JP3232306B2 - Method for producing flaky titanium oxide, porous titanium oxide body comprising aggregate of flaky titanium oxide, and method for producing the same - Google Patents

Method for producing flaky titanium oxide, porous titanium oxide body comprising aggregate of flaky titanium oxide, and method for producing the same

Info

Publication number
JP3232306B2
JP3232306B2 JP01508298A JP1508298A JP3232306B2 JP 3232306 B2 JP3232306 B2 JP 3232306B2 JP 01508298 A JP01508298 A JP 01508298A JP 1508298 A JP1508298 A JP 1508298A JP 3232306 B2 JP3232306 B2 JP 3232306B2
Authority
JP
Japan
Prior art keywords
titanium oxide
producing
flaky
porous
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01508298A
Other languages
Japanese (ja)
Other versions
JPH10259023A (en
Inventor
高義 佐々木
遵 渡辺
正幸 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP01508298A priority Critical patent/JP3232306B2/en
Publication of JPH10259023A publication Critical patent/JPH10259023A/en
Application granted granted Critical
Publication of JP3232306B2 publication Critical patent/JP3232306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Paper (AREA)
  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄片状酸化チタン
の製造方法、及び、薄片状酸化チタンの集合体である酸
化チタン多孔体、及び該多孔体の製造方法に関する。さ
らに詳しくは、顔料、塗料、化粧品またはナイロン等の
樹脂や白色紙等への添加剤、さらに触媒等の光機能性材
料として有用な薄片状酸化チタンの製造方法、及び該方
法によって得られた薄片状酸化チタンよりなる多孔体、
並びに該多孔体の製造方法に関する。
The present invention relates to a method for producing flaky titanium oxide, a porous titanium oxide body which is an aggregate of flaky titanium oxide, and a method for producing the porous body. More specifically, a method for producing a flaky titanium oxide useful as a photofunctional material such as a pigment, a paint, a cosmetic or an additive to a resin such as nylon or white paper, and a catalyst, and a flake obtained by the method A porous body made of titanium oxide,
And a method for producing the porous body.

【0002】[0002]

【従来の技術とその課題】従来より、酸化チタンの製造
方法としては、塩化チタンを気相で高温酸化するか、ま
たは硫酸チタン、チタンアルコキシド等を加水分解して
得られるゲルを加熱することによって酸化チタンを製造
する方法等が知られていた。しかしながら、これらの従
来方法で製造されたものは、球形微粒子の集合体であ
り、細孔を有するものは少ない。細孔を有するものであ
っても、平均細孔径は最大20nm程度である。
2. Description of the Related Art Conventionally, titanium oxide has been produced by oxidizing titanium chloride in the gas phase at a high temperature or by heating a gel obtained by hydrolyzing titanium sulfate, titanium alkoxide, or the like. Methods for producing titanium oxide and the like have been known. However, those manufactured by these conventional methods are aggregates of spherical fine particles, and few have fine pores. Even if it has pores, the average pore diameter is at most about 20 nm.

【0003】また、酸化チタンはその白色性、紫外線遮
蔽能という特徴を生かして塗料、化粧品さらには樹脂ま
たは紙への添加剤として広く用いられているが、これら
は従来の方法で製造された等方性球状の微粒子を利用し
ているため、塗布性、密着性、分散性等に問題があっ
た。本発明は、以上通りの事情を鑑みてなされたもので
あり、酸化チタンを塗料、化粧品、さらには樹脂または
紙への添加剤等に用いた場合、塗布性、密着性、分散性
等を改善することが可能であり、さらに光触媒等として
も応用可能な、非球状の新しい酸化チタンを製造する方
法を提供することを目的とする。
[0003] Titanium oxide is widely used as an additive to paints, cosmetics, and resins or papers, taking advantage of its whiteness and ultraviolet shielding ability. Since isotropic spherical fine particles are used, there are problems in applicability, adhesion, dispersibility, and the like. The present invention has been made in view of the circumstances described above, and when titanium oxide is used as an additive to paints, cosmetics, and even resins or papers, the applicability, adhesion, and dispersibility are improved. It is an object of the present invention to provide a method for producing a non-spherical new titanium oxide which can be used as a photocatalyst and the like.

【0004】[0004]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、チタン酸からなる層状結晶を剥
離・加熱することにより得られた薄片状の形態(以下、
単に薄片状の形態と言う)を有することを特徴とする薄
片状酸化チタンの製造方法と、得られた薄片状酸化チタ
ンの集合体からなる酸化チタン多孔体及び該酸化チタン
多孔体の製造方法を提供する。即ち、本発明の要旨は、
斜方晶の層状構造を有するチタン酸セシウム(Csx
2-x/44、x=0.60〜0.75)を酸水溶液と接
触させてHxTi2-x/44・nH2O組成の層状チタン酸
粉末を生成させ、次にこの粉末をアミン水溶液等と混合
して攪拌し、結晶をナノメーターレベルの厚さまで剥離
分散させ、得られたチタニアゾルを乾燥した後、さらに
加熱して薄片状の形態を有する酸化チタンを製造するこ
とを特徴とする薄片状酸化チタンの製造方法、薄片状の
形態を有する酸化チタンの集合体からなる酸化チタン多
孔体、及び、斜方晶の層状構造を有するチタン酸セシウ
ム(CsxTi2-x/44、x=0.60〜0.75)を
酸水溶液と接触させてHxTi2-x/44・nH2O組成の
層状チタン酸粉末を生成させ、次にこの粉末をアミン水
溶液等と混合して攪拌し、結晶をナノメーターレベルの
厚さまで剥離分散させ、得られたチタニアゾルを、薄片
粒子の再凝集を抑制するための乾燥処理した後、さらに
加熱して酸化チタン多孔体を製造することを特徴とする
酸化チタン多孔体の製造方法である。
Means for Solving the Problems The present invention solves the above-mentioned problems by providing a flaky form (hereinafter, referred to as a flake form) obtained by peeling and heating a layered crystal composed of titanic acid.
(Hereinafter simply referred to as a flaky form), a method for producing a flaky titanium oxide, a method for producing a titanium oxide porous body comprising an aggregate of the obtained flaky titanium oxide, and a method for producing the titanium oxide porous body. provide. That is, the gist of the present invention is:
Cesium titanate having a layered structure of orthorhombic (Cs x T
i 2-x / 4 O 4 , x = 0.60-0.75) is contacted with an aqueous acid solution to form a layered titanate powder having a composition of H x Ti 2-x / 4 O 4 .nH 2 O, Next, this powder is mixed with an aqueous amine solution and stirred, and the crystals are peeled and dispersed to a thickness of nanometer level. After the obtained titania sol is dried, it is further heated to produce titanium oxide having a flaky form. A method for producing flaky titanium oxide, a titanium oxide porous body composed of an aggregate of titanium oxide having a flaky form, and cesium titanate (Cs x Ti 2) having an orthorhombic layer structure. -x / 4 O 4 , x = 0.60 to 0.75) is contacted with an aqueous acid solution to form a layered titanate powder having a composition of H x Ti 2-x / 4 O 4 .nH 2 O, This powder is mixed with an aqueous amine solution and stirred, and the crystals are exfoliated to a thickness of nanometer level. Dispersing the resulting titania sol, after drying for inhibiting reaggregation of flake particles, a method for producing a titanium oxide porous body, characterized by further heated to produce a titanium oxide porous body.

【0005】[0005]

【発明の実施の形態】この発明は、上記の通りの構成か
らなるものであるが、上述の方法によって得られた薄片
状の形態を有する酸化チタン、並びにその集合体として
の酸化チタン多孔体は、これまでの技術としては全く知
られていないものであって、酸化チタンの新しい応用も
拓くものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is constituted as described above. However, a titanium oxide having a flaky shape obtained by the above-described method and a porous titanium oxide as an aggregate thereof are However, it is not known at all as a conventional technique, and opens up new applications of titanium oxide.

【0006】薄片状の形態を持つ酸化チタンは、より詳
しくは、たとえばナノメーターレベルの厚みを持ち、具
体的には、厚さが20nm前後のアスペクト比の高い薄
片状の形態を有するもの等として提供される。そして、
さらに、この発明では、これらの薄片状の酸化チタンは
その集合体としての多孔体に変換され、非常に特異的な
形状としての、たとえば、メソ孔〜マクロ孔が発達した
大きな比表面積を有する酸化チタンの多孔体が提供され
る。
More specifically, the flaky titanium oxide has a thickness of, for example, a nanometer level, and specifically, a flaky titanium oxide having a high aspect ratio of about 20 nm. Provided. And
Further, in the present invention, these flaky titanium oxides are converted into a porous body as an aggregate thereof, and have a very specific shape, for example, an oxide having a large specific surface area in which mesopores to macropores are developed. A porous body of titanium is provided.

【0007】薄片状酸化チタンの製造方法 薄片状の酸化チタンの製造方法は、たとえば、上記の通
り、斜方晶の層状構造を有するチタン酸セシウム(Cs
xTi2-x/44、x=0.60〜0.75)を酸水溶液
と接触させてHxTi2-x/44・nH2O組成の層状チタ
ン酸粉末とし、次にこの粉末を有機アミンやアンモニウ
ム化合物等の塩基物質の水溶液と混合して攪拌し、結晶
をナノメーターレベルの厚さまで剥離分散させ、得られ
たチタニアゾルを乾燥して白色のゲル状固体とし、この
ゲル状固体は塩基と水を含んでいるので、350℃以上
に加熱することからなる。この場合、加熱処理温度が4
00℃以下では無定形、400〜800℃ではアナター
ゼ型、800℃以上ではルチル型の結晶構造を持つた酸
化チタンとなる。
Method for Producing Flaky Titanium Oxide As a method for producing flaky titanium oxide, for example, as described above, cesium titanate (Cs
x Ti 2-x / 4 O 4 , x = 0.60-0.75) is brought into contact with an aqueous acid solution to form a layered titanate powder having a composition of H x Ti 2-x / 4 O 4 .nH 2 O. This powder was mixed with an aqueous solution of a basic substance such as an organic amine or an ammonium compound and stirred, and the crystals were peeled and dispersed to a thickness of a nanometer level, and the obtained titania sol was dried to form a white gel-like solid. Since the gel-like solid contains a base and water, it consists of heating to 350 ° C. or higher. In this case, the heat treatment temperature is 4
Titanium oxide having an amorphous structure at a temperature of not higher than 00 ° C., an anatase type at a temperature of 400 to 800 ° C., and a rutile type at a temperature of 800 ° C. or higher.

【0008】以上の合成プロセスでの組成、結晶構造、
および微細組織の変化は、この発明の発明者によって、
たとえば、次のように解析されている。まず、チタニア
ゾル中では、層状チタン酸の結晶構造の基本単位である
Ti2-x/44 x-(厚さは1nm以下、径は1μm前後)
層の一枚一枚が水中に分散した状態にある。これを乾燥
するとその過程で、ある程度、層が再凝集して(10〜
20枚)、ゲルを生成する。このゲルは層状チタン酸を
剥離させる試薬として用いたアミン等や水が層と層の間
に挟まった一種の層間化合物を形成している。このよう
な積層再凝集の結果、生成したゲルは、厚さ30nm以
下、幅1μm程度の薄片が絡まりあった複雑な微細組織
を有している。
[0008] The composition, crystal structure,
And the change in microstructure, by the inventor of this invention,
For example, it is analyzed as follows. First, in the titania sol, Ti 2-x / 4 O 4 x- (the thickness is about 1 nm or less and the diameter is about 1 μm) which is a basic unit of the crystal structure of the layered titanic acid
Each layer is in a state of being dispersed in water. When this is dried, the layer re-aggregates to some extent in the process (10 to 10).
20) to form a gel. This gel forms a kind of intercalation compound in which amine or water used as a reagent for stripping layered titanic acid is sandwiched between layers. As a result of such lamination reagglomeration, the resulting gel has a complicated microstructure in which flakes having a thickness of 30 nm or less and a width of about 1 μm are entangled.

【0009】次にこのゲルを加熱すると、100〜35
0℃で水とアミン等が層間より脱離する。それに伴って
層状構造は完全に解消され、組成的にはTiO2へと移
行する。この加熱処理工程後も、処理前のゲルの微細組
織を基本的には保持しており、厚さ20nm前後の非常
に薄いナノメーターレベルの薄片状の形態を有してい
る。図1は、これを例示した走査型電子顕微鏡写真であ
る。
Next, when this gel is heated, 100 to 35
At 0 ° C., water, amine and the like are eliminated from the interlayer. Accordingly, the layer structure is completely eliminated, and the composition shifts to TiO 2 . Even after this heat treatment step, the gel microstructure before treatment is basically retained, and it has a very thin nanometer-level flake form with a thickness of about 20 nm. FIG. 1 is a scanning electron micrograph illustrating this.

【0010】酸化チタン多孔体 また、この発明の酸化チタン多孔体は、たとえば40〜
110m2・g-1という大きな比表面積を有するうえ
に、細孔径にして2〜100nmの広い範囲に及ぶメソ
孔〜マクロ孔が発達した特異な表面特性を持っている。
このような酸化チタンの多孔体としての特徴は、薄片が
複雑に絡み合った微細組織によるところが大きい。すな
わち、薄片が無秩序に積み重なった間隙が細孔として働
いていると推測される。さらに後述するように製造最終
工程の加熱処理によって薄片の表面に凹凸ができること
もマクロ孔の発達に寄与していると考えられる。
Titanium oxide porous body The titanium oxide porous body of the present invention is, for example, 40 to 40%.
In addition to having a large specific surface area of 110 m 2 · g −1 , it has unique surface characteristics in which mesopores to macropores are developed over a wide range of pore diameters of 2 to 100 nm.
Such a feature of titanium oxide as a porous body is largely due to a fine structure in which flakes are intricately intertwined. That is, it is presumed that the gaps in which the flakes are randomly stacked function as pores. Further, as described later, the formation of irregularities on the surface of the flakes due to the heat treatment in the final production step is considered to contribute to the development of macropores.

【0011】さらに、この酸化チタン多孔体について
は、その乾燥方式が薄片状の酸化チタンの集合状態に大
きな影響を及ぼすことになる。たとえば、ゾルを一旦凍
らせた後、真空凍結乾燥して得られたゲルは単純乾燥さ
せたものに比べて綿状で軽く、多孔体的な外観を呈す
る。実際にそれらを加熱して酸化チタンに変換したもの
でもその品質は保たれ、前者の方が比表面積、細孔特性
も優れていることが確認されている。
Further, with respect to this titanium oxide porous body, the drying method has a great effect on the state of aggregation of the flaky titanium oxide. For example, a gel obtained by once freezing a sol and then freeze-drying in a vacuum is cotton-like, lighter, and has a porous appearance as compared with a gel that is simply dried. It has been confirmed that the quality is maintained even when titanium oxide is actually heated and converted to titanium oxide, and that the former is superior in specific surface area and pore characteristics.

【0012】一方、加熱処理工程によっても多孔体とし
ての性能を制御することができる。すなわち、処理温度
により比表面積、およびメソ孔/マクロ孔の分布状態を
変化させることができる。処理温度が高くなるにつれ
て、メソ孔がつぶれてマクロ孔が発達するのは、酸化チ
タンの結晶化、粒成長が進行し、薄片の表面に数〜数十
nmの凹凸が発生し、これが比較的大きな細孔として機
能することによるものと考えられる。
On the other hand, the performance as a porous body can be controlled by the heat treatment step. That is, the specific surface area and the distribution of mesopores / macropores can be changed depending on the treatment temperature. As the treatment temperature increases, the mesopores collapse and the macropores develop, because the crystallization and grain growth of titanium oxide progresses, and irregularities of several to several tens nm are generated on the surface of the flake, which is relatively small. This is probably due to functioning as large pores.

【0013】このような特徴を有する多孔体に関しては
多様な用途が期待されるが、そのひとつが光触媒として
の応用である。酸化チタンは半導体であるため、光照射
下で正孔と伝導電子を生じ、強力な酸化・還元力を発揮
する。最近は特にクリーンエネルギー、環境浄化といっ
た観点から水から水素と酸素を発生させたり、有害物質
や悪臭の分解、さらには殺菌に利用することを目指した
研究が活発に進められている。一般に触媒反応活性は比
表面積/細孔分布に密接に関連していることが知られて
いる。この発明による酸化チタン多孔体はこれまで研究
されてきた酸化チタンとはその表面特性が全く異なるこ
とから、特異な触媒能を発揮するものと考えられる。
[0013] The porous body having such characteristics is expected to have various uses, one of which is a photocatalyst. Since titanium oxide is a semiconductor, it generates holes and conduction electrons under light irradiation, and exhibits strong oxidation / reduction power. Recently, research has been actively conducted to generate hydrogen and oxygen from water, to decompose harmful substances and odors, and to use them for sterilization, particularly from the viewpoint of clean energy and environmental purification. In general, it is known that catalytic activity is closely related to specific surface area / pore distribution. Since the surface properties of the porous titanium oxide according to the present invention are completely different from those of the titanium oxides which have been studied so far, it is considered that they exhibit a specific catalytic activity.

【0014】以下、実施例を示してさらに詳しくこの発
明の薄片状酸化チタンの製造方法、得られた薄片状酸化
チタンの集合体である多孔体と該多孔体の製造方法につ
いて説明する。
Hereinafter, the method for producing the flaky titanium oxide of the present invention, the porous body which is an aggregate of the obtained flaky titanium oxide, and the method for producing the porous body will be described in more detail with reference to examples.

【0015】[0015]

【実施例】【Example】

実施例1 炭酸セシウム(Cs2CO3)と二酸化チタン(Ti
2)を1:5.3のモル比に混合し、800℃で2日
焼成することにより、斜方晶のチタン酸セシウム(Cs
xTi2-x/44:x=0.70)を合成した。この粉末
を1N−塩酸水溶液中で3日間攪拌した後、濾過、風乾
して層状チタン酸(HxTi2-x/44・nH2O)粉末を
得た。
Example 1 Cesium carbonate (Cs 2 CO 3 ) and titanium dioxide (Ti
O 2 ) was mixed at a molar ratio of 1: 5.3 and calcined at 800 ° C. for 2 days to obtain orthorhombic cesium titanate (Cs).
x Ti 2-x / 4 O 4 : x = 0.70) was synthesized. After stirring for 3 days at this powder 1N- hydrochloric aqueous solution, filtered and air dried to give the layered titanic acid (H x Ti 2-x / 4 O 4 · nH 2 O) powder.

【0016】このチタン酸粉末0.5gをテトラブチル
アンモニウム水酸化物水溶液100cm3(濃度:0.
1moldm-3)に加え、シェーカーで150rpm程
度の振盪を行なうことによりチタニアゾルを生成させ
た。このゾルを冷凍庫中(−30℃)で凍結せしめ、真
空凍結乾燥を行ったところ綿状のゲルが生成した。この
ゲルを加熱処理した。
0.5 g of this titanic acid powder is added to an aqueous solution of tetrabutylammonium hydroxide in 100 cm 3 (concentration: 0.1 mL)
In addition to 1 moldm −3 ), titania sol was generated by shaking at about 150 rpm with a shaker. The sol was frozen in a freezer (−30 ° C.) and vacuum freeze-dried to form a floc gel. This gel was heat-treated.

【0017】添付した図面の図2は、チタニアゾルの凍
結乾燥体の加熱処理によるX線回折チャートの変化を示
したものである。図2(a)は凍結乾燥体そのものを、
図2(b)は350℃に加熱した場合のものを、(c)
は700℃に加熱した場合のものについて示している。
また、Aのピークはアナターゼを示す。この図2のX線
回折チャートの結果から、図2(a)として層間距離が
1.76nmの相の生成が凍結乾燥体において確認され
る。これはテトラブチルアンモニウムイオンおよび水が
チタン酸の層と層の間に取り込まれた1種の層間化合物
であると同定された。
FIG. 2 of the accompanying drawings shows a change in the X-ray diffraction chart due to the heat treatment of the freeze-dried titania sol. FIG. 2A shows the lyophilized product itself,
FIG. 2 (b) shows the case of heating to 350 ° C., and FIG.
Indicates the case where the sample is heated to 700 ° C.
The peak of A indicates anatase. From the results of the X-ray diffraction chart of FIG. 2, the generation of a phase having an interlayer distance of 1.76 nm is confirmed in the freeze-dried product as shown in FIG. 2 (a). It was identified as one intercalation compound in which tetrabutylammonium ions and water were incorporated between the layers of titanic acid.

【0018】次に、得られたゲルを加熱すると、100
〜350℃の間で水、続いてアミンの脱離に伴う重量減
少が起こり、それ以上の温度では一定となり、組成的に
は重量減少が終了した時点で酸化チタンに移行する。図
2(b)のX線回折チャートの結果から、この加熱処理
によって層状構造が崩壊し、無定形に近くなり、さら
に、図2(c)からも明らかなように、さらに高い温度
で加熱するとアナターゼとして結晶化することが判明し
た。
Next, when the obtained gel is heated,
At a temperature of 350350 ° C., a weight loss occurs due to the elimination of water and then the amine, and at a temperature higher than that, the weight becomes constant and the composition shifts to titanium oxide when the weight loss is completed. From the result of the X-ray diffraction chart in FIG. 2B, the layer structure is collapsed by the heat treatment, and the structure becomes almost amorphous. Further, as is clear from FIG. It was found to crystallize as anatase.

【0019】前出の図1は、加熱処理後の走査型電子顕
微鏡写真であるが、厚さ10〜30nm、幅0.5〜1
μm前後の薄片が明瞭に認められる。そして、このもの
は、綿状の多孔体的な外観を呈してもいる。 実施例2 実施例1と同様な方法で合成した酸化チタンのうち、3
50℃、500℃、700℃の温度でそれぞれ加熱処理
したものについて窒素ガス吸着試験を行ない、得られた
吸着等温線から比表面積、細孔特性を評価した。
FIG. 1 is a scanning electron microscope photograph after the heat treatment, and has a thickness of 10 to 30 nm and a width of 0.5 to 1 nm.
A slice of about μm is clearly observed. And this thing also has the appearance of a cotton-like porous body. Example 2 Among titanium oxides synthesized in the same manner as in Example 1, 3
Nitrogen gas adsorption tests were performed on each of the samples subjected to heat treatment at 50 ° C., 500 ° C., and 700 ° C., and the specific surface area and pore characteristics were evaluated from the obtained adsorption isotherms.

【0020】吸着窒素ガスの純度は99.9999%、
吸着平衡時間は300秒、前処理は200℃で2時間脱
気して行った。添付した図面の図3は、凍結乾燥ゲル由
来の酸化チタンの細孔分布を示したものである。横軸は
細孔半径、縦軸はその容積を示している。図3の(a)
は350℃に加熱したもの、(b)は500℃に加熱し
たもの、(c)は700℃に加熱したものについて示し
ている。
The purity of the adsorbed nitrogen gas is 99.9999%,
The adsorption equilibrium time was 300 seconds, and the pretreatment was performed by degassing at 200 ° C. for 2 hours. FIG. 3 of the accompanying drawings shows the pore distribution of titanium oxide derived from freeze-dried gel. The horizontal axis indicates the pore radius and the vertical axis indicates the volume. FIG. 3 (a)
Shows the case heated to 350 ° C., (b) shows the case heated to 500 ° C., and (c) shows the case heated to 700 ° C.

【0021】図3に示したように、メソ孔−マクロ孔に
わたる広い細孔径分布を持つことが明らかになった。ま
た、比表面積は(a)(b)(c)のそれぞれについて
103、76、47m2-1と算出された。
As shown in FIG. 3, it was found that the composition had a wide pore size distribution ranging from mesopores to macropores. The specific surface area was calculated to be 103, 76, and 47 m 2 g −1 for each of (a), (b), and (c).

【0022】[0022]

【発明の効果】この発明により、以上詳しく説明したと
おり、薄片状の形態を有する酸化チタンと、さらに、大
きな比面積を有する多孔体が提供される。薄片状酸化チ
タンは、従来の酸化チタンを塗料、化粧品、さらには樹
脂または紙への添加材等として利用する場合に問題とな
っていた塗布性、密着性、分散性を改善するものと期待
される。さらに、酸化チタン多孔体は、光触媒等として
の応用が期待される。
According to the present invention, as described in detail above, titanium oxide having a flaky form and a porous body having a large specific area are provided. Flaky titanium oxide is expected to improve applicability, adhesion, and dispersibility, which have been problems when using conventional titanium oxide as an additive to paints, cosmetics, and even resins or paper. You. Further, the titanium oxide porous material is expected to be applied as a photocatalyst or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明によって製造された酸化チタンの図面
に代わる走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph instead of a drawing of a titanium oxide produced according to the present invention.

【図2】チタニアゾルの凍結乾燥体の加熱処理によるX
線回折チャートの変化を示した図である。 (a)凍結乾燥体、(b)350℃、(c)700℃熱
処理後。
FIG. 2 shows the results of heat treatment of freeze-dried titania sol X
FIG. 4 is a diagram showing a change in a line diffraction chart. (A) Lyophilized body, (b) after 350 ° C, (c) after 700 ° C heat treatment.

【図3】凍結乾燥ゲル由来の酸化チタンの細孔分布を示
した図である。 (a)350℃、(b)500℃、(c)700℃熱処
理試料。
FIG. 3 is a view showing a pore distribution of titanium oxide derived from a freeze-dried gel. (A) 350 ° C., (b) 500 ° C., (c) 700 ° C. heat-treated sample.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D21H 19/38 D21H 19/38 (56)参考文献 特開 平4−144918(JP,A) 特開 昭62−237936(JP,A) 特開 昭62−213833(JP,A) 特開 昭61−295208(JP,A) 特開 昭60−176906(JP,A) 特公 昭45−10628(JP,B1) 特許2979132(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C01G 23/04 A61K 7/02 B01J 21/06 B01J 35/02 D21H 19/38 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification code FI D21H 19/38 D21H 19/38 (56) References JP-A-4-144918 (JP, A) JP-A-62-237936 (JP) JP-A-62-213833 (JP, A) JP-A-61-295208 (JP, A) JP-A-60-176906 (JP, A) JP-B-45-10628 (JP, B1) JP2979132 ( JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 23/04 A61K 7/02 B01J 21/06 B01J 35/02 D21H 19/38

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 斜方晶の層状構造を有するチタン酸セシ
ウム(CsxTi2-x /44、x=0.60〜0.75)
を酸水溶液と接触させてHxTi2-x/44・nH2O組成
の層状チタン酸粉末を生成させ、次にこの粉末をアミン
水溶液等と混合して攪拌し、結晶をナノメーターレベル
の厚さまで剥離分散させ、得られたチタニアゾルを乾燥
させた後、さらに加熱して薄片状の形態を有する酸化チ
タンを製造することを特徴とする薄片状酸化チタンの製
造方法。
1. Cesium titanate having an orthorhombic layer structure (Cs x Ti 2-x / 4 O 4 , x = 0.60 to 0.75)
Is contacted with an aqueous acid solution to form a layered titanic acid powder having a composition of H x Ti 2-x / 4 O 4 .nH 2 O. Then, the powder is mixed with an aqueous amine solution or the like and stirred, and the crystal is nanometer-sized. A method for producing flaky titanium oxide, comprising separating and dispersing to a thickness of a level, drying the obtained titania sol, and further heating to produce flaky titanium oxide.
【請求項2】 薄片状の形態を有する酸化チタンの集合
体からなることを特徴とする酸化チタン多孔体。
2. A porous titanium oxide body comprising an aggregate of titanium oxide having a flaky form.
【請求項3】 比表面積が40〜110m2/gであ
り、細孔径が2〜100nmのメゾ孔からマクロ孔が発
達した表面特性を持つ請求項2記載の酸化チタン多孔
体。
3. The titanium oxide porous material according to claim 2, having a specific surface area of 40 to 110 m 2 / g and a surface characteristic in which macropores are developed from mesopores having a pore diameter of 2 to 100 nm.
【請求項4】 請求項1記載のチタニアゾルを、薄片粒
子の再凝縮を抑制する乾燥処理した後、さらに加熱して
酸化チタン多孔体を製造することを特徴とする酸化チタ
ン多孔体の製造方法。
4. A method for producing a porous titanium oxide body, comprising subjecting the titania sol according to claim 1 to a drying treatment for suppressing recondensation of flake particles, and further heating the titanium dioxide sol to produce a titanium oxide porous body.
【請求項5】 再凝集を抑制する乾燥処理として、真空
凍結乾燥を行う請求項4記載の酸化チタン多孔体の製造
方法。
5. The method for producing a titanium oxide porous body according to claim 4, wherein vacuum freeze-drying is performed as the drying treatment for suppressing reaggregation.
JP01508298A 1998-01-09 1998-01-09 Method for producing flaky titanium oxide, porous titanium oxide body comprising aggregate of flaky titanium oxide, and method for producing the same Expired - Lifetime JP3232306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01508298A JP3232306B2 (en) 1998-01-09 1998-01-09 Method for producing flaky titanium oxide, porous titanium oxide body comprising aggregate of flaky titanium oxide, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01508298A JP3232306B2 (en) 1998-01-09 1998-01-09 Method for producing flaky titanium oxide, porous titanium oxide body comprising aggregate of flaky titanium oxide, and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7243562A Division JP2979132B2 (en) 1995-08-29 1995-08-29 Flaky titanium oxide

Publications (2)

Publication Number Publication Date
JPH10259023A JPH10259023A (en) 1998-09-29
JP3232306B2 true JP3232306B2 (en) 2001-11-26

Family

ID=11878932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01508298A Expired - Lifetime JP3232306B2 (en) 1998-01-09 1998-01-09 Method for producing flaky titanium oxide, porous titanium oxide body comprising aggregate of flaky titanium oxide, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3232306B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200134686A (en) * 2019-05-23 2020-12-02 이화여자대학교 산학협력단 2-dimensional titanium nitride nanosheets including holes, hybrid including the nanosheet and metal layered double hydroxides, and electrochemical catalysts including the hybrid

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212211A (en) * 1997-01-29 1998-08-11 Natl Inst For Res In Inorg Mater Cosmetic material
TW473400B (en) 1998-11-20 2002-01-21 Asahi Chemical Ind Modified photocatalyst sol
JP2000189805A (en) * 1998-12-25 2000-07-11 Agency Of Ind Science & Technol Photocatalyst compounded with luminous material
ATE423081T1 (en) 2001-08-20 2009-03-15 Otsuka Chemical Co Ltd LAYERED TITANIUM ACID, LAMELLAR TITANIUM ACID, LAMELLAR TITANIUM OXIDE AND METHOD FOR PRODUCING LAMELLAR TITANIUM ACID
JP4620990B2 (en) * 2004-09-17 2011-01-26 国立大学法人京都大学 Metal oxide nanocrystal and method for producing the same
TW200631899A (en) 2005-03-09 2006-09-16 Tokai Ryokaku Tetsudo Kk Titanium oxide-coating agent, and forming method for titanium oxide-coating film
KR101279401B1 (en) * 2005-09-14 2013-06-27 가부시키가이샤 코세 Cosmetic
JP4815375B2 (en) * 2007-03-26 2011-11-16 花王株式会社 Titanate nanosheet dispersion
JP2012223693A (en) * 2011-04-19 2012-11-15 Sumitomo Chemical Co Ltd Method for producing electrode catalyst
JP6240373B2 (en) * 2012-02-14 2017-11-29 Dic株式会社 Method for producing metal oxide nanosheet
US20140256540A1 (en) * 2013-03-08 2014-09-11 Nitto Denko Corporation High surface area photocatalyst material and method of manufacture
JP6082895B1 (en) * 2016-01-15 2017-02-22 株式会社光触媒研究所 Solid photocatalyst material comprising solid material composed only of titanium dioxide having photocatalytic function, and method for producing the same
JP2018090453A (en) * 2016-12-05 2018-06-14 堺化学工業株式会社 Flaky titanium oxide, and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200134686A (en) * 2019-05-23 2020-12-02 이화여자대학교 산학협력단 2-dimensional titanium nitride nanosheets including holes, hybrid including the nanosheet and metal layered double hydroxides, and electrochemical catalysts including the hybrid
KR102232615B1 (en) 2019-05-23 2021-03-26 이화여자대학교 산학협력단 2-dimensional titanium nitride nanosheets including holes, hybrid including the nanosheet and metal layered double hydroxides, and electrochemical catalysts including the hybrid

Also Published As

Publication number Publication date
JPH10259023A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
JP2979132B2 (en) Flaky titanium oxide
JP3232306B2 (en) Method for producing flaky titanium oxide, porous titanium oxide body comprising aggregate of flaky titanium oxide, and method for producing the same
Uekawa et al. Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol
JPWO2007037321A1 (en) Titanium oxide photocatalyst, its production method and use
Eslami et al. Synthesis and characterization of CuO nanoparticles by the chemical liquid deposition method and investigation of its catalytic effect on the thermal decomposition of ammonium perchlorate
Tian et al. Microwave-assisted synthesis of carbon-based (N, Fe)-codoped TiO 2 for the photocatalytic degradation of formaldehyde
Lucky et al. A One‐Step Approach to the Synthesis of ZrO2‐Modified TiO2 Nanotubes in Supercritical Carbon Dioxide
US8357348B2 (en) Method for preparing uniform anatase-type titanium dioxide nanoparticles
Luthfiah et al. Photocatalysis of nanocomposite titania–natural silica as antibacterial against Staphylococcus aureus and Pseudomonas aeruginosa
Su et al. Preparation and characterization of high-surface-area titanium dioxide by sol-gel process
JP2958440B2 (en) Flaky titanium oxide and its aggregated porous body and their production method
JP2004122056A (en) Porous titanium oxide and production method of the same
Yoon et al. Effects of hydrothermal treatment of cellulose nanocrystal templated TiO2 films on their photodegradation activity of methylene blue, methyl orange, and rhodamine B
JP2011042535A (en) Multi-needle type titanium dioxide particle, multi-needle type titanium dioxide particle coating, titanium dioxide-based device, and methods for manufacturing them
KR101246811B1 (en) Porous graphene-layered titanium oxide nanohybrids and production method thereof
JP2824506B2 (en) Flaky titanium oxide and method for producing porous body thereof
KR100913622B1 (en) Method to synthesize mesoporous titania for photocatalytic hydrogen production
JP4065953B2 (en) Layered manganese oxide porous body having an aluminum hydroxide crosslinked structure and method for producing the same
Baiju et al. Enhanced photoactivity of neodymium doped mesoporous titania synthesized through aqueous sol–gel method
KR100670944B1 (en) Process for preparing titanate and titanium oxynitride
Ashie et al. Photocatalytic hydrogen evolution using mesoporous honeycomb iron titanate
Yin et al. Fabrication of mesoporous TiO 2 with high crystallinity by a fast sol–gel method
Cao et al. Mesoporous TiO2 with tunable mixed phase (anatase/rutile) and morphology by using polyethyleneimine modified F127 block copolymers as templates for enhanced photocatalytic performance
Vinogradov et al. Low-temperature approach to forming high-porous Fe (III)-TiO 2 nanoparticles possessing high photoactivity
Datsko et al. Nanoscale-TiO 2/Diatomite Composite: Synthesis, Structure, and Thermal Stability

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term