis efficiency, and a method for removing impurities in a solution using the same, more specifically, a granular solid electrolyte between a cathode chamber and an anode chamber,
For example, by providing an intermediate tank filled with H-type fluororesin cation exchange resin, etc., it is possible to prevent highly oxidizing substances such as oxygen and ozone generated at the anode from diffusing and moving to the cathode chamber. The present invention also relates to an electrolytic cell capable of easily generating hydrogen in a cathode chamber and obtaining a catholyte having a strong reducing property.

【0002】[0002]

【発明の背景と従来の技術】近年、各種洗浄剤の環境に
対する悪影響が問題となり、さまざまな角度から検討が
進められている。その代表例がフロンで、洗浄力の強さ
から、半導体そのほか多くの分野で使用されてきた。と
ころが、フロンを始めとするフッ素系溶剤は、地球のオ
ゾン層を破壊する危険性を有することが報告されて以
来、世界的な規模で使用の制限が進んでいる。これらの
溶剤の代替として、最も安全な溶剤である水が再び脚光
を浴びている。半導体分野などで用いられる洗浄用の水
は、いわゆる純水である。純水は一般に電気伝導度で確
認され、伝導率ρが10μS・cmより小さな値のもの
を純水、更に0.055μS・cmより小さなものを超
純水と呼ぶことが多いので本明細書においてもこれに従
う。以下、これらの純水の酸化還元性および純度とくに
極性有機物質などの不純物について説明する。
BACKGROUND OF THE INVENTION In recent years, adverse effects on the environment of various cleaning agents have become a problem, and studies have been made from various angles. A typical example is chlorofluorocarbon, which has been used in semiconductors and many other fields due to its strong cleaning power. However, since it has been reported that fluorinated solvents such as chlorofluorocarbons have a risk of destroying the ozone layer of the earth, the use thereof has been increasingly restricted on a global scale. As an alternative to these solvents, the safest solvent, water, is again in the limelight. Cleaning water used in the semiconductor field and the like is so-called pure water. Pure water is generally confirmed by electric conductivity, and a substance having a conductivity ρ smaller than 10 μS · cm is often referred to as pure water, and a substance smaller than 0.055 μS · cm is referred to as ultrapure water. Follow this. The redox properties and purity of these pure waters, particularly impurities such as polar organic substances, will be described below.

【0003】水の酸化還元性は、含まれる物質に大いに
依存する。通常の純水または超純水にも溶存酸素(D
O)が約8ppm含まれ、このためシリコンなどの表面
をこの純水で洗浄すると、部分的に酸化溶解することが
知られている。このために、DOを低減する目的で窒素
ガスをバブリング(泡立て)して低DOを達成する超純
水製造装置が開発されている。しかしこの脱気法を用い
た場合、DOは、50ppb(0.005ppm)まで
は比較的速やかに低減するが、50ppb以下に低減す
るためには、時間がかかる。その上、脱気用のガスに
は、超純水を汚染しないような極めて高純度のものが要
求される。このために、より効率的な方法が要求されて
いる。
[0003] The redox properties of water are highly dependent on the substances involved. Dissolved oxygen (D
O) is contained in about 8 ppm. Therefore, it is known that when a surface such as silicon is washed with the pure water, the surface is partially oxidized and dissolved. For this reason, an ultrapure water production apparatus that achieves low DO by bubbling (foaming) nitrogen gas for the purpose of reducing DO has been developed. However, when this degassing method is used, DO decreases relatively quickly to 50 ppb (0.005 ppm), but it takes time to reduce DO to 50 ppb or less. In addition, the gas for degassing is required to be of extremely high purity so as not to contaminate ultrapure water. For this, a more efficient method is required.

【0004】また別の分野として原子力発電所のうち沸
騰水型原子炉(BWR)では、冷却水として、超純水レ
ベルに近い水が用いられている。BWRの一次系のステ
ンレス鋼製配管の内面に形成される酸化被膜には、発電
中に生じるコバルト60などの放射性核種が取り込まれ
ることが知られている。このように、配管にCo 60 が付
着すると配管の周囲の線量率が上昇するので、Co 60
ときどき除去することが望ましい。Co 60 を除去するた
めには、Co 60 を取り込んでいる酸化被膜を溶解除去す
ることが必要である。BWR環境下で生成したステンレ
ス鋼の酸化被膜は、DOを1ppbの還元性の条件下
で、溶解速度が増大することが知られている。通常は化
学薬品を添加してCo 60 を除去しているが、一次系が化
学薬品で汚染されて浄化作業に多大の時間がかかる上、
放射性廃棄量が増大する。そこで超純水に近い冷却水の
還元性を強化させることにより、Co 60 の除去速度を増
加させる技術が確立できれば、安全性の観点からこの技
術は非常に有望である。またこの技術はBWRに留まら
ず、鉄系の酸化被膜を除去する際、化学薬品の廃棄物が
排出されないので、還流対策の面で有利な技術となる。
[0004] As another field, a boiling water reactor (BWR) of nuclear power plants uses water near the ultrapure water level as cooling water. It is known that a radionuclide such as cobalt 60 generated during power generation is taken into an oxide film formed on the inner surface of a BWR primary stainless steel pipe. As described above, if Co 60 adheres to the pipe, the dose rate around the pipe increases, so it is desirable to remove Co 60 from time to time. In order to remove Co 60 , it is necessary to dissolve and remove the oxide film containing Co 60 . It is known that the oxide film of stainless steel formed in a BWR environment has an increased dissolution rate under a reducing condition of 1 ppb of DO. Normally, chemicals are added to remove Co 60 , but the primary system is contaminated with chemicals and it takes a lot of time for purification work.
Radioactive waste increases. Therefore, if a technique for increasing the removal rate of Co 60 by enhancing the reducibility of cooling water close to ultrapure water can be established, this technique is very promising from the viewpoint of safety. Further, this technique is not limited to BWR, and is not advantageous in terms of countermeasures against reflux, since no chemical waste is discharged when removing an iron-based oxide film.

【0005】現在、超純水の製造装置は、イオン交換樹
脂塔、ポリッシャー樹脂塔、フィルター、逆浸透圧装
置、限外ろ過モジュールおよび紫外線殺菌などから構成
されている。超純水の純度のうち、電導度は水分子の一
部が解離して生成されるH+ とOH- イオンのみによる
理論的な値に近づいている。K+ ,Na+ ,Cu2+及び
Zn2+イオンなどの不純物濃度は数ppbオーダにまで
低減されているが、完全に除去されているわけではな
い。特に遷移金属イオンは、加水分解により全体として
電気的に中性となり、イオン交換樹脂で除去することが
困難になる。有機物の不純物は約50ppbとなってお
り、イオン性不純物に比較して残留量は大きい。したが
って超純水の純度をさらに向上させるためには、新しい
浄化法を開発することが必要であった。
At present, an apparatus for producing ultrapure water comprises an ion exchange resin tower, a polisher resin tower, a filter, a reverse osmotic pressure apparatus, an ultrafiltration module, and an ultraviolet sterilizer. Among the purity of ultrapure water, the conductivity approaches the theoretical value of only H + and OH ions generated by dissociation of a part of water molecules. The concentration of impurities such as K + , Na + , Cu 2+ and Zn 2+ ions has been reduced to the order of several ppb, but is not completely removed. In particular, the transition metal ion becomes electrically neutral as a whole due to the hydrolysis, and it becomes difficult to remove it with an ion exchange resin. The organic impurities are about 50 ppb, and the residual amount is larger than the ionic impurities. Therefore, in order to further improve the purity of ultrapure water, it was necessary to develop a new purification method.

【0006】新しい浄化法の候補としてJ.H. St
rohlとK.L.Dunlapにより報告(下記*参
照)されている電気化学プロセスを利用する方法があ
る。この報告によれば、非イオン性極性有機物の吸着現
象は、被吸着物質の電位に依存し、有機物に固有の電位
で特異的に吸着する。しかし、この報告は電解質溶液を
用いており、超純水の浄化にそのまま応用することはで
きない(*J.H.Strohland K.L.Dunlap Anal.Chem.,44(A
72)2166、 Elechosorption AND Separation ofQuinones
on a Column of graphite particles) 。
[0006] As a candidate for a new purification method, J.-K. H. St
rohl and K.R. L. There is a method utilizing an electrochemical process reported by Dunlap (see * below). According to this report, the adsorption phenomenon of a nonionic polar organic substance depends on the potential of the substance to be adsorbed, and specifically adsorbs at a potential specific to the organic substance. However, this report uses an electrolyte solution and cannot be applied directly to purification of ultrapure water (* JHStrohland KLDunlap Anal.Chem., 44 (A
72) 2166, Elechosorption AND Separation of Quinones
on a Column of graphite particles).

【0007】薬品を使用せずに水のDOを下げ、還元性
を向上させる技術に電解還元法が知られているが、しか
し、純水または超純水の伝導度は10μS・cm以下と
極めて小さいので、電解効果を得るためには、電解電圧
は数100V以上になって工業的な実施には適さず、従
来、純水または超純水に電解還元法は応用されていな
い。
[0007] An electrolytic reduction method is known as a technique for reducing the DO of water and improving the reducibility without using chemicals. However, the conductivity of pure water or ultrapure water is extremely low at 10 µS · cm or less. Since it is small, in order to obtain an electrolytic effect, the electrolysis voltage is several hundred volts or more, which is not suitable for industrial implementation. Conventionally, the electrolytic reduction method has not been applied to pure water or ultrapure water.

【0008】ところで、純水を低電圧で電解して気体状
のオゾン(O3 )または高濃度のオゾン水を得る技術が
最近開発されており、本発明とは目的が異なるが低電圧
で純水を電解する技術の一つとして注目に値する。
A technique for obtaining gaseous ozone (O 3 ) or high-concentration ozone water by electrolyzing pure water at a low voltage has recently been developed. The purpose of this technique is different from that of the present invention. It is noteworthy as one of the technologies for electrolyzing water.

【0009】以下、本発明の目的とは関係しないが、こ
のオゾン水を得る上記提案内容の概要を簡単に説明す
る。この方法では、図に示すように、例えばイオン交
換膜101の両側にカソード電極102とアノード電極
103を密着させた構造の電解槽104が用いられる。
そしてカソード室109には入口105及び出口106
が設けられ、またアノード室110には入口107及び
出口108が設けられる。このような構成において、例
えばフッ素樹脂に陽イオン交換基(−SO H基)を
導入した陽イオン交換膜を用いると、電解電圧を数ボル
ト(V)にまで下げることができる。このような構造の
電解槽においては、アノード電極103でオゾンを生成
するための電流効率は電解材質に依存することが知ら
れ、一般的には白金(Pt)、鉛酸化物(β−PbO
)などが用いられる場合が多い。
Although not related to the object of the present invention, the outline of the above proposal for obtaining the ozone water will be briefly described below. In this method, as shown in FIG. 7 , for example, an electrolytic cell 104 having a structure in which a cathode electrode 102 and an anode electrode 103 are adhered to both sides of an ion exchange membrane 101 is used.
The cathode chamber 109 has an inlet 105 and an outlet 106
The anode chamber 110 is provided with an inlet 107 and an outlet 108. In such a configuration, for example, when a cation exchange membrane in which a cation exchange group (—SO 3 H group) is introduced into a fluororesin is used, the electrolysis voltage can be reduced to several volts (V). In the electrolytic cell having such a structure, it is known that the current efficiency for generating ozone at the anode electrode 103 depends on the electrolytic material. Generally, platinum (Pt), lead oxide (β-PbO 2)
) Is often used.

【0010】この構造の電解槽に通電すると、アノード
電極103で(O3 )と(O2 )が発生し、カソード電
極102で水素(H2 )が発生する。これらの電気化学
プロセスに対応して、以下の化学反応式が推定されてい
る。
When electricity is supplied to the electrolytic cell having this structure, (O 3 ) and (O 2 ) are generated at the anode electrode 103, and hydrogen (H 2 ) is generated at the cathode electrode 102. The following chemical reaction formulas have been estimated for these electrochemical processes.

【0011】 H2 O+O2 →O3 +2H+ +2e-o =2.07V (1) 3H2 O →O3 +6H+ +6e-o =1.51V (2) 2H2 O →O2 +4H+ +4e-o =1.23V (3) ここでEo は標準酸化還元電位である。[0011] H 2 O + O 2 → O 3 + 2H + + 2e - E o = 2.07V (1) 3H 2 O → O 3 + 6H + + 6e - E o = 1.51V (2) 2H 2 O → O 2 + 4H + + 4e - E o = 1.23V ( 3) where E o is the standard redox potential.

【0012】これらの化学式にしたがって生成されたH
+ イオンは、陽イオン交換膜を介してカソード電極側に
移動してH2 ガスに還元されると考えられている。
The H formed according to these chemical formulas
It is considered that + ions move to the cathode electrode side through the cation exchange membrane and are reduced to H 2 gas.

【0013】ところで、この電解槽104を用いると、
低電圧で純水を電解する事が可能であるが、しかし、固
体電解質である陽イオン交換膜は、部分的にO2 などを
透過させるので、カソード電解液の還元性能は低下し、
そのままでは本発明の目的に応用できない。
By the way, when this electrolytic cell 104 is used,
Although it is possible to electrolyze pure water at low voltage, however, the cation exchange membrane, which is a solid electrolyte, partially permeates O 2 and the like, so the reduction performance of the cathode electrolyte is reduced,
As it is, it cannot be applied to the purpose of the present invention.

【0014】[0014]

【発明が解決しようとする課題】本発明は、オゾン(O
3 )の生成でなく、純水の酸化還元性および純度をコン
トロールする事が可能な電解槽を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention relates to ozone (O
An object of the present invention is to provide an electrolytic cell capable of controlling the oxidation-reduction property and purity of pure water instead of the production of 3 ).

【0015】上記の図に示した構造を有する電解
用いた場合、アノード電極103にはO またはO
が発生するのでアノード室に酸化性の水が得られ、一
方、カソード電極102にはHが発生するのでカソ
ード室に還元性の水が得られる。ここでカソード側でよ
り強い還元性の水を得たい場合、H などの還元性物
質の生成に加えて、O などの酸化性物質を除去する
ことが必要である。そして、純水でも一般にO が溶
存しており、還元性向上のためにはこのOの除去が
望まれる。
When an electrolytic cell having the structure shown in FIG. 7 is used, O 3 or O 2
Is generated, oxidizing water is obtained in the anode chamber. On the other hand, H 2 is generated in the cathode electrode 102, so that reducing water is obtained in the cathode chamber. Here, when it is desired to obtain stronger reducing water on the cathode side, it is necessary to remove oxidizing substances such as O 2 in addition to generation of reducing substances such as H 2 . O 2 is generally dissolved even in pure water, and it is desired to remove O 2 in order to improve the reducibility.

【0016】O2 は以下の化学反応式で示されるよう
に、還元反応により還元性物質に変わるので、電解還元
法はO2 除去に有力な方法の一つである。
As shown by the following chemical reaction formula, O 2 is converted into a reducing substance by a reduction reaction, so that the electrolytic reduction method is one of the effective methods for removing O 2 .

【0017】 O2 +4H+ +4e− →2H2 O EO = 1.23V (4) O2 + H+ +e− →HO2 EO =−0.13V (5) O2 +2H+ +2e− →H2 O2 EO =−0.69V (6) ところで、電解法ではアノード電極における酸化反応
と、カソード電極における還元反応が対になっているの
で、電極間陽イオン交換膜にガス透過性があると、酸
化反応で発生したO2 などの酸化性物質が、イオン交
換膜を介してカソード電極側に移動することは既に述べ
た。この現象が電解還元法の欠点となる。
O2 + 4H ++ 4e− → 2H2OEO = 1.23V (4) O2 + H ++ e− → HO2EO = −0.13V (5) O2 + 2H ++ 2e− → H2O2EO = −0.69V (6) By the way, in the electrolysis method, the oxidation reaction at the anode electrode and the reduction reaction at the cathode electrode are paired, so if the cation exchange membrane between the electrodes has gas permeability, the oxidation reaction such as O2 generated by the oxidation reaction will occur. It has already been described that the substance moves to the cathode electrode side through the ion exchange membrane. This phenomenon is a disadvantage of the electrolytic reduction method.

【0018】図に示す電解槽104を用いると、純水
中の微量金属イオンはマイナス極であるカソード電極側
に、反対に陰イオンはプラス極のアノード電極側に移行
する。しかし、非イオン性である極性有機物は、どちら
の極側にも移動しない。電極の電位を有機物の特異吸着
に適した値に設定したとしても吸着効率は低い。またこ
の電解槽104の場合、電極電位は一意的に決まるもの
であり、同時に複数の電極電位を設定することは不可能
である。したがって、複数個の非イオン性極性有機物
を、同時に除去することは不可能である。なお、鉄(F
e)イオンなどの遷移金属イオンは、還元反応によりカ
ソード電極表面に電析し除去される傾向にある。しか
し、還元反応のみでは金属イオンの捕集量に限界があ
り、工学的にメリットが低い。またアルカリ金属イオン
等のように還元されにくいイオンは、必ずしも充分な効
率で除去できない。一方、アノード電極側では、陰イオ
ンが濃縮されるが電析はしない。このように、上述の構
造をなす電解槽104では、イオン性及び非イオン性不
純物を完全に除去することが原理的に困難である。
When the electrolytic cell 104 shown in FIG. 7 is used, trace metal ions in pure water move to the cathode electrode side which is a negative electrode, and conversely, anions move to the anode electrode side which is a positive electrode. However, non-ionic polar organics do not migrate to either pole. Even if the potential of the electrode is set to a value suitable for specific adsorption of organic substances, the adsorption efficiency is low. In the case of the electrolytic cell 104, the electrode potential is uniquely determined, and it is impossible to set a plurality of electrode potentials at the same time. Therefore, it is impossible to remove a plurality of nonionic polar organic substances at the same time. In addition, iron (F
e) Transition metal ions such as ions tend to be electrodeposited and removed on the cathode electrode surface by a reduction reaction. However, the reduction reaction alone has a limit in the amount of trapped metal ions, and is less advantageous in terms of engineering. In addition, ions that are not easily reduced, such as alkali metal ions, cannot always be removed with sufficient efficiency. On the other hand, on the anode electrode side, anions are concentrated but are not electrodeposited. Thus, in the electrolytic cell 104 having the above-described structure, it is theoretically difficult to completely remove ionic and nonionic impurities.

【0019】[0019]

【課題を解決するための手段】このように、上述の高濃
度のオゾン水を製造するために提案された上記図の構
造の電解槽104では、アノード電極で生成されたO
及びO がカソード電極側に移行することが避けられ
ず、本発明の目的にこれを適用する場合にはこの点が大
きな問題となる。
As described above, in the electrolytic cell 104 having the structure shown in FIG. 7 proposed for producing the above-described high-concentration ozone water, O 3 generated at the anode electrode is used.
Inevitably, O 2 and O 2 migrate to the cathode electrode side, and this is a serious problem when applied to the object of the present invention.

【0020】そこで本発明者は、この問題を回避するこ
とについて研究を重ね、上記特許請求の範囲の各請求項
に記載の本発明を完成した。
Therefore, the inventor has conducted research on avoiding this problem, and has completed the present invention described in each of the claims.

【0021】本発明の原理を、図1を用いて以下説明す
る。この図1の電解槽15において、1および2はイオ
ン交換膜、3はカソード電極、4はアノード電極、5は
カソード室11の入口、6は同出口、7はアノード室1
2の入口、8は同出口、9は中間室13の入口、10は
同出口である。
The principle of the present invention will be described below with reference to FIG. In the electrolytic cell 15 of FIG. 1, 1 and 2 are ion exchange membranes, 3 is a cathode electrode, 4 is an anode electrode, 5 is an inlet of the cathode chamber 11, 6 is an outlet thereof, and 7 is an anode chamber 1
Reference numeral 2 denotes an inlet, 8 denotes the same outlet, 9 denotes an inlet of the intermediate chamber 13, and 10 denotes the same outlet.

【0022】中間室に通水する純水は、例えば高純度の
窒素N2 (またはアルゴンAr)ガスをバブリングす
る事により溶存酸素濃度(DO)を十分に低下(一般的
にはDOが50ppb以下、好ましくは10ppb程度
以下とすることが望ましい)させた純水が用いられる。
この純水を循環使用する場合には、アノード室12から
中間室13に移行するO2 及びO3 は、このバブリン
グ操作により除去される。 本発明の特徴の一つは、上
記の中間室13に固体電解質を充填することにある。こ
れは同中間室13に純水のみを取入れた場合には、純水
の伝導度が10μS・cm以下と小さいために電解電圧
が非常に大きくなるのに対し、中間室に固体電解質(例
えばイオン交換樹脂)を充填することにより導度を増
加させ、電解電圧を低減することが有効となるからであ
る。この電解電圧を下げるための固体電解質としては、
イオン交換膜(隔膜)と同様にフッ素のイオン交換樹脂
が中間室充填用として適し、特にフッ素樹脂に−SO3
H基が結合したイオン交換樹脂、具体的にはデュポン
社製のナフィオンNR−50等を代表的なものとして挙
げることができるがこれに限定されるものではない。上
記固体電解質の他のものとしては、例えばポリスチレン
樹脂にスルホン酸基(−SO3 H)が結合したイオン
交換樹脂、具体的にはアンバーライトIR−116,I
R−118,IR−121,IR−122,252,2
00C,200CT(オルガノ社製)、ダイアイオンS
K102,SK104,SK10,SK110,SK1
16,SK208,PK208,PK212,PK21
6,PK220,PK228(三菱樹脂社製)、ダウエ
ックスHCR2 ,HCR−S,HGR−W,MSH−
1(ダウケミカル社製)が挙げられ、またメタクリル
酸,又はアクリル酸とジビニルベンゼンよりなる樹脂に
カルボン酸基(−COOH)が結合した樹脂、具体的に
はアンバーライトIRC−50,DP−1,IRC−8
4(オルガノ社製)、ダイアイオンWK10,WK1
1,WK20(三菱樹脂社製)、ダウエックスCCR−
2(ダウケミカル社製)などを挙げることができる。ま
た固体電解質の充填の程度は、電解単位面積当り1g/
cm2 〜10g/cm2 が適当である。固体電解質は
粒状のものである他、例えば適当な通水が可能な50μ
m以上の孔径を有するブロック状の多孔質体も好ましく
用いられる。
The pure water passing through the intermediate chamber can sufficiently lower the dissolved oxygen concentration (DO) by bubbling high-purity nitrogen N2 (or argon Ar) gas (in general, the DO is 50 ppb or less, (Preferably, about 10 ppb or less).
When this pure water is used in a circulating manner, O2 and O3 which are transferred from the anode chamber 12 to the intermediate chamber 13 are removed by this bubbling operation. One of the features of the present invention is that the intermediate chamber 13 is filled with a solid electrolyte. This is because, when pure water alone is introduced into the intermediate chamber 13, the electrolysis voltage becomes very high because the conductivity of the pure water is as small as 10 μS · cm or less, whereas the solid electrolyte (for example, ion exchange resin) to increase the heat transfer Shirubedo by filling, because it is effective to reduce the electrolysis voltage. As a solid electrolyte for lowering this electrolysis voltage,
As with the ion exchange membrane (diaphragm) , a fluorine ion exchange resin is suitable for filling the intermediate chamber.
An ion exchange resin to which an H group is bonded, specifically, Nafion NR-50 manufactured by DuPont, or the like can be given as a typical example, but is not limited thereto. Other examples of the solid electrolyte include an ion exchange resin in which a sulfonic acid group (—SO 3 H) is bonded to a polystyrene resin, specifically, Amberlite IR-116, I
R-118, IR-121, IR-122, 252, 2
00C, 200CT (Organo), Diaion S
K102, SK104, SK10, SK110, SK1
16, SK208, PK208, PK212, PK21
6, PK220, PK228 (manufactured by Mitsubishi Plastics, Inc.), Dowex HCR2, HCR-S, HGR-W, MSH-
1 (manufactured by Dow Chemical Co., Ltd.), and a resin in which a carboxylic acid group (—COOH) is bonded to a resin composed of methacrylic acid or acrylic acid and divinylbenzene, specifically, Amberlite IRC-50, DP-1 , IRC-8
4 (manufactured by Organo), Diaion WK10, WK1
1, WK20 (Mitsubishi Plastics), Dowex CCR-
2 (manufactured by Dow Chemical Company) and the like. The degree of filling of the solid electrolyte is 1 g /
A suitable range is from 10 cm 2 to 10 g / cm 2. The solid electrolyte is not only granular but also, for example, 50 μm that allows appropriate water flow.
A block-shaped porous body having a pore diameter of m or more is also preferably used.

【0023】この中間室に通水する速度は、線速度で
0.1cm/sec〜100cm/sec程度とするこ
とがよい。
The speed at which water passes through the intermediate chamber is a linear speed.
It is preferable that the thickness be about 0.1 cm / sec to 100 cm / sec.

【0024】なお、中間室の個数は1個に限定されるも
のではなく、酸化性物質の拡散を抑制する必要性が高い
ときには、複数個にする事が望ましい。例えば純水の温
度を上げた場合(例えば80〜100℃)には隔膜を通
過するO2 の通度が大きくなるから、中間室を複数設け
ることでO2 の拡散をより効果的に防止することができ
る。
The number of intermediate chambers is not limited to one, but it is desirable to increase the number of intermediate chambers when it is highly necessary to suppress the diffusion of oxidizing substances. For example, when the temperature of pure water is increased (for example, 80 to 100 ° C.), the permeability of O 2 passing through the diaphragm increases, so that the diffusion of O 2 is more effectively prevented by providing a plurality of intermediate chambers. be able to.

【0025】中間室の粒状イオン交換樹脂に通電する事
により、電圧が印加される得る。この結果、粒状イオン
交換樹脂表面の電位はプラスからマイナスまで幅広く分
布することになる。更に中間室充填物が、粒状であるた
め有機物との接触機会の確率が大きくなる。これらの点
から中間室を使用することにより、複数個の非イオン性
極性有機物の吸着除去が容易となる。なお、不純物とし
て含まれる陽イオンはカソード電極側に陰イオンはアノ
ード電極側に移行するので中間室はイオン性物質の除去
にも適している。
A voltage can be applied by energizing the granular ion exchange resin in the intermediate chamber. As a result, the potential on the surface of the granular ion exchange resin is widely distributed from plus to minus. Furthermore, since the filling of the intermediate chamber is granular, the probability of contact with organic matter increases. From these points, the use of the intermediate chamber facilitates adsorption and removal of a plurality of nonionic polar organic substances. Since the cations contained as impurities move to the cathode electrode side and the anions move to the anode electrode side, the intermediate chamber is also suitable for removing ionic substances.

【0026】また、図1の構造の電解槽15において一
方のイオン交換膜1を除いた構成も有効に用いられ、こ
れによりカソード電極と粒状または多孔質の固体電解質
を密着させた構造は、遷移金属イオンの捕集量が向上す
る。その具体的な構造例は図2の電解槽31によって示
され、図1と共通の部材には符号に10を加えて示し
た。すなわち図2中の22はカソード電極、23はアノ
ード電極、21は陽イオン交換膜、24は粒状または多
孔質の固体電解質を充填した中間室を夫々示している。
なお25は、浄化を目的とする中間室24への水の入口
であり、26は生成水のカソード室29からの出口、2
7はアノード室30への水の入口、28は同出口であ
る。
The structure in which one of the ion-exchange membranes 1 is removed from the electrolytic cell 15 having the structure shown in FIG. 1 is also effectively used, so that the structure in which the cathode electrode and the granular or porous solid electrolyte are in close contact with each other is a transition type. The collection amount of metal ions is improved. A specific example of the structure is shown by the electrolytic cell 31 in FIG. 2, and members common to those in FIG. That is, 22 in FIG. 2 is a cathode electrode, 23 is an anode electrode, 21 is a cation exchange membrane, and 24 is an intermediate chamber filled with a granular or porous solid electrolyte.
Reference numeral 25 denotes an inlet of water to the intermediate chamber 24 for the purpose of purification, and reference numeral 26 denotes an outlet of the generated water from the cathode chamber 29.
7 is an inlet of water to the anode chamber 30, and 28 is an outlet thereof.

【0027】固体電解質は上記図1の場合と同様であ
り、フッ素系の陽イオン交換樹脂が適している。この構
造の電解槽を用いて電解還元すると、不純物の金属イオ
ンは、まず電極表面に析出し、その後、固体電解質上に
も析出する。この結果金属イオンの捕集量が向上し、装
置の寿命が延長される。
The solid electrolyte is the same as that shown in FIG. 1, and a fluorine-based cation exchange resin is suitable. When electrolytic reduction is performed using an electrolytic cell having this structure, metal ions as impurities are first deposited on the electrode surface and then also deposited on the solid electrolyte. As a result, the collection amount of metal ions is improved, and the life of the device is extended.

【0028】[0028]

【発明の効果】従来の純水の電解法では溶存酸素等の溶
存ガスを溶液中から除去することが容易でなく、また加
水分解により電気的に中性化した金属イオン及び膜の孔
を通過する程小さいクラスター状の金属イオンはイオン
交換樹脂や膜により除去することが困難であり、さらに
活性炭は吸着量に限界があるが、本発明の電解槽と純水
製造装置を組み合わせて用いれば、従来の純水製造装置
や超純水製造装置では除去できなかった不純物を効率よ
く除去できる上、電解により活性な還元性物質を溶液中
に注入することが可能となり、また半導体等の洗浄に適
した水を得ることができるという効果がある。
According to the conventional electrolysis method of pure water , it is not easy to remove dissolved gas such as dissolved oxygen from the solution, and it passes through metal ions and pores of the membrane which are electrically neutralized by hydrolysis. It is difficult to remove cluster-like metal ions as small as possible by using an ion exchange resin or a membrane, and activated carbon has a limit in the amount of adsorption. However, if the electrolytic cell of the present invention and a pure water production apparatus are used in combination, Impurities that could not be removed by conventional pure water production equipment or ultrapure water production equipment can be efficiently removed, and active reducing substances can be injected into the solution by electrolysis, and suitable for cleaning semiconductors etc. There is an effect that water can be obtained.

【0029】また本発明の電解槽を使用して製造した水
は、不純物を極度に低減することが可能であり、面の
酸化溶解の防止が必要なシリコンウエハーの最終段階の
洗浄に特に適している。
Further water was prepared using the electrolytic cell of the present invention, it is possible to extremely reduce impurities, particularly suitable for the cleaning of the final stage of the silicon wafer that requires the prevention of oxidation dissolution of the front surface ing.

【0030】さらに又、沸騰水型原子力発電所の一次冷
却水に含まれる放射性物質の低減の上から求められる不
純物の低減化に有益であり、さらに炉内材料の腐食損傷
防止のためにも適している。
Further, the present invention is useful for reducing impurities required for reducing radioactive substances contained in primary cooling water of a boiling water nuclear power plant, and is also suitable for preventing corrosion damage of materials in a furnace. ing.

【0031】[0031]

【実施例】【Example】

実施例1 図1に示した電解槽15において、カソード電極3とし
て多孔質直方体型のカーボン電極(90×70×30m
m)を用い、アノード電極4として80メッシュの網状
白金(80×60mm)を用いた。中間室にはデュポン
社製ナフィオンNR−50を約160g充填し、隔膜に
は同じくナフィオン117を用いた。水として、超純水
レベルの電導度で0.06μS・cmの純水を用いた。
カソード室及びアノード室の大きさは夫々(90×70
×30mm)、中間室の大きさは(90×70×25m
m)とした。
Example 1 In the electrolytic cell 15 shown in FIG. 1, a porous rectangular carbon electrode (90 × 70 × 30 m) was used as the cathode electrode 3.
m), and 80 mesh mesh platinum (80 × 60 mm) was used as the anode electrode 4. About 160 g of Nafion NR-50 manufactured by DuPont was filled in the intermediate chamber, and Nafion 117 was used for the diaphragm. As the water, pure water having a conductivity of an ultrapure water level of 0.06 μS · cm was used.
The size of the cathode chamber and the size of the anode chamber are each 90 × 70
× 30mm), the size of the intermediate chamber is (90 × 70 × 25m)
m).

【0032】このような電解槽を第6図の純水製造装置
に組み合わせて純水の電解を行なった。
Such an electrolytic cell was combined with the pure water production apparatus shown in FIG. 6 to perform pure water electrolysis .

【0033】なお純水中のDOは、事前にN2 ガスをバ
ブリングすることにより50ppbに下げておいた。こ
の低溶存酸素水をカソード室および中間室13に20c
c/secの流量で循環し、電流密度5〜20mA/c
2 で通電した。
The DO in pure water was previously reduced to 50 ppb by bubbling N 2 gas. This low-dissolved oxygen water is added to the cathode chamber and the intermediate chamber 13 by 20c.
circulating at a flow rate of c / sec, and a current density of 5-20 mA / c
The current was supplied at m 2 .

【0034】カソード室出口6で測定したDOと電流密
度の関係を図3の曲線に示す。この図から明らかなよ
うにカソード電解することにより、DOが低減すること
がわかる。
The relationship between DO and the current density measured at the cathode chamber outlet 6 is shown by the curve in FIG. As is apparent from this figure, it is understood that the cathodic electrolysis reduces DO.

【0035】比較のために図1に示す中間室を除いた電
解槽を用いた実験を実施した。中間室がないこと以外
は、前述の試験条件と全く同様である。出口におけるD
O測定値は、図3の曲線に示すように変化した。DO
はカソード電解以前より低下するが、中間室を設けた場
合より、DO低減率は小さかった。
For comparison, an experiment using an electrolytic cell except for the intermediate chamber shown in FIG. 1 was performed. Except for the absence of an intermediate chamber, the test conditions were exactly the same as those described above. D at the exit
The O measurement changed as shown by the curve in FIG. DO
Was lower than before the cathode electrolysis, but the DO reduction rate was smaller than when the intermediate chamber was provided.

【0036】以上の結果から本発明の有効性が確認され
た。
From the above results, the effectiveness of the present invention was confirmed.

【0037】実施例2 実施例1と同様に図1に示す電解槽15を用いた。中間
室13には、非イオン性極性有機分子を溶解させ、水を
流した。中間室の入口9と出口10で水を採取し、極性
有機分子濃度を測定した。極性有機分子としては2・ヒ
ドロキシ−1,4−ナフトキノン(HNQ)を用いた。
電解条件は次のように設定した。吸着現象は電位に依存
することが知られているので、この実験では定電流電解
ではなく定電位電解を行った。電解電圧は0から25V
の範囲で変化させた。用いた原液として10-6MのHN
Qを超純水に溶解させた液を用いた。この原液を10m
l/minの速度で中間室に通水した。中間室出口でサ
ンプリングした溶液中の濃度を紫外線吸収すぺクトロメ
ータを用いて測定した。
Example 2 As in Example 1, the electrolytic cell 15 shown in FIG. 1 was used. In the intermediate chamber 13, nonionic polar organic molecules were dissolved and water was flowed. Water was collected at the inlet 9 and outlet 10 of the intermediate chamber, and the concentration of polar organic molecules was measured. As the polar organic molecule, 2-hydroxy-1,4-naphthoquinone (HNQ) was used.
Electrolysis conditions were set as follows. Since the adsorption phenomenon is known to depend on the potential, in this experiment, constant potential electrolysis was performed instead of constant current electrolysis. Electrolysis voltage is 0 to 25V
Was changed within the range. 10 -6 M HN as the stock solution used
A solution in which Q was dissolved in ultrapure water was used. 10m of this stock solution
Water was passed through the intermediate chamber at a rate of 1 / min. The concentration in the solution sampled at the outlet of the intermediate chamber was measured using an ultraviolet absorption spectrometer.

【0038】図4に中間室出口10におけるHNQの濃
度の電解電圧依存性を示す。この図からわかるように中
間室13に電解を印加することにより、HNQが超純水
90%以上除去された。換言すると、HNQのイオ
ン交換樹脂に対する吸着量が増加する。なお図1に示す
電解槽を用い、カソード電極側のイオン交換膜を取り除
いた他は実施例2と同じ条件下で実験したが、電解電圧
0から25Vの範囲でHNQの除去率は10%以下であ
った。この結果から本発明の構造を有する電解槽が水溶
液中の極性有機分子の除去に有効であることがわかる。
FIG. 4 shows the electrolytic voltage dependence of the concentration of HNQ at the outlet 10 of the intermediate chamber. By applying the electrolysis intermediate chamber 13 as can be seen from this figure, HNQ was removed ultrapure water <br/> or al least 90%. In other words, the amount of HNQ adsorbed on the ion exchange resin increases. The experiment was conducted under the same conditions as in Example 2 except that the ion exchange membrane on the cathode electrode side was removed using the electrolytic cell shown in FIG. 1, but the removal rate of HNQ was 10% or less in the range of electrolysis voltage of 0 to 25 V. Met. These results show that the electrolytic cell having the structure of the present invention is effective for removing polar organic molecules in the aqueous solution.

【0039】実施例3 図2に示す電解槽31において、カソード電極22とし
て80メッシュの白金電極を用い、アノード電極23と
して同じ白金電極を用いた。固体電解質としてデュポン
社製のナフィオンNR50を充填し、隔膜21としてナ
フィオン117を用いた。比較例として図6に示す構造
の電解槽104を用いた。比較例の電解槽104はナフ
ィオンNR50を除いて本例の電解槽31と全く同じで
ある。
Example 3 In the electrolytic cell 31 shown in FIG. 2, an 80-mesh platinum electrode was used as the cathode electrode 22, and the same platinum electrode was used as the anode electrode 23. Nafion NR50 manufactured by DuPont was filled as the solid electrolyte, and Nafion 117 was used as the diaphragm 21. As a comparative example, an electrolytic cell 104 having a structure shown in FIG. 6 was used. The electrolytic cell 104 of the comparative example is exactly the same as the electrolytic cell 31 of the present example except for Nafion NR50.

【0040】原水として、超純水レベルの0.055μ
S/cmの水を用いた。この水に10ppbの鉄(Fe
3+)イオン溶解させた液を試験に供した。電流密度を2
0mA/cm2 とし、流量を0.5l/minに設定し
た。図5に、出口26における鉄イオン濃度の変化を示
した。この図のの曲線は本例の電解槽31を用いた結
果を示し、また曲線は、比較例の結果を示している。
この図から明らかなように本発明の金属イオン捕集能力
は優れていることが分かる。
As raw water, ultrapure water level of 0.055 μm
S / cm of water was used. 10 ppb of iron (Fe
3+ ) The solution in which the ions were dissolved was used for the test. Current density 2
The flow rate was set to 0.5 l / min at 0 mA / cm 2 . FIG. 5 shows a change in the iron ion concentration at the outlet 26. The curve in this figure shows the result using the electrolytic cell 31 of the present example, and the curve shows the result of the comparative example.
As is apparent from this figure, the metal ion collecting ability of the present invention is excellent.

【0041】実施例4 図1に示す電解槽15と、図2に示す電解槽31を直列
につないだシステムを用いることにより、純水中の非イ
オン性および非イオン性極性有機物を効果的に除去する
ことができる。
Embodiment 4 By using a system in which the electrolytic cell 15 shown in FIG. 1 and the electrolytic cell 31 shown in FIG. 2 are connected in series, nonionic and nonionic polar organic substances in pure water can be effectively removed. Can be removed.

【0042】具体的には、図1に示す電解槽15の出口
10と、図2における電解槽31の入口25をつないだ
システムを構成する。
Specifically, a system is constructed in which the outlet 10 of the electrolytic cell 15 shown in FIG. 1 is connected to the inlet 25 of the electrolytic cell 31 shown in FIG.

【0043】このシステムにより、第1段の電解槽15
で非イオン極性有機物を除去し、第2段の電解槽31で
金属イオンを電折により除去することができる。
With this system, the first-stage electrolytic cell 15
To remove non-ionic polar organic substances, and metal ions can be removed by electrophoresis in the second electrolytic bath 31.

【0044】実施例5 実施例3で説明した図2に示す電解槽31の出口26の
後にフィルターをつけることで、純水の純度を一層向上
させることができる。これは、カソード電極、粒状また
は多孔質の固体電解質に電析した金属は流れの作用によ
り一部はく離する危険性がある。そこで、この純水の流
れの後段にフィルターをつけておけば、かりに金属がは
く離してもこのフィルターで除去できるからである。フ
ィルターとしては、可能な限り孔径が0.45μmの小
さいものが望ましく、精密ろ過膜、限外ろ過膜または逆
浸透膜などを使用することができる。
Embodiment 5 By attaching a filter after the outlet 26 of the electrolytic cell 31 shown in FIG. 2 described in Embodiment 3, the purity of pure water can be further improved. This is because there is a risk that metal deposited on the cathode electrode, the granular or porous solid electrolyte may be partially peeled off by the action of the flow. Therefore, if a filter is provided after the flow of the pure water, even if the metal is peeled off from the scale, it can be removed by the filter. The filter is desirably as small as possible with a pore size of 0.45 μm, and a microfiltration membrane, ultrafiltration membrane, reverse osmosis membrane, or the like can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電解槽の構成概要一例を示した図。FIG. 1 is a diagram showing an example of a configuration outline of an electrolytic cell of the present invention.

【図2】本発明の電解槽の他の構成概要を示した図。FIG. 2 is a diagram showing another configuration outline of the electrolytic cell of the present invention.

【図3】実施例1の結果を示した図。FIG. 3 is a diagram showing the results of Example 1.

【図4】実施例2の結果を示した図。FIG. 4 is a diagram showing the results of Example 2.

【図5】実施例3の結果を示した図。FIG. 5 shows the results of Example 3.

【図6】図1の電解槽を有する純水製造装置の構成概要
一例を示した図。
FIG. 6 is a diagram showing an example of a configuration outline of a pure water production apparatus having the electrolytic cell of FIG.

【図7】比較例の電解槽の構成概要を示した図である。FIG. 7 is a diagram showing a schematic configuration of an electrolytic cell of a comparative example.

【符号の説明】[Explanation of symbols]

1,2…イオン交換膜、3…カソード電極、4…アノー
ド電極、5…カソード室入口、6…カソード室出口、7
…アノード室入口、8…アノード室出口、9…中間室入
口、10…中間室出口、11…カソード室、12…アノ
ード室、13…中間室、15…電解槽、21…イオン交
換膜、22…カソード電極、23…アノード電極、24
…中間室 25…入口、26…出口、27…アノード室入口、28
…アノード室出口、29…カソード室、30…アノード
室、31…電解槽。
1, 2 ... ion exchange membrane, 3 ... cathode electrode, 4 ... anode electrode, 5 ... cathode chamber inlet, 6 ... cathode chamber outlet, 7
... Anode chamber inlet, 8 ... Anode chamber outlet, 9 ... Intermediate chamber inlet, 10 ... Intermediate chamber outlet, 11 ... Cathode chamber, 12 ... Anode chamber, 13 ... Intermediate chamber, 15 ... Electrolyzer, 21 ... Ion exchange membrane, 22 ... Cathode electrode, 23 ... Anode electrode, 24
... Intermediate chamber 25 ... Inlet, 26 ... Outlet, 27 ... Anode chamber inlet, 28
... Anode compartment outlet, 29 ... Cathode compartment, 30 ... Anode compartment, 31 ... Electrolyzer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−39493(JP,A) 特公 昭45−18126(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-39493 (JP, A) JP-B-45-18126 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C25B 1/00-15/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アノード電極の設けられたアノード室
と、カソード電極の設けられたカソード室とを、イオン
交換膜を間にして区分した構造を有する純水の電気電解
槽であって、 上記イオン交換膜とカソード電極の間に、粒状または多
孔質状の固体電解質を充填した中間室を設け、この中間
室からカソード室に純水を通水するために、該中間室に
純水を取り入れる通水入口を設けると共に、カソード室
には、中間室から通水された純水を槽外に排出する通水
出口を設けたことを特徴とする純水電解槽。
An anode chamber provided with an anode electrode and a cathode chamber provided with a cathode electrode are separated by an ion
An electrical electrolytic cell of the pure water that have a structure divided by between the exchange membrane, between the ion exchange membrane and the cathode electrode, an intermediate chamber filled with granular or porous solid electrolyte provided, In order to pass pure water from this intermediate chamber to the cathode chamber,
A water inlet for pure water is provided, and the cathode chamber
Is a water passage that discharges pure water from the intermediate chamber out of the tank.
A pure water electrolysis tank characterized by having an outlet .
【請求項2】 アノード電極の設けられたアノード室
と、カソード電極の設けられたカソード室とを、並設さ
れた一対のイオン交換膜を間にして区分した構造を有
し、上記一対のイオン交換膜の間に、粒状または多孔質
状の固体電解質を充填した中間室を設け、この中間室
びにアノード室及びカソード室夫々純水を通水させ
て、カソード室から液を回収する前段の電解槽と、 この前段の電解槽の後段に設けられて、アノード電極の
設けられたアノード室と、カソード電極の設けられたカ
ソード室とを、イオン交換膜を間にして区分した構造を
有し、上記イオン交換膜とカソード電極の間に、粒状ま
たは多孔質状の固体電解質を充填した中間室を設け、こ
の中間室からカソード室に純水を通水するために、該中
間室に純水を取り入れる通水入口を設けると共に、カソ
ード室には、中間室から通水された純水を槽外に排出す
る通水出口を設けた後段の電解槽と、 を備え、前段の電解槽の中間室の出口を、後段の電解槽
の中間室の入口に接続したことを特徴とする純水電解
槽。
2. A anode chamber provided with an anode electrode and a cathode chamber provided with a cathode electrode, has a segmented structure in between juxtaposed pair of ion exchange membranes, said pair of ions during the exchange membrane, an intermediate chamber filled with granular or porous solid electrolyte, the intermediate chamber parallel
It is passed through the pure water to the people anode and cathode chambers husband beauty
Te, the electrolytic cell prior stage you recover the liquid from the cathode chamber, provided downstream of the electrolytic cell of this front, an anode chamber provided with an anode electrode and a cathode compartment provided with the cathode electrode, It has a segmented structure and between the ion-exchange membrane, between the ion exchange membrane and the cathode electrode, an intermediate chamber filled with granular or porous solid electrolyte, pure water to the cathode compartment from the intermediate compartment in order to passed through the, middle
In addition to providing a water inlet for pure water in the interchamber,
The pure water that has passed through the intermediate chamber is discharged to the outside of the tank.
A pure water electrolytic cell comprising: an electrolytic cell in a subsequent stage provided with a water flow outlet; and an outlet of an intermediate chamber of the electrolytic cell in the former stage connected to an inlet of the intermediate chamber in the electrolytic cell in the subsequent stage.
【請求項3】 請求項1又は2において、イオン交換膜
がフッ素系の陽イオン交換膜であることを特徴とする純
水電解槽。
3. The ion exchange membrane according to claim 1, wherein
Is a fluorine-based cation exchange membrane.
【請求項4】 請求項1乃至において、中間室に充填
した固体電解質がフッ素系の陽イオン交換樹脂であるこ
とを特徴とする純水電解槽。
4. The method of claim 1 to 3, pure water electrolyser, characterized in that the solid electrolyte was filled in the intermediate chamber is a fluorine-based cation exchange resin.
JP21547191A 1991-08-27 1991-08-27 Pure water electrolysis tank with an intermediate chamber Expired - Lifetime JP3236315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21547191A JP3236315B2 (en) 1991-08-27 1991-08-27 Pure water electrolysis tank with an intermediate chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21547191A JP3236315B2 (en) 1991-08-27 1991-08-27 Pure water electrolysis tank with an intermediate chamber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000249261A Division JP3299250B2 (en) 2000-08-21 2000-08-21 Pure water electrolysis tank with an intermediate chamber

Publications (2)

Publication Number Publication Date
JPH05339769A JPH05339769A (en) 1993-12-21
JP3236315B2 true JP3236315B2 (en) 2001-12-10

Family

ID=16672923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21547191A Expired - Lifetime JP3236315B2 (en) 1991-08-27 1991-08-27 Pure water electrolysis tank with an intermediate chamber

Country Status (1)

Country Link
JP (1) JP3236315B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642876B2 (en) 2003-12-30 2017-05-09 Sonoma Pharmaceuticals, Inc. Method of preventing or treating sinusitis with oxidative reductive potential water solution
US9782434B2 (en) 2006-01-20 2017-10-10 Sonoma Pharmaceuticals, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980087769A (en) * 1998-09-17 1998-12-05 이재용 Electrolytic Device and Electrolytic Method
JP2001236968A (en) * 2000-02-23 2001-08-31 Asahi Kasei Corp Fuel cell reactor and method of using the same
JP4581251B2 (en) * 2001-01-18 2010-11-17 Jfeスチール株式会社 Manufacturing method of steel sheet with good surface quality
KR101532778B1 (en) 2005-03-23 2015-06-30 오클루스 이노바티브 사이언시즈 인코포레이티드 Method of treating second and third degree burns using oxidative reductive potential water solution
KR20080011312A (en) 2005-05-02 2008-02-01 오클루스 이노바티브 사이언시즈 인코포레이티드 Method of using oxidative reductive potential water solution in dental applications
MX348304B (en) 2009-06-15 2017-06-02 Invekra S A P I De C V Solution containing hypochlorous acid and methods of using same.
JP7152032B2 (en) * 2017-04-19 2022-10-12 ピーエイチ マター、エルエルシー Electrochemical cell and method of use
CN111575734A (en) * 2020-05-07 2020-08-25 浙江高成绿能科技有限公司 Cathode oxygen reduction ozone generator and using method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642876B2 (en) 2003-12-30 2017-05-09 Sonoma Pharmaceuticals, Inc. Method of preventing or treating sinusitis with oxidative reductive potential water solution
US10016455B2 (en) 2003-12-30 2018-07-10 Sonoma Pharmaceuticals, Inc. Method of preventing or treating influenza with oxidative reductive potential water solution
US9782434B2 (en) 2006-01-20 2017-10-10 Sonoma Pharmaceuticals, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution

Also Published As

Publication number Publication date
JPH05339769A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
JP3859358B2 (en) Electrolyzed water production equipment
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
JP2906986B2 (en) Wet treatment apparatus, electrolytic activated water generation method, and wet treatment method
CN106587472B (en) A kind of recycling recoverying and utilizing method of the electroplating wastewater containing palladium
JP3383334B2 (en) How to recycle sulfuric acid
KR19990023400A (en) Water electrolysis method
JP3201781B2 (en) Ozone production method
JP3236315B2 (en) Pure water electrolysis tank with an intermediate chamber
JP3299250B2 (en) Pure water electrolysis tank with an intermediate chamber
JPH07106349B2 (en) Electrolyzer
JP3247134B2 (en) Liquid in which hydrogen ion or hydroxide ion and redox substance coexist by electrolysis of pure water and method for producing the same
US7074316B2 (en) Functional water, method and apparatus of producing the same, and method and apparatus of rinsing electronic parts therewith
JPH0747360A (en) Method for treating waste water containing oil content consisting of ester and device therefor
JP2007307502A (en) Method for generating electrolytic water and electrolytic water generator
JP5285135B2 (en) Water treatment system and water treatment method
JP3338435B2 (en) Method for producing liquid in which hydrogen ion or hydroxide ion and redox substance coexist by electrolysis of pure water
JP2011121027A (en) Electric type deionized water producing apparatus
GB2048942A (en) Halogenation process and apparatus
JP2010036173A (en) Water treatment system and water treatment method
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP4053805B2 (en) Functional water, production method and production apparatus thereof
GB2396625A (en) Removal of an acid
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JPH08276187A (en) Method for electrochemical processing of sulfite-containing solution
JPH10280180A (en) Apparatus for production of hydrogen peroxide water and method therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 10

EXPY Cancellation because of completion of term