JP3234217U - Low temperature moving floor integrated adsorption desulfurization / denitration system - Google Patents

Low temperature moving floor integrated adsorption desulfurization / denitration system Download PDF

Info

Publication number
JP3234217U
JP3234217U JP2021000837U JP2021000837U JP3234217U JP 3234217 U JP3234217 U JP 3234217U JP 2021000837 U JP2021000837 U JP 2021000837U JP 2021000837 U JP2021000837 U JP 2021000837U JP 3234217 U JP3234217 U JP 3234217U
Authority
JP
Japan
Prior art keywords
smoke exhaust
inlet
low temperature
adsorption tower
recovery device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021000837U
Other languages
Japanese (ja)
Inventor
シチィン ワン
シチィン ワン
チシャン ファン
チシャン ファン
シスン シュ
シスン シュ
シワン ガォ
シワン ガォ
シャオミン ワン
シャオミン ワン
フゥ ザォ
フゥ ザォ
ミンファ ジャン
ミンファ ジャン
ピン シャオ
ピン シャオ
ビン ファン
ビン ファン
ホンウェイ ニュ
ホンウェイ ニュ
チンイ ワン
チンイ ワン
レンボ リゥ
レンボ リゥ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Clean Energy Research Institute
Original Assignee
Huaneng Clean Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Clean Energy Research Institute filed Critical Huaneng Clean Energy Research Institute
Application granted granted Critical
Publication of JP3234217U publication Critical patent/JP3234217U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/10Conditioning the gas to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • B01D53/565Nitrogen oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treating Waste Gases (AREA)

Abstract

【課題】脱着湿度が低く、吸着材の損失が小さい低温移動床一体型吸着脱硫・脱硝システムを提供する。【解決手段】SO2及びNOx含有排煙投入管路、排煙吸引機1、排煙余熱回収器2、排煙冷却システム3、低温移動床吸着塔4、冷熱回収器6及び脱着塔5を含み、SO2及びNOx含有排煙投入管路は、排煙吸引機を介して排煙余熱回収器の入口に連通し、排煙余熱回収器の出口は、排煙冷却システムの入口に連通し、排煙冷却システムの出口は、低温移動床吸着塔の排煙入口に連通し、低温移動床吸着塔の底部の多孔質吸着剤出口は、脱着塔の入口に連通し、脱着塔の多孔質吸着剤出口は、低温移動床吸着塔頂部の多孔質吸着剤入口に連通し、低温移動床吸着塔のガス出口は、冷熱回収器の入口に連通し、排煙冷却システムは、3段式のスプレー冷却構造を採用し、複数の多孔質吸着剤が低温移動床吸着塔と前記脱着塔の間を循環する。【選択図】図2PROBLEM TO BE SOLVED: To provide a low temperature moving bed integrated adsorption desulfurization / denitration system having a low desorption humidity and a small loss of an adsorbent. SOLUTION: SO2 and NOx-containing smoke exhaust inlet pipeline, smoke exhaust suction machine 1, smoke exhaust residual heat recovery device 2, smoke exhaust cooling system 3, low temperature moving floor adsorption tower 4, cold heat recovery device 6 and desorption tower 5 are included. , SO2 and NOx-containing smoke exhaust inlet pipeline communicates with the inlet of the smoke exhaust residual heat recovery device via the smoke exhaust suction machine, and the outlet of the smoke exhaust residual heat recovery device communicates with the inlet of the smoke exhaust cooling system to exhaust. The outlet of the smoke cooling system communicates with the smoke exhaust inlet of the low temperature moving bed adsorption tower, and the porous adsorbent outlet at the bottom of the low temperature moving bed adsorption tower communicates with the inlet of the desorption tower. The outlet communicates with the porous adsorbent inlet at the top of the low temperature moving bed adsorption tower, the gas outlet of the low temperature moving bed adsorption tower communicates with the inlet of the cold heat recovery device, and the smoke exhaust cooling system is a three-stage spray cooling system. The structure is adopted, and a plurality of porous adsorbents circulate between the low temperature moving bed adsorption tower and the desorption tower. [Selection diagram] Fig. 2

Description

本考案は、排煙の一体型脱硫・脱硝の技術分野に属し、低温移動床一体型吸着脱硫・脱硝システムに関する。 The present invention belongs to the technical field of integrated desulfurization / denitration of flue gas, and relates to an adsorption desulfurization / denitration system integrated with a low-temperature moving floor.

現在主流の脱硫・脱硝技術は、SCR脱硝とFGD脱硫である。SCR脱硝は、触媒と還元剤でNOxをNに還元して排出し、石灰石−石膏法で脱硫を行い、SOを石灰石スラリーと反応させることにより、難溶性の硫酸カルシウム(石膏)を生成して除去する。従来のSCR脱硝とFGD脱硫技術は、広く応用されているが、多くの問題がある。例えば、FGD脱硫は、大量の石灰石を脱硫剤として使用するが、石灰石の大量採掘は深刻な山体破壊をもたらし、FGD脱硫による大量の脱硫廃水の発生も発電所での処理に難題をもたらす。SCR脱硝の触媒は特定の温度区間でのみ高い活性を有するため、発電所の稼働負荷を調整するとき、排煙温度の変化によってSCR脱硝の効率が大きく影響を受ける。また、SCR脱硝には、アンモニアの逃げ、触媒の固化による廃棄などの二次汚染の問題がある。 Currently, the mainstream desulfurization / desulfurization technologies are SCR desulfurization and FGD desulfurization. SCR denitration, the NOx in the catalyst and reducing agent was discharged by reducing the N 2, limestone - performs desulfurization with gypsum method, by reacting SO 2 and limestone slurry, forming calcium sulfate poorly soluble (gypsum) And remove it. Conventional SCR denitration and FGD desulfurization techniques are widely applied, but have many problems. For example, FGD desulfurization uses a large amount of limestone as a desulfurizing agent, but mass mining of limestone causes serious mountain body destruction, and the generation of a large amount of desulfurized wastewater by FGD desulfurization also poses a challenge for treatment at a power plant. Since the SCR denitration catalyst has high activity only in a specific temperature interval, the efficiency of SCR denitration is greatly affected by the change in the flue gas temperature when adjusting the operating load of the power plant. In addition, SCR denitration has problems of secondary contamination such as escape of ammonia and disposal due to solidification of the catalyst.

SCR脱硝とFGD脱硫技術の他、活性コークス吸着法による一体型脱硫・脱硝技術も日本とドイツで工業的に応用されている。この技術の特徴は、活性コークスの多孔質吸着特性を利用してSOを吸着除去し、再生した後に高濃度のSOを得て、硫酸、硫黄又は硫酸塩などの副産物を製造することである。一方、NOは難吸着ガスであるため、活性コークス法ではNOxを吸着除去することはできない。NOxの除去には、依然として、アンモニア噴射によるNへの還元が必要であり、活性コークスを選択還元触媒として用いる。しかしながら、活性コークスの脱硝率は高くなく、一般には脱硝効率が70%〜80%に過ぎず、超低排出の要求を満たすことができない。また、活性コークス乾式脱硫原理は、HSO化学吸着に基づくため、再生温度が高く、また活性コークスが再生反応に関与し、損失が大きい。 In addition to SCR denitration and FGD desulfurization technology, integrated desulfurization / denitration technology by the active coke adsorption method is also industrially applied in Japan and Germany. The feature of this technology is that SO 2 is adsorbed and removed by utilizing the porous adsorption property of active coke, and after regeneration, a high concentration of SO 2 is obtained to produce by-products such as sulfuric acid, sulfur or sulfate. be. On the other hand, since NO is a poorly adsorbed gas, NOx cannot be adsorbed and removed by the active coke method. The removal of NOx is still requires reduction to N 2 with ammonia injection, using activated coke as a selective reduction catalyst. However, the denitration rate of active coke is not high, and the denitration efficiency is generally only 70% to 80%, which cannot satisfy the requirement for ultra-low emission. Further, since the active coke dry desulfurization principle is based on H 2 SO 4 chemisorption, the regeneration temperature is high, and the active coke is involved in the regeneration reaction, resulting in a large loss.

例えば、従来の活性コークス(炭)乾式脱硫・脱硝プロセスを図1に示す。 For example, FIG. 1 shows a conventional active coke (charcoal) dry desulfurization / denitration process.

本考案の目的は、上記の従来技術の欠点を解消し、超低排出の要求を満たすことができ、脱着温度が低く、同時に吸着剤の損失が小さい、低温移動床一体型吸着脱硫・脱硝システムを提供することである。 The object of the present invention is a low-temperature moving bed-integrated adsorption desulfurization / denitration system that eliminates the above-mentioned drawbacks of the prior art, can meet the requirements for ultra-low emission, has a low desorption temperature, and at the same time has a small loss of adsorbent. Is to provide.

上記の目的を達成するために、本考案に係る低温移動床一体型吸着脱硫・脱硝システムは、SO及びNOx含有排煙投入管路、排煙吸引機、排煙余熱回収器、排煙冷却システム、冷熱回収器、低温移動床吸着塔及び脱着塔を含み、
SO及びNOx含有排煙投入管路は、排煙吸引機を介して排煙余熱回収器の入口に連通し、排煙余熱回収器の出口は、排煙冷却システムの入口に連通し、排煙冷却システムの出口は、低温移動床吸着塔の排煙入口に連通し、低温移動床吸着塔の底部の多孔質吸着剤出口は、脱着塔の入口に連通し、脱着塔の多孔質吸着剤出口は、低温移動床吸着塔頂部の多孔質吸着剤入口に連通し、低温移動床吸着塔のガス出口は、冷熱回収器の入口に連通し、
排煙冷却システムは、3段式のスプレー冷却構造を採用する。
In order to achieve the above object, the low temperature moving bed integrated adsorption desulfurization / denitration system according to the present invention includes SO 2 and NOx-containing flue gas input pipeline, flue gas suction machine, flue gas residual heat recovery device, and flue gas cooling. Includes system, cold recovery device, low temperature moving floor adsorption tower and desulfurization tower,
The SO 2 and NOx-containing flue gas input pipeline communicates with the inlet of the flue gas residual heat recovery device via the flue gas suction machine, and the outlet of the flue gas residual heat recovery device communicates with the inlet of the flue gas cooling system to exhaust the smoke. The outlet of the smoke cooling system communicates with the smoke exhaust inlet of the low temperature moving bed adsorption tower, and the porous adsorbent outlet at the bottom of the low temperature moving bed adsorption tower communicates with the inlet of the desorption tower. The outlet communicates with the porous adsorbent inlet at the top of the low temperature moving bed adsorption tower, and the gas outlet of the low temperature moving bed adsorption tower communicates with the inlet of the cold heat recovery device.
The flue gas cooling system adopts a three-stage spray cooling structure.

脱着塔は、その多孔質吸着剤出口がチェーンバケットリフト装置を介して低温移動床吸着塔頂部の多孔質吸着剤入口に連通する。 The outlet of the porous adsorbent of the desorption tower communicates with the inlet of the porous adsorbent at the top of the low-temperature moving floor adsorption tower via a chain bucket lift device.

多孔質吸着剤は、活性コークス又は分子篩である。 The porous adsorbent is active coke or molecular sieves.

動作中、除塵後の高温排煙は、排煙吸引機を介して排煙余熱回収器に送られ、排煙余熱回収器により排煙温度が70℃以下に下がり、回収された熱は、温水や蒸気の供給又は冷房に用いられ、余熱回収後の排煙は、排煙冷却システムに入り、スプレー降温又は間接熱交換方式により室温以下の温度域まで降温し、室温以上の温度域の冷却では冷却水によって熱が奪われ、室温以下の温度域の冷却は、冷房方式を採用し、冷却後の排煙は、低温移動床吸着塔に入り、低温移動床吸着塔に装填された多孔質吸着剤と接触することにより、物理吸着方式により排煙中のSO及びNOxが除去され、低温移動床吸着塔から排出された排煙は、冷熱回収器に入って冷熱の回収が行われ、飽和吸着になった多孔質吸着剤は、低温移動床吸着塔の底部から自重ブランキングの方式により排出され、脱着塔に入り、脱着塔で、加熱又は真空排気の方式により、飽和吸着になった多孔質吸着剤が再生され、SO及びNOxガスが脱着され、脱着完了後の多孔質吸着剤は低温移動床吸着塔の塔頂に送られて再利用される。 During operation, the high-temperature smoke exhaust after dust removal is sent to the smoke exhaust residual heat recovery device via the smoke exhaust suction machine, the smoke exhaust temperature is lowered to 70 ° C. or less by the smoke exhaust residual heat recovery device, and the recovered heat is hot water. It is used for supplying or cooling steam, and the exhaust smoke after recovery of residual heat enters the exhaust exhaust cooling system and is cooled to a temperature range below room temperature by spray cooling or indirect heat exchange method, and for cooling in a temperature range above room temperature. Heat is taken away by the cooling water, and the cooling method is adopted for cooling in the temperature range below room temperature. By contacting with the agent, SO 2 and NOx in the smoke are removed by the physical adsorption method, and the smoke discharged from the low temperature moving bed adsorption tower enters the cold heat recovery device to recover the cold heat and saturate. The adsorbed porous adsorbent is discharged from the bottom of the low-temperature moving bed adsorption tower by the self-weight blanking method, enters the desorption tower, and is saturated and adsorbed by the heating or vacuum exhaust method in the desorption tower. The quality adsorbent is regenerated, SO 2 and NOx gas are desorbed, and the porous adsorbent after the desorption is completed is sent to the top of the low temperature moving bed adsorption tower for reuse.

本考案は、以下の有益な効果を有する。
本考案に係る低温移動床一体型吸着脱硫・脱硝システムは、具体的に操作するときに、排煙余熱回収器及び排煙冷却システムにより排煙が降温され、低温移動床吸着塔を用いてSO及びNOx吸着が行われ、吸着温度が−100℃〜室温であり、降温除湿後に吸着され、SOは、物理吸着を主とし、脱着温度が低く、吸着剤の損失が低く、吸着剤の補充量が低く、同時に低温でSO及びNOxの吸着量が大きく、吸着剤の装填量が少なく、吸着設備が小さく、また、NOxは低温酸化吸着の方式により除去され、NHを噴射して触媒還元を行う必要がなく、最後に排煙の降温過程で大量の酸性凝縮水が析出し、中和処理された後に発電所の使用に備えることができ、発電所の水消費量が下げられ、発電所の排煙、製鉄所の焼結排煙、コークス炉の排煙などの排煙一体型脱硫・脱硝に広く適用されることができる。
The present invention has the following beneficial effects.
In the low-temperature moving bed-integrated adsorption desulfurization / denitration system according to the present invention, when specifically operated, the flue gas is lowered by the flue gas residual heat recovery device and the flue gas cooling system, and SO is used by using the low-temperature moving bed adsorption tower. 2 and NOx are adsorbed, the adsorption temperature is -100 ° C to room temperature, and it is adsorbed after dehumidification. SO 2 is mainly physical adsorption, the desorption temperature is low, the loss of the adsorbent is low, and the adsorbent The amount of replenishment is low, and at the same time, the amount of SO 2 and NOx adsorbed at low temperature is large, the amount of adsorbent loaded is small, the adsorption equipment is small, and NOx is removed by the low temperature oxidation adsorption method, and NH 3 is injected. There is no need to perform catalytic reduction, and a large amount of acidic condensed water is finally deposited in the process of lowering the temperature of the flue gas, and after being neutralized, it can be prepared for use at the power plant, and the water consumption of the power plant is reduced. It can be widely applied to flue gas integrated denitration / denitration such as flue gas from power plants, sintered flue gas from steel mills, and flue gas from coke ovens.

従来技術の構造概略図である。It is a structural schematic diagram of the prior art. 本考案の構造概略図である。It is a structural schematic diagram of this invention.

以下に図面を参照して本考案についてさらに詳細に説明する。 The present invention will be described in more detail below with reference to the drawings.

図2を参照すると、本考案に係る低温移動床一体型吸着脱硫・脱硝システムは、SO及びNOx含有排煙投入管路、排煙吸引機1、排煙余熱回収器2、排煙冷却システム3、低温移動床吸着塔4及び脱着塔5を含み、SO及びNOx含有排煙投入管路は、排煙吸引機1を介して排煙余熱回収器2の入口に連通し、排煙余熱回収器2の出口は、排煙冷却システム3の入口に連通し、排煙冷却システム3の出口は、低温移動床吸着塔4の排煙入口に連通し、低温移動床吸着塔4の底部の多孔質吸着剤出口は、脱着塔5の入口に連通し、脱着塔5の多孔質吸着剤出口は、低温移動床吸着塔4の頂部の多孔質吸着剤入口に連通し、低温移動床吸着塔4のガス出口は、冷熱回収器6の入口に連通し、排煙冷却システム3は、3段式のスプレー冷却構造を採用する。 Referring to FIG. 2, the low-temperature moving bed-integrated adsorption desulfurization / denitration system according to the present invention includes an SO 2 and NOx-containing smoke exhaust inlet pipeline, a smoke exhaust suction machine 1, a smoke exhaust residual heat recovery device 2, and a smoke exhaust cooling system. 3. The low-temperature moving floor adsorption tower 4 and the desorption tower 5 are included, and the SO 2 and NOx-containing smoke exhaust input pipeline communicates with the inlet of the smoke exhaust residual heat recovery device 2 via the smoke exhaust suction machine 1, and the smoke exhaust residual heat. The outlet of the collector 2 communicates with the inlet of the smoke exhaust cooling system 3, and the outlet of the smoke exhaust cooling system 3 communicates with the smoke exhaust inlet of the low temperature moving floor adsorption tower 4, and the outlet of the low temperature moving floor adsorption tower 4 communicates with the bottom of the low temperature moving floor adsorption tower 4. The porous adsorbent outlet communicates with the inlet of the desorption tower 5, and the porous adsorbent outlet of the desorption tower 5 communicates with the porous adsorbent inlet at the top of the low temperature moving bed adsorption tower 4. The gas outlet of No. 4 communicates with the inlet of the cold heat recovery device 6, and the flue gas cooling system 3 adopts a three-stage spray cooling structure.

脱着塔5は、その多孔質吸着剤出口がチェーンバケットリフト装置を介して低温移動床吸着塔4の頂部の多孔質吸着剤入口に連通する。多孔質吸着剤は、活性コークス又は分子篩である。 The desorption tower 5 has its porous adsorbent outlet communicating with the porous adsorbent inlet at the top of the low temperature moving floor adsorption tower 4 via a chain bucket lift device. The porous adsorbent is active coke or molecular sieves.

動作中、除塵後の高温排煙は、排煙吸引機1を介して排煙余熱回収器2に送られ、排煙余熱回収器2により排煙温度が70℃以下に下がり、回収された熱は、温水や蒸気の供給又は冷房に用いられ、余熱回収後の排煙は、排煙冷却システム3に入り、スプレー降温又は間接熱交換方式により室温以下の温度域まで降温し、室温以上の温度域の冷却では冷却水によって熱が奪われ、室温以下の温度域の冷却は、冷房方式を採用し、冷却後の排煙は、低温移動床吸着塔4に入り、低温移動床吸着塔4に装填された多孔質吸着剤と接触することにより、物理吸着方式により排煙中のSO及びNOxが除去され、低温移動床吸着塔4から排出された排煙は、冷熱回収器に入って冷熱の回収が行われ、飽和吸着になった多孔質吸着剤は、低温移動床吸着塔4の底部から自重ブランキングの方式により排出され、脱着塔5に入り、脱着塔5で、加熱又は真空排気の方式により、飽和吸着になった多孔質吸着剤が再生され、SO及びNOxガスが脱着され、脱着完了後の多孔質吸着剤は低温移動床吸着塔4の塔頂に送られて再利用され、加熱脱着の方式を採用する場合には、脱着塔5に冷却部が設置され、脱着が完了した吸着剤は冷却部で冷却されてから低温移動床吸着塔4の塔頂に送られる。 During operation, the high-temperature smoke exhaust after dust removal is sent to the smoke exhaust residual heat recovery device 2 via the smoke exhaust suction machine 1, and the smoke exhaust residual heat recovery device 2 lowers the smoke exhaust temperature to 70 ° C. or less, and the recovered heat. Is used for supplying hot water or steam or cooling, and the flue gas after recovery of residual heat enters the flue gas cooling system 3 and is cooled to a temperature range below room temperature by spray cooling or indirect heat exchange method, and the temperature is above room temperature. In the cooling of the area, heat is taken away by the cooling water, and the cooling method is adopted for cooling in the temperature range below room temperature, and the smoke exhaust after cooling enters the low temperature moving floor adsorption tower 4 and enters the low temperature moving floor adsorption tower 4. By contacting with the loaded porous adsorbent, SO 2 and NOx in the flue gas are removed by the physical adsorption method, and the flue gas discharged from the low temperature moving bed adsorption tower 4 enters the cold heat recovery device and cools. The porous adsorbent that has been recovered and saturated adsorbed is discharged from the bottom of the low-temperature moving bed adsorption tower 4 by a self-weight blanking method, enters the desorption tower 5, and is heated or vacuum exhausted by the desorption tower 5. By the method of, the saturated adsorbed porous adsorbent is regenerated, SO 2 and NOx gas are desorbed, and the porous adsorbent after the desorption is completed is sent to the top of the low temperature moving bed adsorption tower 4 for reuse. When the heat desorption method is adopted, a cooling unit is installed in the desorption tower 5, and the adsorbent that has been desorbed is cooled by the cooling unit and then sent to the top of the low temperature moving floor adsorption tower 4.

600MWの石炭燃焼ユニットの排煙(排煙流量200万標準立方メートル/時間、SO含有量3000mg/Nm、NOx含有量500mg/Nm)は、除塵された後、実施例及び比較例に記載の装置に入る。 Smoke exhaust from a 600 MW coal combustion unit (flue gas flow rate 2 million standard cubic meters / hour, SO 2 content 3000 mg / Nm 3 , NOx content 500 mg / Nm 3 ) is described in Examples and Comparative Examples after dust removal. Enter the device of.

(実施例)
図2に示すように、排煙は、排煙吸引機1によって加圧された後、排煙余熱回収器2に入り、排煙温度は120℃から70℃に低下され、70℃の排煙は排煙冷却システム3に入り、スプレー冷却の方式により−20℃まで低下される。排煙冷却システム3は3段式のスプレー冷却方式を採用する。1段目はスプレーにより35℃まで降温され、2段目は冷房水スプレーにより5℃まで降温され、3段目は低温塩化カルシウム溶液スプレーにより−20℃まで冷却され、1段目のスプレー循環液は冷却水によって冷却され、2段目のスプレー循環液は冷水ユニットによって冷却され、3段目のスプレー循環液(塩化カルシウム溶液)は低温冷房ユニットによって冷却される。排煙冷却システム3を経て−20℃まで冷却された低温排煙は低温移動床吸着塔4に入り、実施例の低温移動床吸着塔はクロスフロー方式を採用し、排煙は吸着床層を水平に通過し、活性コークス吸着剤は低温移動床吸着塔4を上方から下方に垂直に流れる。排煙は低温移動床吸着塔4を流れた後、そのSO又はNOxの含有量が1mg/Nm以下に低下し、冷熱回収器6によって冷熱が回収されて排出される。飽和吸着になった活性コークスは低温移動床吸着塔4の塔底から排出され、自重ブランキングの方式により脱着塔5に入る。脱着塔5は上下2段に分かれ、上段は加熱脱着段であり、飽和吸着になった活性コークスは200℃の熱風パージで高濃度のSO及びNOxが脱着され、下段は冷却段であり、冷気パージによって活性コークス温度は室温まで低下される。脱着塔5を経て脱着された再生活性コークスは脱着塔5の塔底から排出され、チェーンバケットリフト装置により低温移動床吸着塔4の塔頂に引き上げられて供給され、閉ループを形成し、連続的に稼働される。
(Example)
As shown in FIG. 2, the flue gas is pressurized by the flue gas suction machine 1 and then enters the flue gas residual heat recovery device 2, the flue gas temperature is lowered from 120 ° C. to 70 ° C., and the flue gas is discharged at 70 ° C. Enters the flue gas cooling system 3 and is lowered to −20 ° C. by the spray cooling method. The flue gas cooling system 3 adopts a three-stage spray cooling system. The first stage is cooled to 35 ° C by spraying, the second stage is cooled to 5 ° C by cooling water spray, the third stage is cooled to -20 ° C by low temperature calcium chloride solution spray, and the first stage spray circulating fluid. Is cooled by cooling water, the second-stage spray circulating fluid is cooled by the cold water unit, and the third-stage spray circulating fluid (calcium chloride solution) is cooled by the low-temperature cooling unit. The low-temperature flue gas cooled to -20 ° C via the flue gas cooling system 3 enters the low-temperature moving floor adsorption tower 4, the low-temperature moving floor adsorption tower of the embodiment adopts the cross-flow method, and the flue gas uses the adsorption floor layer. Passing horizontally, the active coke adsorbent flows vertically from above to below through the low temperature moving bed adsorption tower 4. After the smoke is discharged through the low temperature moving bed adsorption tower 4, the SO 2 or NOx content is reduced to 1 mg / Nm 3 or less, and the cold heat is recovered and discharged by the cold heat recovery device 6. The saturated coke is discharged from the bottom of the low-temperature moving floor adsorption tower 4 and enters the desorption tower 5 by the self-weight blanking method. The desorption tower 5 is divided into upper and lower stages, the upper stage is a heating desorption stage, and the activated coke that has become saturated adsorption has high concentrations of SO 2 and NOx desorbed by purging with hot air at 200 ° C., and the lower stage is a cooling stage. The cold air purge lowers the active coke temperature to room temperature. The regenerated active coke desorbed through the desorption tower 5 is discharged from the bottom of the desorption tower 5, is pulled up to the top of the low temperature moving floor adsorption tower 4 by the chain bucket lift device, and is supplied to form a closed loop, and is continuous. To be operated.

(比較例)
図1に示すように、除塵後の排煙(120℃)は送風機を介して吸着塔に導入され、吸着塔は上下2段からなり、下段は脱硫段、上段は脱硝段である。排煙はまず下段に入り吸着脱硫が行われ、SOは排煙中のHO及びOと反応し、HSOを生成して活性コークス(炭)に吸着される。吸着脱硫後の排煙はNHに吹き込まれ、吸着塔上段に入り、活性コークス(炭)の触媒作用により、NOxはNHによりNに還元されて脱硝される。吸着塔は移動床の方式を採用し、SOを吸着した活性コークス(炭)は再生塔に入り、加熱の方式により再生され、SOが脱着され、再生後の活性コークス(炭)は冷却降温及び篩分けによる灰除去などの工程を経た後、チェーンバケットを介して吸着塔の塔頂まで引き上げられ、供給とリサイクルが行われる。再生中の反応に関与して大量の活性コークス(炭)が消費されるため、システムの継続的な稼働を維持するには、新しい活性コークス(炭)を補充する必要がある。
(Comparison example)
As shown in FIG. 1, the flue gas (120 ° C.) after dust removal is introduced into the adsorption tower via a blower, and the adsorption tower is composed of two upper and lower stages, the lower stage is a desulfurization stage, and the upper stage is a denitration stage. The flue gas first enters the lower stage and is adsorbed and desulfurized, and SO 2 reacts with H 2 O and O 2 in the flue gas to generate H 2 SO 4 and is adsorbed on active coke (charcoal). The flue gas after adsorption desulfurization is blown into NH 3 , enters the upper stage of the adsorption tower, and NOx is reduced to N 2 by NH 3 and denitrated by the catalytic action of active coke (charcoal). The adsorption tower adopts a moving bed method, and the active coke (charcoal) that has adsorbed SO 2 enters the regeneration tower and is regenerated by the heating method, SO 2 is desorbed, and the activated coke (charcoal) after regeneration is cooled. After undergoing steps such as lowering the temperature and removing ash by sieving, it is pulled up to the top of the adsorption tower via a chain bucket for supply and recycling. Since a large amount of active coke (charcoal) is consumed in the reaction during regeneration, it is necessary to replenish new active coke (charcoal) to maintain the continuous operation of the system.

実施例及び比較例の主な技術パラメータを表1に示す。 Table 1 shows the main technical parameters of Examples and Comparative Examples.

Figure 0003234217
Figure 0003234217

1 排煙吸引機
2 排煙余熱回収器
3 排煙冷却システム
4 低温移動床吸着塔
5 脱着塔
6 冷熱回収器
1 Smoke exhaust suction machine 2 Smoke exhaust residual heat recovery device 3 Smoke exhaust cooling system 4 Low temperature moving floor adsorption tower 5 Desorption tower 6 Cold heat recovery device

Claims (4)

SO及びNOx含有排煙投入管路、排煙吸引機(1)、排煙余熱回収器(2)、排煙冷却システム(3)、低温移動床吸着塔(4)、冷熱回収器(6)及び脱着塔(5)を含み、
SO及びNOx含有排煙投入管路は、排煙吸引機(1)を介して排煙余熱回収器(2)の入口に連通し、排煙余熱回収器(2)の出口は、排煙冷却システム(3)の入口に連通し、排煙冷却システム(3)の出口は、低温移動床吸着塔(4)の排煙入口に連通し、低温移動床吸着塔(4)の底部の多孔質吸着剤出口は、脱着塔(5)の入口に連通し、脱着塔(5)の多孔質吸着剤出口は、低温移動床吸着塔(4)頂部の多孔質吸着剤入口に連通し、低温移動床吸着塔(4)のガス出口は、冷熱回収器(6)の入口に連通し、
排煙冷却システム(3)は、3段式のスプレー冷却構造を採用する、ことを特徴とする低温移動床一体型吸着脱硫・脱硝システム。
SO 2 and NOx-containing flue gas input pipeline, flue gas suction machine (1), flue gas residual heat recovery device (2), flue gas cooling system (3), low temperature moving floor adsorption tower (4), cold heat recovery device (6) ) And the detachable tower (5)
The SO 2 and NOx-containing smoke exhaust inlet pipeline communicates with the inlet of the smoke exhaust residual heat recovery device (2) via the smoke exhaust suction machine (1), and the outlet of the smoke exhaust residual heat recovery device (2) is a smoke exhaust exhaust heat recovery device (2). It communicates with the inlet of the cooling system (3), and the outlet of the smoke exhaust cooling system (3) communicates with the smoke exhaust inlet of the low temperature moving floor adsorption tower (4), and the bottom of the low temperature moving floor adsorption tower (4) is perforated. The quality adsorbent outlet communicates with the inlet of the desorption tower (5), and the porous adsorbent outlet of the desorption tower (5) communicates with the porous adsorbent inlet at the top of the low-temperature moving bed adsorption tower (4). The gas outlet of the moving floor adsorption tower (4) communicates with the inlet of the cold heat recovery device (6).
The flue gas cooling system (3) is a low-temperature moving floor-integrated adsorption desulfurization / denitration system characterized by adopting a three-stage spray cooling structure.
脱着塔(5)の多孔質吸着剤出口は、チェーンバケットリフト装置を介して低温移動床吸着塔(4)頂部の多孔質吸着剤入口に連通する、ことを特徴とする請求項1に記載の低温移動床一体型吸着脱硫・脱硝システム。 The first aspect of claim 1, wherein the porous adsorbent outlet of the desorption tower (5) communicates with the porous adsorbent inlet at the top of the low-temperature moving floor adsorption tower (4) via a chain bucket lift device. Low temperature moving floor integrated adsorption desulfurization / denitration system. 多孔質吸着剤は、活性コークス又は分子篩である、ことを特徴とする請求項1に記載の低温移動床一体型吸着脱硫・脱硝システム。 The low-temperature moving bed-integrated adsorption desulfurization / denitration system according to claim 1, wherein the porous adsorbent is active coke or molecular sieves. 動作中、除塵後の高温排煙は、排煙吸引機(1)を介して排煙余熱回収器(2)に送られ、排煙余熱回収器(2)により排煙温度が70℃以下に下がり、回収された熱は、温水や蒸気の供給又は冷房に用いられ、余熱回収後の排煙は、排煙冷却システム(3)に入り、スプレー降温又は間接熱交換方式により室温以下の温度域まで降温し、室温以上の温度域の冷却では、冷却水によって熱が奪われ、室温以下の温度域の冷却は、冷房方式を採用し、冷却後の排煙は、低温移動床吸着塔(4)に入り、低温移動床吸着塔(4)に装填された多孔質吸着剤と接触することにより、物理吸着方式により排煙中のSO及びNOxが除去され、低温移動床吸着塔(4)から排出された排煙は、冷熱回収器(6)に入って冷熱の回収が行われ、飽和吸着になった多孔質吸着剤は、低温移動床吸着塔(4)の底部から自重ブランキングの方式により排出され、脱着塔(5)に入り、脱着塔(5)で、加熱又は真空排気の方式により、飽和吸着になった多孔質吸着剤が再生され、SO及びNOxガスが脱着され、脱着完了後の多孔質吸着剤は低温移動床吸着塔(4)の塔頂に送られて再利用される、ことを特徴とする請求項1に記載の低温移動床一体型吸着脱硫・脱硝システム。 During operation, the high-temperature smoke exhaust after dust removal is sent to the smoke exhaust residual heat recovery device (2) via the smoke exhaust suction machine (1), and the smoke exhaust temperature is reduced to 70 ° C. or less by the smoke exhaust residual heat recovery device (2). The reduced and recovered heat is used for supplying hot water or steam or cooling, and the exhaust smoke after the residual heat is recovered enters the smoke exhaust cooling system (3) and is in a temperature range below room temperature by spray cooling or indirect heat exchange method. When cooling in the temperature range above room temperature, heat is taken away by the cooling water, cooling in the temperature range below room temperature adopts the cooling method, and the smoke exhaust after cooling is the low temperature moving floor adsorption tower (4). ), And by contacting with the porous adsorbent loaded in the low temperature moving bed adsorption tower (4), SO 2 and NOx in the smoke exhaust are removed by the physical adsorption method, and the low temperature moving bed adsorption tower (4) The flue gas discharged from is entered into the cold heat recovery device (6) to recover the cold heat, and the porous adsorbent that has become saturated adsorption is subjected to its own weight blanking from the bottom of the low temperature moving bed adsorption tower (4). It is discharged by the method, enters the desorption tower (5), and in the desorption tower (5), the porous adsorbent that has become saturated adsorption is regenerated by the method of heating or vacuum exhaust, and SO 2 and NOx gas are desorbed. The low-temperature moving bed-integrated adsorption desulfurization / denitration system according to claim 1, wherein the porous adsorbent after the desorption is completed is sent to the top of the low-temperature moving bed adsorption tower (4) and reused. ..
JP2021000837U 2020-05-18 2021-03-12 Low temperature moving floor integrated adsorption desulfurization / denitration system Active JP3234217U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020832863.6 2020-05-18
CN202020832863.6U CN212915058U (en) 2020-05-18 2020-05-18 Low temperature removes integration of bed and adsorbs SOx/NOx control system

Publications (1)

Publication Number Publication Date
JP3234217U true JP3234217U (en) 2021-09-30

Family

ID=75268874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000837U Active JP3234217U (en) 2020-05-18 2021-03-12 Low temperature moving floor integrated adsorption desulfurization / denitration system

Country Status (3)

Country Link
JP (1) JP3234217U (en)
CN (1) CN212915058U (en)
DE (1) DE202021101207U1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114307528A (en) * 2021-12-29 2022-04-12 司少龙 System and method for preparing concentrated sulfuric acid by using coke oven flue gas and dry quenching diffused gas
CN115178089A (en) * 2022-08-11 2022-10-14 国能锅炉压力容器检验有限公司 Purify and regenerate charcoal base catalyst flue gas processing apparatus of one tower ization
CN117225142A (en) * 2023-11-14 2023-12-15 中国华能集团清洁能源技术研究院有限公司 Low-temperature adsorption tower with cooling function

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113750741A (en) * 2021-09-02 2021-12-07 中国华能集团有限公司 Flue gas purification system with fluidized bed reactor
CN114259865B (en) * 2021-11-30 2022-12-16 北京京诚科林环保科技有限公司 Dry-method multi-pollutant cooperative absorption device and method
CN114892217B (en) * 2022-04-12 2024-03-12 中南大学 System for preheating alumina raw material by high-temperature flue gas of double-layer airtight aluminum electrolysis cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114307528A (en) * 2021-12-29 2022-04-12 司少龙 System and method for preparing concentrated sulfuric acid by using coke oven flue gas and dry quenching diffused gas
CN115178089A (en) * 2022-08-11 2022-10-14 国能锅炉压力容器检验有限公司 Purify and regenerate charcoal base catalyst flue gas processing apparatus of one tower ization
CN115178089B (en) * 2022-08-11 2024-01-23 国能锅炉压力容器检验有限公司 Purifying and regenerating one-tower carbon-based catalyst flue gas treatment device
CN117225142A (en) * 2023-11-14 2023-12-15 中国华能集团清洁能源技术研究院有限公司 Low-temperature adsorption tower with cooling function
CN117225142B (en) * 2023-11-14 2024-02-13 中国华能集团清洁能源技术研究院有限公司 Low-temperature adsorption tower with cooling function

Also Published As

Publication number Publication date
DE202021101207U1 (en) 2021-03-17
CN212915058U (en) 2021-04-09

Similar Documents

Publication Publication Date Title
JP3234217U (en) Low temperature moving floor integrated adsorption desulfurization / denitration system
CN111495112A (en) Low temperature removes integration of bed and adsorbs SOx/NOx control system
JP3237795U (en) Integrated desulfurization and denitration system for flue gas based on low temperature adsorption principle
CN103816780B (en) A kind of low-temperature flue gas desulphurization denitration is except ammonia integral process
CN105080332B (en) Agglomerates of sintered pellets reclamation system and process
WO2018000857A1 (en) Flue gas desulfurization and denitrification method and device
WO2014057567A1 (en) Exhaust gas treatment system and method
CN111495111A (en) Low temperature fixed bed integration adsorbs SOx/NOx control system
CN107551811B (en) Sintering flue gas SCR denitration process based on dry method and semi-dry desulphurization
WO2021232692A1 (en) Method for low temperature adsorption and desulfurization of flue gas
WO2022032860A1 (en) Near-zero emission-type flue gas multi-pollutant integrated removal system and method
CN111495118A (en) Moving bed type low-temperature flue gas adsorption desulfurization device
CN106969641A (en) One kind sintering flue gas decomposes bioxin desulphurization denitration recovery waste heat system and method from combustion-supporting
CN111495113A (en) Fixed bed type low-temperature flue gas adsorption desulfurization system and method
CN103492048B (en) For the low NO of drier xthe system and method for discharge regeneration
CN108211698A (en) Coal-fired flue-gas all contaminants level Four cleaning system and method
CN212283448U (en) Fixed bed type flue gas low-temperature adsorption desulfurization system
CN107930388A (en) A kind of coke oven flue gas sulfur removal technology and coke oven flue gas desulphurization system
CN208082173U (en) The processing system of activated coke method coke oven flue gas desulphurization denitration acid vapour is handled with system for preparing sulfuric acid
CN212790392U (en) Moving bed type low-temperature flue gas adsorption desulfurization device
CN212790372U (en) Low temperature fixed bed integration adsorbs SOx/NOx control system
CN212395927U (en) Near zero emission type flue gas multi-pollutant integrated removing system
CN109701385A (en) A kind of new catalytic method desulfurizer and technique for coke oven flue gas
CN212999279U (en) Flue gas treatment system for efficiently utilizing carbon monoxide
CN209456366U (en) A kind of activated coke dry gas-cleaning system

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

R150 Certificate of patent or registration of utility model

Ref document number: 3234217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150