JP3232801B2 - Manufacturing method of pyroelectric infrared detecting element - Google Patents

Manufacturing method of pyroelectric infrared detecting element

Info

Publication number
JP3232801B2
JP3232801B2 JP20766393A JP20766393A JP3232801B2 JP 3232801 B2 JP3232801 B2 JP 3232801B2 JP 20766393 A JP20766393 A JP 20766393A JP 20766393 A JP20766393 A JP 20766393A JP 3232801 B2 JP3232801 B2 JP 3232801B2
Authority
JP
Japan
Prior art keywords
electrode
pyroelectric
thin film
substrate
infrared detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20766393A
Other languages
Japanese (ja)
Other versions
JPH0755577A (en
Inventor
幸治 野村
努 中西
徳巳 小谷
敬三郎 倉増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP20766393A priority Critical patent/JP3232801B2/en
Priority to US08/220,450 priority patent/US5471060A/en
Priority to DE69421024T priority patent/DE69421024T2/en
Priority to EP94105097A priority patent/EP0640815B1/en
Publication of JPH0755577A publication Critical patent/JPH0755577A/en
Priority to US08/501,932 priority patent/US5662818A/en
Application granted granted Critical
Publication of JP3232801B2 publication Critical patent/JP3232801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、焦電体を用いて赤外線
を検出する焦電型赤外線検出素子の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a pyroelectric infrared detecting element for detecting infrared rays using a pyroelectric body.

【0002】[0002]

【従来の技術】近年、焦電型赤外線検出素子は、非接触
で物体の検知や温度検出ができる点を生かして、電子レ
ンジの調理物の温度測定、エアコンの室内温度制御、あ
るいは自動ドア、警報装置での人体検知等に利用されて
おり、今後その利用範囲は拡大していくと見られる。
2. Description of the Related Art In recent years, pyroelectric infrared detectors have been developed to take advantage of the fact that they can detect objects and detect temperatures in a non-contact manner. It is used for human body detection in alarm devices, etc., and its use is expected to expand in the future.

【0003】焦電型赤外線検出素子は、強誘電体の焦電
効果を利用したセンサーである。強誘電体は内部に一定
方向の自発分極を有しており、その表面に正及び負電荷
を発生させる。大気中における定常状態では、大気中の
分子が持つ電荷と結合して中性状態になっている。すべ
ての物体は、温度に応じた赤外線を放出しており、赤外
線検出部に入射した赤外線エネルギーに応じた温度変化
を強誘電体に生じさせる。そのため、赤外線検出部の熱
応答性を良好にする必要があり、その部分での熱容量は
焦電薄膜のみが望ましいと考えられる。
A pyroelectric infrared detecting element is a sensor utilizing the pyroelectric effect of a ferroelectric substance. The ferroelectric has spontaneous polarization in a certain direction inside, and generates positive and negative charges on its surface. In a steady state in the atmosphere, it is in a neutral state by being combined with electric charges of molecules in the atmosphere. All objects emit infrared rays according to the temperature, and cause a temperature change in the ferroelectric substance according to the infrared energy incident on the infrared detector. Therefore, it is necessary to improve the thermal responsiveness of the infrared detecting unit, and it is considered that only the pyroelectric thin film is desirable for the heat capacity at that portion.

【0004】以下に、従来の焦電型赤外線検出素子につ
いて説明する。図4(a),(b)及び(c)は従来の
焦電型赤外線検出素子構成の平面、断面図及び製造プロ
セスを示すものである。図4(a)及び(b)におい
て、41は酸化マグネシウム単結晶基板(以下、(10
0)MgO単結晶基板と略す)で、42a,bは電極
で、特に電極42bは赤外線の吸収膜としての機能を有
している。43は焦電薄膜で、これら焦電薄膜43と電
極42a及び42bが積層に接続されている部分が赤外
線検出部である。44a,bはポリイミド系樹脂で赤外
線検出部および電極42a,bの引き出し部を保護し、
かつ支持するためのもので、特に44aは電極42a,
b間の層間絶縁膜である。45は開口部で焦電薄膜43
の熱容量を小さくするためのものである。
A conventional pyroelectric infrared detecting element will be described below. 4 (a), 4 (b) and 4 (c) show a plan view, a cross-sectional view and a manufacturing process of a conventional pyroelectric infrared detecting element. 4A and 4B, reference numeral 41 denotes a magnesium oxide single crystal substrate (hereinafter referred to as (10)
0) abbreviated as MgO single crystal substrate), 42a and 42b are electrodes, and in particular, the electrode 42b has a function as an infrared absorbing film. Reference numeral 43 denotes a pyroelectric thin film, and a portion where the pyroelectric thin film 43 and the electrodes 42a and 42b are connected in a stack is an infrared detecting unit. 44a and b are polyimide resins to protect the infrared detecting portion and the lead portions of the electrodes 42a and 42b,
And for supporting, in particular, 44a is the electrode 42a,
This is an interlayer insulating film between b. Reference numeral 45 denotes an opening portion of the pyroelectric thin film 43.
The purpose of this is to reduce the heat capacity.

【0005】以上のように構成された焦電型赤外線検出
素子について、図4(c)を用いて以下にその製造方法
について説明する。まず、(100)MgO単結晶基板
41上に、焦電薄膜43としてランタンを含有したチタ
ン酸鉛(以下、PLTと略す)をメタルマスクを用いて
高周波マグネトロンスパッタリング法で形成する。
[0005] A method of manufacturing the pyroelectric infrared detecting element having the above-described structure will be described below with reference to FIG. First, lanthanum-containing lead titanate (hereinafter abbreviated as PLT) is formed as a pyroelectric thin film 43 on a (100) MgO single crystal substrate 41 by a high-frequency magnetron sputtering method using a metal mask.

【0006】次に、それら上層に膜厚1μm程度のポリ
イミド系樹脂44aを層間絶縁膜として形成する。そし
て(100)MgO単結晶基板41、層間絶縁膜44a
及び焦電薄膜43上に電極42bとして20nm程度の
膜厚を有するニクロム(以下、NiCrと略す)薄膜を
マグネトロンスパッタリング法で形成し、フォトリソグ
ラフィ法で所定の形状にパターニングする。そして、そ
れら上層に膜厚3μm程度のポリイミド系樹脂44bを
形成する。
Next, a polyimide resin 44a having a thickness of about 1 μm is formed as an interlayer insulating film on these layers. Then, the (100) MgO single crystal substrate 41, the interlayer insulating film 44a
A Nichrome (hereinafter, abbreviated as NiCr) thin film having a thickness of about 20 nm is formed as an electrode 42b on the pyroelectric thin film 43 by magnetron sputtering, and is patterned into a predetermined shape by photolithography. Then, a polyimide resin 44b having a thickness of about 3 μm is formed as an upper layer.

【0007】その後、赤外線検出部を形成していない
(100)MgO単結晶基板41の裏面をエッチングマ
スクを介して燐酸で焦電薄膜43に到達するまでエッチ
ング除去する。次に、(100)MgO単結晶基板を取
り除いた側の焦電薄膜43面に電極42aとして200
nm程度の膜厚を有するNiCr薄膜をスパッタ法で形
成し、フォトリソグラフィ法で所定の形状にパターニン
グする。
Thereafter, the back surface of the (100) MgO single crystal substrate 41 on which the infrared detecting section is not formed is etched away with phosphoric acid via an etching mask until the pyroelectric thin film 43 is reached. Next, an electrode 42a is formed on the surface of the pyroelectric thin film 43 on the side from which the (100) MgO single crystal substrate is removed.
A NiCr thin film having a thickness of about nm is formed by a sputtering method, and is patterned into a predetermined shape by a photolithography method.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、赤外線検出部における熱応答性を向上させ
て赤外線検出素子の感度を良好にしようとした場合、赤
外線検出部の下層部分に相当する基板と赤外線検出部と
の接触部分を縮小させて、赤外線検出部における熱容量
を減少させる必要があり、この際、赤外線検出部と接触
する基板の一部に開口部を設けて赤外線検出部における
熱容量を減少させるが、開口部をより大きくして熱容量
を一層減少させようとすれば、赤外線検出部を構成する
焦電薄膜やポリイミド系樹脂の内部応力により、焦電薄
膜に歪み、断線、破壊が生じるという問題点を有してい
た。
However, in the above-mentioned conventional structure, when the thermal response in the infrared detecting section is improved to improve the sensitivity of the infrared detecting element, the substrate corresponding to the lower layer of the infrared detecting section is required. It is necessary to reduce the heat capacity of the infrared detector by reducing the contact portion between the infrared detector and the infrared detector.In this case, an opening is provided in a part of the substrate that contacts the infrared detector to reduce the heat capacity of the infrared detector. If you try to further reduce the heat capacity by making the opening larger, the internal stress of the pyroelectric thin film or the polyimide resin that constitutes the infrared detector causes distortion, disconnection, and destruction of the pyroelectric thin film There was a problem that.

【0009】また、赤外線検出素子がライン化、二次元
化する場合、ポリイミド系樹脂を介して熱的なクロスト
ークが起こり、熱応答性を低下させるという問題点をも
有していた。
In addition, when the infrared detecting element is made linear or two-dimensional, there is a problem that thermal crosstalk occurs via the polyimide resin, and the thermal responsiveness is reduced.

【0010】本発明はこのような上記問題点を解決する
ものであり、赤外線検出部における熱応答性を向上させ
るために、赤外線検出部と基板との接触面積を縮小させ
て熱容量を減少させても、赤外線検出部を構成する焦電
薄膜やポリイミド系樹脂の内部応力によって、焦電薄膜
に歪み、断線、破壊を生じさせず焦電薄膜の信頼性を向
上し、かつ赤外線検出素子のライン化、二次元化を図っ
ても、ポリイミド系樹脂を介して熱的なクロストークを
起こすことのない焦電薄膜の熱応答性を向上させるとと
もに、赤外線検出部の小型・薄型化、工程の簡素化を図
った焦電型赤外線検出素子及びその製造方法を提供する
ことを目的とするものである。
The present invention has been made to solve the above-mentioned problem. In order to improve the thermal response of the infrared detecting section, the contact area between the infrared detecting section and the substrate is reduced to reduce the heat capacity. In addition, due to the internal stress of the pyroelectric thin film or polyimide resin that constitutes the infrared detection unit, the pyroelectric thin film is not distorted, disconnected, broken, improves the reliability of the pyroelectric thin film, and has a line of infrared detection elements In addition to improving the thermal response of the pyroelectric thin film, which does not cause thermal crosstalk through the polyimide resin even if it is made two-dimensional, the infrared detector is made smaller and thinner, and the process is simplified. It is an object of the present invention to provide a pyroelectric infrared detection element and a method for manufacturing the same.

【0011】そして、この目的を達成するために本発明
は、少なくとも単結晶からなる基板の片面上に第一の電
極を形成する第1の工程と、前記第一の電極上に配向性
の焦電薄膜を形成する第2の工程と、前記配向性の焦電
薄膜上に赤外線吸収効果を有する第二の電極を形成する
第3の工程と、基板に前記第一の電極を形成した側から
エッチング用マスクを設ける第4の工程と、湿式エッチ
ング法によって基板に前記第一の電極と接する側より空
洞を形成する第5の工程とを備え、前記第1の工程と第
2の工程の間に、第一の電極が形成された基板表面に白
金の拡散層を形成する工程を設けるものとした。
In order to achieve this object, the present invention provides a first step of forming a first electrode on at least one surface of a substrate made of a single crystal, and a method of forming an orientation focus on the first electrode. A second step of forming an electric thin film, a third step of forming a second electrode having an infrared absorbing effect on the oriented pyroelectric thin film, and a step of forming the first electrode on the substrate. A fourth step of providing an etching mask; and a fifth step of forming a cavity in the substrate from a side in contact with the first electrode by a wet etching method .
During the second step was the first substrate surface on which electrodes are formed and shall provide a step of forming a diffusion layer of platinum.

【0012】また、本発明の焦電型赤外線検出素子の製
造方法は、少なくとも単結晶からなる基板の片面上に第
一の電極を形成する第1の工程と、第一の電極上に配向
性焦電薄膜を形成する第2の工程と、配向性焦電薄膜上
に赤外線吸収効果を有する第二の電極を形成する第3の
工程と、基板に第一の電極を形成した側からエッチング
穴を設ける第4の工程と、エッチング穴より湿式エッチ
ング法によって基板に第一の電極と接する側より空洞を
形成する第5の工程とからなる構成である。
Further, in the method of manufacturing a pyroelectric infrared detecting element according to the present invention, a first step of forming a first electrode on at least one surface of a substrate made of a single crystal; A second step of forming a pyroelectric thin film, a third step of forming a second electrode having an infrared absorbing effect on the oriented pyroelectric thin film, and an etching hole from a side where the first electrode is formed on the substrate. And a fifth step of forming a cavity in the substrate from the side in contact with the first electrode by wet etching from the etching hole.

【0013】[0013]

【作用】本発明は上記構成により、焦電薄膜の下層部分
に相当する基板の表層部に空洞を設けるので、赤外線検
出部における熱容量を焦電薄膜と上下電極だけの熱容量
の合成容量とすることができ、従来のように赤外線検出
部での開口部を大きくして熱容量を減少させなくても、
赤外線検出部における熱容量を十分に減少させるので、
開口部の拡大にともなう焦電薄膜の歪み、断線、破壊を
防止しつつ、赤外線検出部の熱応答性を優れたものにす
ることができる。
According to the present invention, a cavity is provided in the surface layer portion of the substrate corresponding to the lower layer portion of the pyroelectric thin film, so that the heat capacity in the infrared detecting section is a combined capacity of the heat capacity of only the pyroelectric thin film and the upper and lower electrodes. Without having to reduce the heat capacity by increasing the opening in the infrared detector as in the past,
Since the heat capacity of the infrared detector is sufficiently reduced,
The thermal response of the infrared detector can be improved while preventing the pyroelectric thin film from being distorted, broken, or broken due to the enlargement of the opening.

【0014】また、回路部と電極との接続の際、基板上
に形成した赤外線検出部の電極を回路部との接続電極と
して用いることができるので、赤外線検出素子と回路部
との接続が同一基板面上で可能となり、赤外線検出素子
の実装を容易なものとすることができる。
Further, when connecting the circuit portion and the electrode, the electrode of the infrared detection portion formed on the substrate can be used as the connection electrode with the circuit portion, so that the connection between the infrared detection element and the circuit portion is the same. This is possible on the substrate surface, and the mounting of the infrared detecting element can be facilitated.

【0015】[0015]

【実施例】【Example】

(実施例1)以下、本発明の一実施例について図面を参
照しながら説明する。図1(a),(b),(c)は本
発明の第一の実施例における焦電型赤外線検出素子の構
成を示す平面図、断面図及び製造工程図である。図1
(a),(b),(c)に示すように、焦電型赤外線検
出素子は(100)MgO単結晶基板11と、この(1
00)MgO単結晶基板11上に第一の電極12aを有
し、この第一の電極12a上に焦電薄膜13を有し、こ
の焦電薄膜13の側面に層間絶縁膜15を、この焦電薄
膜13上に赤外線吸収効果を有する第二の電極12bを
有した赤外線検出部とからなり、この赤外線検出部が接
する(100)MgO単結晶基板11の表層部に微小空
洞14を有した構成である。
(Embodiment 1) Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIGS. 1A, 1B, and 1C are a plan view, a cross-sectional view, and a manufacturing process diagram showing a configuration of a pyroelectric infrared detecting element according to a first embodiment of the present invention. FIG.
As shown in (a), (b), and (c), the pyroelectric infrared detecting element is composed of a (100) MgO single crystal substrate 11 and this (1).
00) A first electrode 12a is provided on the MgO single crystal substrate 11, a pyroelectric thin film 13 is provided on the first electrode 12a, and an interlayer insulating film 15 is An infrared detecting section having a second electrode 12b having an infrared absorbing effect on the thin film 13 and having a microcavity 14 in the surface layer of the (100) MgO single crystal substrate 11 in contact with the infrared detecting section. It is.

【0016】以上のように構成された焦電型赤外線検出
素子について、図1(c)を用いてその製造方法を以下
に説明する。まず、基板11として(100)MgO単
結晶基板を用いる。そして、第一の電極12aを形成す
る工程として(100)MgO単結晶基板11上に15
0nm程度の膜厚を有する白金(以下、Ptと略す)薄
膜をスパッタリング法により、基板温度:500℃、入
射電力密度:0.45w/cm2、スパッタガス比:Ar
/O2=2/1、ガス圧:1.06Paの条件下で形成
する。
A method of manufacturing the pyroelectric infrared detecting element having the above-described structure will be described below with reference to FIG. First, a (100) MgO single crystal substrate is used as the substrate 11. Then, as a step of forming the first electrode 12a, 15 (100) MgO single crystal substrate 11
A platinum (hereinafter, abbreviated as Pt) thin film having a thickness of about 0 nm is formed by sputtering using a substrate temperature of 500 ° C., an incident power density of 0.45 w / cm 2 , and a sputtering gas ratio of Ar.
It is formed under the conditions of / O 2 = 2/1 and gas pressure: 1.06 Pa.

【0017】次に、焦電薄膜13を形成する工程として
第一の電極12a上に、(化1)に示すようないずれか
の組成をもち、<001>方向に高度に配向する焦電材
料からなる薄膜を高周波マグネトロンスパッタリング法
により、基板温度:600℃、入射電力密度:1.6w
/cm2、スパッタガス比:Ar/O2=9/1、ガス圧:
1.0Paの条件下で形成する。このとき(100)M
gO単結晶基板11と焦電薄膜13の熱膨脹係数の差に
より、焦電薄膜13の格子が歪み、基板面に対して垂直
方向にc軸が伸びることにより一定方向の自発分極が現
れる。
Next, as a step of forming the pyroelectric thin film 13, a pyroelectric material having any composition as shown in the following formula (1) and highly oriented in the <001> direction is formed on the first electrode 12a. The thin film made of is subjected to a high-frequency magnetron sputtering method at a substrate temperature of 600 ° C. and an incident power density of 1.6 watts.
/ Cm 2 , sputtering gas ratio: Ar / O 2 = 9/1, gas pressure:
It is formed under the condition of 1.0 Pa. At this time, (100) M
Due to the difference in thermal expansion coefficient between the gO single crystal substrate 11 and the pyroelectric thin film 13, the lattice of the pyroelectric thin film 13 is distorted, and the c-axis extends in a direction perpendicular to the substrate surface, so that spontaneous polarization in a certain direction appears.

【0018】本実施例に用いた焦電材料の化学構造式を
(化1)に示している。
The chemical structural formula of the pyroelectric material used in the present embodiment is shown in (Formula 1).

【0019】[0019]

【化1】 Embedded image

【0020】次に、フォトリソグラフィ工程で焦電薄膜
13を所定の形状にパターニングし、その後、第一の電
極12aも所定の形状にパターニングする。次に、赤外
線吸収効果を有する第二の電極12bを形成する工程と
して焦電薄膜13上の少なくとも一部に、20nm程度
の膜厚を有する赤外光の反射率が少なく吸収効率の高い
NiCr薄膜をスパッタリング法により、基板温度:1
00℃、入射電力密度:0.55w/cm2、スパッタガ
ス:Ar、ガス圧:1.0Paの条件下で形成し、続い
てフォトリソグラフィ法により所定の形状にパターニン
グする。
Next, the pyroelectric thin film 13 is patterned into a predetermined shape by a photolithography process, and then the first electrode 12a is also patterned into a predetermined shape. Next, as a step of forming the second electrode 12b having an infrared absorbing effect, a NiCr thin film having a thickness of about 20 nm and having a low reflectance of infrared light and a high absorption efficiency is formed on at least a part of the pyroelectric thin film 13. By sputtering method, substrate temperature: 1
It is formed under the conditions of 00 ° C., incident power density: 0.55 w / cm 2 , sputtering gas: Ar, gas pressure: 1.0 Pa, and then patterned into a predetermined shape by photolithography.

【0021】最後に空洞14を形成する工程として、初
めに赤外線検出部と同一の(100)MgO単結晶基板
11の表面上の特定領域にフォトリソグラフィ法により
エッチング用マスクを作製し、このエッチング用マスク
を介して湿式エッチングで赤外線検出部の直下に微小空
洞14を形成する。このときのエッチング液として、濃
度が30vol%以下、液温が80℃の燐酸を用いる。
その結果、微小空洞14の大きさは、エッチング時間が
20分のとき水平方向:300μm、垂直方向:80μ
mであることを確認している。
Finally, as a step of forming the cavity 14, first, an etching mask is formed by photolithography on a specific region on the surface of the (100) MgO single crystal substrate 11 which is the same as the infrared detecting portion, and this etching mask is formed. The microcavities 14 are formed directly under the infrared detection unit by wet etching through a mask. At this time, phosphoric acid having a concentration of 30 vol% or less and a liquid temperature of 80 ° C. is used.
As a result, the size of the microcavities 14 is 300 μm in the horizontal direction and 80 μm in the vertical direction when the etching time is 20 minutes.
m.

【0022】以上のように本実施例の焦電型赤外線検出
素子の構造によれば、赤外線検出部と同一の(100)
MgO単結晶基板11の表面上から特定の領域にエッチ
ング用マスクを介して微小空洞14を形成することによ
り、赤外線検出部は、ポリイミド系樹脂で覆われること
なく、Pt電極を介して(100)MgO単結晶基板1
1で直接保持できる。これにより、NiCr薄膜からな
る第二の電極12bが受けた赤外線エネルギーを熱に変
換し、焦電薄膜13が熱エネルギーを効率よく吸収する
ことが可能となり、応答速度が速く、高感度の赤外線検
出素子が形成される。また、(100)MgO単結晶基
板11の一部領域に微小空洞14が設けられた構造であ
るため、残りの(100)MgO単結晶基板11がセン
サー部の支持基板としてそのまま使用でき、素子の小型
化が可能となる。また、本発明の構成では、製造方法も
単純化され、かつ信頼性の高い焦電型赤外線検出素子が
形成される。
As described above, according to the structure of the pyroelectric infrared detecting element of this embodiment, the same (100) as the infrared detecting section is used.
By forming the microcavities 14 in a specific region from the surface of the MgO single crystal substrate 11 via an etching mask, the infrared detecting portion is not covered with the polyimide resin, and is formed through the Pt electrode (100). MgO single crystal substrate 1
1 can hold directly. As a result, the infrared energy received by the second electrode 12b made of a NiCr thin film is converted into heat, and the pyroelectric thin film 13 can efficiently absorb the heat energy. An element is formed. Further, since the microcavity 14 is provided in a partial region of the (100) MgO single crystal substrate 11, the remaining (100) MgO single crystal substrate 11 can be used as it is as a support substrate of the sensor unit, and The size can be reduced. Further, in the configuration of the present invention, the manufacturing method is simplified, and a highly reliable pyroelectric infrared detecting element is formed.

【0023】本実施例では基板として(100)MgO
単結晶基板11を用いているが、これは、(化1)の焦
電材料の結晶構造において、(001)面との格子常数
の整合性に優れており、<001>方向へ優先的に薄膜
成長を可能にすることができる。さらに、この結晶方位
へ焦電薄膜13が結晶成長することで、高温、高電界中
での分極処理を施すことなく、分極を効率よく一方向に
揃えることが実現できる。しかし、(100)面以外の
結晶面を有するMgO基板、またはアルミナ、チタン酸
ストロンチウム、シリコン等の単結晶基板あるいはガラ
ス等非晶質基板を用いても同様の効果が得られることが
確認されている。
In this embodiment, (100) MgO is used as the substrate.
The single-crystal substrate 11 is used, which has excellent lattice constant matching with the (001) plane in the crystal structure of the pyroelectric material of Chemical Formula 1, and preferentially moves in the <001> direction. Thin film growth can be enabled. Furthermore, by growing the pyroelectric thin film 13 in this crystal orientation, the polarization can be efficiently aligned in one direction without performing a polarization process at a high temperature and a high electric field. However, it has been confirmed that the same effect can be obtained by using an MgO substrate having a crystal plane other than the (100) plane, a single crystal substrate such as alumina, strontium titanate, silicon, or an amorphous substrate such as glass. I have.

【0024】次に、(100)MgO単結晶基板11と
焦電薄膜13との間の電極としてPtを主成分にするも
のを用いることにより、焦電薄膜13の配向率を非常に
高くすることができ、さらに焦電薄膜13中へのマグネ
シウム(Mg)の拡散防止の効果が大であることがわか
った。また、Ptは、非常に安定な金属であるため、焦
電薄膜13の作製時の高温中においても熱酸化しないの
で焦電薄膜13との電気的コンタクトに優れ、焦電薄膜
13の電荷の変化にともなう電気信号を効率よく検出す
ることが実現できる。さらに、(100)MgO単結晶
基板11の表層部のPt拡散層がMgO中で触媒として
働き、MgOの横方向へのエッチング速度を増大させる
効果もある。
Next, by using an electrode mainly composed of Pt as an electrode between the (100) MgO single crystal substrate 11 and the pyroelectric thin film 13, the orientation ratio of the pyroelectric thin film 13 can be made extremely high. It was found that the effect of preventing diffusion of magnesium (Mg) into the pyroelectric thin film 13 was large. Further, since Pt is a very stable metal, it does not thermally oxidize even at a high temperature when the pyroelectric thin film 13 is manufactured, so that it is excellent in electrical contact with the pyroelectric thin film 13 and changes in the charge of the pyroelectric thin film 13 In this way, it is possible to efficiently detect an electric signal associated with this. Further, the Pt diffusion layer on the surface of the (100) MgO single crystal substrate 11 acts as a catalyst in MgO, and has an effect of increasing the etching rate of MgO in the lateral direction.

【0025】また、本発明の製造方法によれば、基板と
して用いたMgO単結晶基板11のエッチング液に燐酸
を用いることで、赤外線検出部の直下にあるMgO単結
晶基板11の少なくとも一部領域をエッチング用マスク
を介して短時間で取り除くことができ、しかも第一の電
極であるPt薄膜及び焦電薄膜13との選択エッチング
性に優れていることから、効率よくMgO単結晶基板1
1の表層部に微小空洞14を形成できる。
According to the manufacturing method of the present invention, phosphoric acid is used as an etching solution for the MgO single-crystal substrate 11 used as the substrate, so that at least a part of the MgO single-crystal substrate 11 immediately below the infrared detecting section is provided. Can be removed in a short time through an etching mask, and is excellent in selective etching with the Pt thin film and the pyroelectric thin film 13 as the first electrode.
The minute cavities 14 can be formed in the surface layer portion of the first.

【0026】今回、MgO単結晶基板11のエッチング
液として濃度30%以下、液温80℃の燐酸を用いた
が、その他の濃度、液温下においても同様の結果が得ら
れることを確認しており、また塩酸、硫酸、硝酸、フッ
酸あるいは酸性化合物あるいはこれらの混合液等の酸性
溶液を用いても同様の結果が得られることを確認してい
る。
In this case, phosphoric acid having a concentration of 30% or less and a liquid temperature of 80 ° C. was used as an etching solution for the MgO single crystal substrate 11, but it was confirmed that similar results could be obtained at other concentrations and liquid temperatures. It has also been confirmed that similar results can be obtained by using an acidic solution such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid or an acidic compound or a mixture thereof.

【0027】(実施例2)以下本発明の第2の実施例に
ついて図面を参照しながら説明する。図2(a)及び
(b)は本発明の第2の実施例における焦電型赤外線検
出素子を示す平面図及び断面図である。図2において、
21は基板、22a,bは電極、23は焦電薄膜、24
は空洞、25は層間絶縁膜で、以上は図1の構成と同様
であり、かつ製造方法も本発明の実施例1で示したもの
と同様である。図1の構成と異なるのは空洞24が赤外
線検出部とその周辺の第一の電極22aを取り囲み、か
つ少なくとも2箇所以上の細い引き出し部を対称に構成
している点である。
(Embodiment 2) Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. FIGS. 2A and 2B are a plan view and a sectional view showing a pyroelectric infrared detecting element according to a second embodiment of the present invention. In FIG.
21 is a substrate, 22a and 22b are electrodes, 23 is a pyroelectric thin film, 24
Is a cavity, and 25 is an interlayer insulating film. The above is the same as the configuration of FIG. 1 and the manufacturing method is also the same as that shown in the first embodiment of the present invention. The difference from the configuration of FIG. 1 is that the cavity 24 surrounds the infrared detecting section and the first electrode 22a around the infrared detecting section, and at least two or more thin lead sections are symmetrically configured.

【0028】以上のように本実施例の焦電型赤外線検出
素子によれば、(100)MgO単結晶基板11と熱伝
導の良好な第一の電極22aとの接触面積が大幅に減
り、熱的リークが抑えられる。このことにより、焦電薄
膜23が電極22bにより変換された熱エネルギーを効
率よく吸収することが可能となり、応答速度が一段と速
くなり、感度をさらに向上させることができる。
As described above, according to the pyroelectric infrared detecting element of this embodiment, the contact area between the (100) MgO single crystal substrate 11 and the first electrode 22a having good heat conduction is greatly reduced, Target leak is suppressed. Thus, the pyroelectric thin film 23 can efficiently absorb the heat energy converted by the electrode 22b, the response speed is further increased, and the sensitivity can be further improved.

【0029】また、引き出し部を蛇行させることによ
り、蛇行部分で外部からの力を吸収し、断線を防止する
ことも可能である。
Further, by making the drawer meander, it is possible to absorb the external force at the meandering portion and to prevent disconnection.

【0030】なお、実施例では、第一の電極22aの引
き出し部を2箇所にしているが、放射状に配置すること
により、赤外線検出部の保持力が強化されることは言う
までもない。
Although the first electrode 22a has two lead-out portions in the embodiment, it goes without saying that the radial arrangement of the first electrode 22a enhances the holding power of the infrared detecting portion.

【0031】(実施例3)以下本発明の第3の実施例に
ついて図面を参照しながら説明する。図3(a),
(b)及び(c)は本発明の第3の実施例における焦電
型赤外線検出素子を示す平面図、断面図及び製造工程図
である。図3において、31は基板、32a,bは電
極、33は焦電薄膜、34は空洞、以上は図1の構成及
び製造方法も本発明の実施例1で示したものと同様であ
る。図1の構成及び製造方法と異なるのは赤外線検出部
が絶縁性の有機系絶縁膜36を介して(100)MgO
単結晶基板31上で支持される構成になっている点であ
り、その製造方法においては、NiCrからなる電極3
2bを形成した後、スピンナーで有機系絶縁膜36を2
μm程度塗布し、フォトリソグラフィ法により所定の形
状にパターニングする点である。
(Embodiment 3) A third embodiment of the present invention will be described below with reference to the drawings. FIG. 3 (a),
(B) and (c) are a plan view, a cross-sectional view, and a manufacturing process diagram showing a pyroelectric infrared detecting element according to a third embodiment of the present invention. In FIG. 3, 31 is a substrate, 32a and b are electrodes, 33 is a pyroelectric thin film, 34 is a cavity, and the configuration and manufacturing method of FIG. 1 are the same as those shown in the first embodiment of the present invention. 1 is different from the configuration and the manufacturing method of FIG. 1 in that the infrared detecting section is made of (100) MgO via an insulating organic insulating film 36.
This is a point that the electrode 3 is supported on the single crystal substrate 31.
After the formation of 2b, the organic insulating film 36 is
The point is that the coating is performed in a thickness of about μm and patterned into a predetermined shape by a photolithography method.

【0032】以上のように本実施例の焦電型赤外線検出
素子によれば、赤外線検出部直下は微小空洞34を保っ
た状態のままで、検出部の熱容量が増大することなく熱
応答性、感度を保ち続けている。また、有機系絶縁膜3
6が有機系であるため外部からの衝撃を吸収し、かつ有
機系樹脂が焦電薄膜33の内部応力を緩和し、素子の破
壊を低減する。そのため、ウエハーの切断時あるいは運
搬時等の衝撃において素子が破壊しなくなり歩留まり、
耐衝撃性等を向上させることが可能である。
As described above, according to the pyroelectric infrared detecting element of this embodiment, the thermal responsiveness can be improved without increasing the heat capacity of the detecting section while the microcavity 34 is maintained immediately below the infrared detecting section. Keeps sensitivity. Also, the organic insulating film 3
Since 6 is an organic material, it absorbs external shocks, and the organic resin relaxes the internal stress of the pyroelectric thin film 33, thereby reducing element destruction. Therefore, the element is not destroyed by an impact such as when the wafer is cut or transported, and the yield is increased.
It is possible to improve impact resistance and the like.

【0033】(実施例4)以下、本発明の第4の実施例
について説明する。本実施例の構成は、本発明の実施例
1,2,3と略同等である。これらの実施例と異なる点
は、(100)MgO単結晶基板表面への白金拡散層の
形成方法の追加である。以下にその形成方法について図
1を参照しながら説明する。
(Embodiment 4) Hereinafter, a fourth embodiment of the present invention will be described. The configuration of this embodiment is substantially the same as Embodiments 1, 2, and 3 of the present invention. The difference from these examples is the addition of a method for forming a platinum diffusion layer on the surface of a (100) MgO single crystal substrate. Hereinafter, a method for forming the same will be described with reference to FIG.

【0034】まず、500℃以下の(100)MgO単
結晶基板11温度で第一の電極12aのPtを形成し、
その後、(100)MgO単結晶基板11表面に白金の
拡散層を設ける。あるいは第一の電極12aのPtを形
成する温度を500℃以上にして第一の電極12aを形
成し、その後、(100)MgO単結晶基板11表面に
白金の拡散層を設ける。あるいは第一の電極12aのP
tを形成し、その後、同一真空槽内もしくは他の真空槽
内のいずれかで加熱温度600℃以上、10-6Torr
以下の真空状態で熱処理を行ない、(100)MgO単
結晶基板11表面に白金拡散層を設ける。またはスパッ
タリング法でPtを数原子層形成した後加熱温度600
℃以上、10-6Torr以下の真空状態で熱処理を行な
い、(100)MgO単結晶基板11表面に白金拡散層
を形成してから第一の電極12aのPtを設ける。
First, Pt of the first electrode 12a is formed at a temperature of the (100) MgO single crystal substrate 11 of 500 ° C. or less,
Thereafter, a diffusion layer of platinum is provided on the surface of the (100) MgO single crystal substrate 11. Alternatively, the temperature for forming Pt of the first electrode 12a is set to 500 ° C. or higher to form the first electrode 12a, and then a platinum diffusion layer is provided on the surface of the (100) MgO single crystal substrate 11. Or P of the first electrode 12a
After that, a heating temperature of 600 ° C. or higher and 10 −6 Torr in either the same vacuum chamber or another vacuum chamber.
Heat treatment is performed in the following vacuum state to provide a platinum diffusion layer on the surface of the (100) MgO single crystal substrate 11. Alternatively, after forming a few atomic layers of Pt by a sputtering method, a heating temperature of 600
Heat treatment is performed in a vacuum state of not less than 10 ° C. and not more than 10 −6 Torr to form a platinum diffusion layer on the surface of the (100) MgO single crystal substrate 11, and then provide Pt for the first electrode 12a.

【0035】以上のような本実施例の製造方法によれ
ば、(100)MgO単結晶基板11の表面に白金の拡
散層を設けるので、(100)MgO単結晶基板11に
微小空洞14を形成する際に、微小空洞14を形成する
エッチングを促進させることができる。
According to the manufacturing method of the present embodiment as described above, since the platinum diffusion layer is provided on the surface of the (100) MgO single crystal substrate 11, the minute cavities 14 are formed in the (100) MgO single crystal substrate 11. In this case, the etching for forming the microcavities 14 can be promoted.

【0036】さらに、第一の電極12aのPtを形成す
る温度を500℃以上にすれば一層エッチングを促進さ
せることができる。
Further, if the temperature for forming Pt of the first electrode 12a is set to 500 ° C. or more, the etching can be further promoted.

【0037】また、第一の電極12aを形成した後さら
に熱処理を施せば、MgO単結晶基板11中への白金拡
散量が増加し、横方向へのエッチングを促進させること
が可能である。さらに、第一の電極12aのPtを形成
する前に数原子層のPtを形成し、焦電薄膜13形成時
の(100)MgO単結晶基板11温度以上で真空熱処
理を行えば、(100)MgO単結晶基板11の表層部
に白金拡散層が高濃度で形成され、横方向へのエッチン
グをいっそう促進させることが可能である。
Further, if the heat treatment is further performed after the formation of the first electrode 12a, the amount of platinum diffusion into the MgO single crystal substrate 11 is increased, and it is possible to promote the etching in the lateral direction. Furthermore, if a few atomic layers of Pt are formed before forming the Pt of the first electrode 12a, and a vacuum heat treatment is performed at a temperature equal to or higher than the temperature of the (100) MgO single crystal substrate 11 at the time of forming the pyroelectric thin film 13, (100) A platinum diffusion layer is formed at a high concentration on the surface layer of the MgO single crystal substrate 11, so that etching in the lateral direction can be further promoted.

【0038】(実施例5)以下本発明の第5の実施例に
ついて説明する。本実施例の構造は、本発明の実施例
1,2及び3で示したものと同様である。これら実施例
および実施例4と異なる点は、第一の電極を形成する工
程前に基板表層部に基板構成原子以外の物質で表面改質
工程を加えることである。以下にその工程を図1を参照
しながら説明する。
(Embodiment 5) Hereinafter, a fifth embodiment of the present invention will be described. The structure of this embodiment is the same as that shown in Embodiments 1, 2, and 3 of the present invention. The difference from these Examples and Example 4 is that a surface modification step is performed on the surface layer of the substrate with a substance other than the atoms constituting the substrate before the step of forming the first electrode. The steps will be described below with reference to FIG.

【0039】表面改質方法として、ネオン(以下、Ne
と略す)、アルゴン、クリプトン等の不活性ガス、或い
はボロン、窒素等の非金属元素らの低エネルギーイオン
ビームを(100)MgO単結晶基板11表面に照射
し、(100)MgO単結晶基板11表面から0.数〜
数百nm程度までこれら元素をイオン注入する。また
は、これら原料ガスのプラズマ雰囲気中に(100)M
gO単結晶基板を曝し、プラズマ中で発生したイオン種
を(100)MgO単結晶基板11表面にスパッタリン
グすることにより、これら元素の注入層を形成する。
As a surface modification method, neon (hereinafter, Ne) is used.
The surface of the (100) MgO single crystal substrate 11 is irradiated with a low-energy ion beam of an inert gas such as argon or krypton, or a nonmetallic element such as boron or nitrogen. 0 from the surface. number~
These elements are ion-implanted to about several hundred nm. Alternatively, the (100) M
The gO single crystal substrate is exposed, and an ion species generated in the plasma is sputtered on the surface of the (100) MgO single crystal substrate 11 to form an injection layer of these elements.

【0040】以上のような本実施例の製造方法によれ
ば、MgO結晶中に原子半径の大きな元素により格子歪
みを形成し、またPtの拡散も促進されるので(10
0)MgO単結晶基板11の横方向へのエッチング速度
を増加させることが可能である。
According to the manufacturing method of the present embodiment as described above, the lattice distortion is formed by the element having a large atomic radius in the MgO crystal, and the diffusion of Pt is promoted.
0) It is possible to increase the etching rate of the MgO single crystal substrate 11 in the lateral direction.

【0041】[0041]

【発明の効果】以上のように本発明によれば、赤外線検
出部における熱応答性を向上させるために、赤外線検出
部と基板との接触面積を縮小させて熱容量を減少させて
も、赤外線検出部を構成する焦電薄膜やポリイミド系樹
脂の内部応力によって、焦電薄膜に歪み、断線、破壊を
生じさせず焦電薄膜の信頼性を向上し、かつ赤外線検出
素子のライン化、二次元化を図っても、ポリイミド系樹
脂を介して熱的なクロストークを起こすことのない焦電
薄膜の熱応答性を向上させるとともに、赤外線検出部の
小型・薄型化、工程の簡素化を図ることができるもので
ある。
As described above, according to the present invention, even if the heat capacity is reduced by reducing the contact area between the infrared detecting section and the substrate in order to improve the thermal response in the infrared detecting section, the infrared detecting section can be used. Due to the internal stress of the pyroelectric thin film and polyimide resin that make up the part, the reliability of the pyroelectric thin film is improved without causing distortion, disconnection, and destruction of the pyroelectric thin film, and line and two-dimensional infrared detection elements In addition to improving the thermal responsiveness of the pyroelectric thin film that does not cause thermal crosstalk via the polyimide resin, the infrared detector can be made smaller and thinner, and the process can be simplified. You can do it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の実施例1における焦電型赤外線
検出素子を示す平面図 (b)本発明の実施例1における焦電型赤外線検出素子
を示す断面図 (c)本発明の実施例1における焦電型赤外線検出素子
の製造工程図
FIG. 1A is a plan view illustrating a pyroelectric infrared detecting element according to a first embodiment of the present invention. FIG. 1B is a cross-sectional view illustrating a pyroelectric infrared detecting element according to a first embodiment of the present invention. Manufacturing process chart of pyroelectric infrared detection element in Example 1

【図2】(a)本発明の実施例2における焦電型赤外線
検出素子を示す平面図 (b)本発明の実施例2における焦電型赤外線検出素子
を示す断面図
FIG. 2A is a plan view illustrating a pyroelectric infrared detecting element according to a second embodiment of the present invention. FIG. 2B is a cross-sectional view illustrating a pyroelectric infrared detecting element according to a second embodiment of the present invention.

【図3】(a)本発明の実施例3における焦電型赤外線
検出素子を示す平面図 (b)本発明の実施例3における焦電型赤外線検出素子
を示す断面図 (c)本発明の実施例3における焦電型赤外線検出素子
の製造工程図
FIG. 3A is a plan view showing a pyroelectric infrared detecting element according to a third embodiment of the present invention. FIG. 3B is a cross-sectional view showing a pyroelectric infrared detecting element according to a third embodiment of the present invention. Manufacturing process diagram of pyroelectric infrared detection element in Example 3

【図4】(a)従来の焦電型赤外線検出素子を示す平面
図 (b)従来の焦電型赤外線検出素子を示す断面図 (c)従来の焦電型赤外線検出素子の製造工程図
4A is a plan view showing a conventional pyroelectric infrared detecting element. FIG. 4B is a cross-sectional view showing a conventional pyroelectric infrared detecting element. FIG.

【符号の説明】[Explanation of symbols]

11 基板 12a,b 電極 13 焦電薄膜 14 微小空洞 15 層間絶縁膜 21 基板 22a,b 電極 23 焦電薄膜 24 微小空洞 25 層間絶縁膜 31 基板 32a,b 電極 33 焦電薄膜 34 微小空洞 36 有機系保持膜 41 (100)MgO基板 42a,b 電極 43 焦電薄膜 44a,b ポリイミド系樹脂 45 開口部 DESCRIPTION OF SYMBOLS 11 Substrate 12a, b electrode 13 Pyroelectric thin film 14 Microcavity 15 Interlayer insulating film 21 Substrate 22a, b electrode 23 Pyroelectric thin film 24 Microcavity 25 Interlayer insulating film 31 Substrate 32a, b electrode 33 Pyroelectric thin film 34 Microcavity 36 Organic system Holding film 41 (100) MgO substrate 42a, b electrode 43 Pyroelectric thin film 44a, b Polyimide resin 45 Opening

───────────────────────────────────────────────────── フロントページの続き (72)発明者 倉増 敬三郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭62−252006(JP,A) 特開 昭61−100621(JP,A) 特開 平3−146829(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01J 1/02 G01J 5/02 G01J 5/12 G01V 9/04 H01L 31/00 - 31/02 H01L 31/08 H01L 37/00 - 37/02 H01L 21/306 - 21/308 H01L 21/465 - 21/467 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Keisaburo Kuramasu 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-62-252006 (JP, A) JP-A-61- 100621 (JP, A) JP-A-3-146829 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01J 1/02 G01J 5/02 G01J 5/12 G01V 9/04 H01L 31/00-31/02 H01L 31/08 H01L 37/00-37/02 H01L 21/306-21/308 H01L 21/465-21/467

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも単結晶からなる基板の片面上
に第一の電極を形成する第1の工程と、前記第一の電極
上に配向性の焦電薄膜を形成する第2の工程と、前記配
向性の焦電薄膜上に赤外線吸収効果を有する第二の電極
を形成する第3の工程と、基板に前記第一の電極を形成
した側からエッチング用マスクを設ける第4の工程と、
湿式エッチング法によって基板に前記第一の電極と接す
る側より空洞を形成する第5の工程とを備え、前記第1
の工程と第2の工程の間に、第一の電極が形成された基
板表面に白金の拡散層を形成する工程を設けた焦電型赤
外線検出素子の製造方法。
1. A first step of forming a first electrode on at least one surface of a substrate made of a single crystal; and a second step of forming an oriented pyroelectric thin film on the first electrode. A third step of forming a second electrode having an infrared absorbing effect on the oriented pyroelectric thin film, and a fourth step of providing an etching mask on the substrate from the side where the first electrode is formed,
A fifth step of forming a cavity in the substrate from a side in contact with the first electrode by a wet etching method;
A method of manufacturing a pyroelectric infrared detection element, comprising a step of forming a platinum diffusion layer on the surface of the substrate on which the first electrode is formed, between the steps of ( i) and (ii).
【請求項2】 基板表面への白金の拡散層は熱処理によ
り形成する請求項1記載の焦電型赤外線検出素子の製造
方法。
2. A diffusion layer of platinum on a substrate surface is formed by heat treatment.
The method for manufacturing a pyroelectric infrared detecting element according to claim 1, wherein
JP20766393A 1993-08-23 1993-08-23 Manufacturing method of pyroelectric infrared detecting element Expired - Fee Related JP3232801B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP20766393A JP3232801B2 (en) 1993-08-23 1993-08-23 Manufacturing method of pyroelectric infrared detecting element
US08/220,450 US5471060A (en) 1993-08-23 1994-03-30 Pyroelectric infrared radiation detector and method of producing the same
DE69421024T DE69421024T2 (en) 1993-08-23 1994-03-31 Pyroelectric infrared radiation detector and method for its manufacture
EP94105097A EP0640815B1 (en) 1993-08-23 1994-03-31 Pyroelectric infrared radiation detector and method of producing the same
US08/501,932 US5662818A (en) 1993-08-23 1995-07-31 Method of producing a pyroelectric infrared radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20766393A JP3232801B2 (en) 1993-08-23 1993-08-23 Manufacturing method of pyroelectric infrared detecting element

Publications (2)

Publication Number Publication Date
JPH0755577A JPH0755577A (en) 1995-03-03
JP3232801B2 true JP3232801B2 (en) 2001-11-26

Family

ID=16543501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20766393A Expired - Fee Related JP3232801B2 (en) 1993-08-23 1993-08-23 Manufacturing method of pyroelectric infrared detecting element

Country Status (1)

Country Link
JP (1) JP3232801B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413070B2 (en) * 2014-04-17 2018-10-31 パナソニックIpマネジメント株式会社 Infrared detector and infrared detector
GB201902452D0 (en) 2019-02-22 2019-04-10 Pyreos Ltd Microsystem and method for making the microsystem

Also Published As

Publication number Publication date
JPH0755577A (en) 1995-03-03

Similar Documents

Publication Publication Date Title
US5367167A (en) Uncooled infrared detector and method for forming the same
CA1184642A (en) Infrared radiation detector
JPH06317475A (en) Infrared sensor and fabrication thereof
US5471060A (en) Pyroelectric infrared radiation detector and method of producing the same
JPH02189971A (en) Infrared detecting or image-sensing monolithic structure and manufacture thereof
CN115777057A (en) Infrared imaging microbolometer and related forming method
JP3232801B2 (en) Manufacturing method of pyroelectric infrared detecting element
JP2655101B2 (en) Infrared sensor
JP3269200B2 (en) Pyroelectric infrared detecting element and method of manufacturing the same
JPH09288010A (en) Pyroelectric infrared detecting element and its manufacture
JP3269199B2 (en) Pyroelectric infrared detector
Rissman et al. Preparation and lifetest of niobium Josephson junction tunnel diodes and arrays
JP3006364B2 (en) Semiconductor device
JPH06147993A (en) Infrared sensor element and its manufacture
JP3637665B2 (en) Pyroelectric infrared detector
JP2003329642A (en) Gas sensor and manufacturing method thereof
KR100305671B1 (en) Infrared sensing apparatus and mehtod for fabricating the same
JPH10300570A (en) Pyroelectric infrared ray detection element
JP2969031B2 (en) Method for manufacturing semiconductor device for infrared detecting element
JPH11183259A (en) Infrared detection element
JPH0643017A (en) Infrared sensor and manufacture thereof
JPH116763A (en) Pyroelectric type infrared detection element
JP3461242B2 (en) Pyroelectric infrared thin film element and method of manufacturing the same
KR100313043B1 (en) Method for manufacturing an infrared bolometer
CN114335317A (en) Thermopile, preparation method thereof and thermopile infrared detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees