JP3229214U - 触媒材を収容する容器、およびこれを含んでなる鉛蓄電池 - Google Patents

触媒材を収容する容器、およびこれを含んでなる鉛蓄電池 Download PDF

Info

Publication number
JP3229214U
JP3229214U JP2020003623U JP2020003623U JP3229214U JP 3229214 U JP3229214 U JP 3229214U JP 2020003623 U JP2020003623 U JP 2020003623U JP 2020003623 U JP2020003623 U JP 2020003623U JP 3229214 U JP3229214 U JP 3229214U
Authority
JP
Japan
Prior art keywords
catalyst
container
lead
membrane
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020003623U
Other languages
English (en)
Inventor
小林 康太郎
康太郎 小林
麻生 昌之
昌之 麻生
雅司 小野
雅司 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
W.L.Gore&Associates G.K.
W.L.Gore&Associates,Co.,LTD.
Original Assignee
W.L.Gore&Associates G.K.
W.L.Gore&Associates,Co.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by W.L.Gore&Associates G.K., W.L.Gore&Associates,Co.,LTD. filed Critical W.L.Gore&Associates G.K.
Priority to JP2020003623U priority Critical patent/JP3229214U/ja
Application granted granted Critical
Publication of JP3229214U publication Critical patent/JP3229214U/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】電解液量の減少を抑制することができ、また温度制御等の冗長的な対策をする必要のない、鉛蓄電池において触媒層材を収容する容器、およびこれを用いた鉛蓄電池を提供する。【解決手段】鉛蓄電池において触媒材30を収容する容器20であって、触媒材は、酸素および水素から水または水蒸気を生成する反応を促進する触媒を含み、且つ容器は膜40で覆われた開口部を持ち、膜は、酸素、水素および水蒸気を触媒層と容器の外部との間で連通し、且つ重力方向に対して0°以上80°以下の角度で配向される。【選択図】図3

Description

本考案は、鉛蓄電池において触媒材を収容する容器、およびその容器を含んでなる鉛蓄電池に関係する。特に、当該触媒材は、酸素および水素から水または水蒸気を生成する反応を促進する触媒を含む。
鉛蓄電池、中でも自動車用鉛蓄電池では、希硫酸等の電解液が自由に流動できるいわゆる開放型の構造が広く用いられている。この構造の鉛蓄電池は充電時に酸素や水素ガスが発生するため、これらのガスを外部に放出するためのベント(排気口)を有している。さもなければ、電池内部でガス圧力が高まり、電池の変形、破損につながるからである。
また、このような、ベントからのガスの放出は電解液中の水の減少に繋がる。電解液中の水が減少すると、総電解液量が減少するとともに電解液比重が上昇し電池化学反応が十分に行われなくなり、充電能力および放電能力が低下する。
これらの問題に対して、これまでも様々な取り組みがなされてきた。
特許文献1は、鉛蓄電池のための触媒部品を開示しており、その触媒部品は、
酸素および水素から水または水蒸気を生成する反応を促進する触媒を含む触媒層、及び
前記触媒反応で生成した水または水蒸気の少なくとも一部が凝縮し前記鉛蓄電池内部へ環流される構成を有する。この触媒部品により、電解液からのガス放出、それらによる電解液量の減少を抑制でき、電解液が減少しないために長寿命を実現できる。
特許文献2は、電解液の分解ガスを再結合する触媒装置を開示している。この触媒装置は、触媒毒(酸性電解液)を濾過して取り除く能力を有する。より具体的には、この触媒装置は、ガスは透過するが液体は透過しない多孔質部を有し、触媒毒(酸性電解液等)が触媒に到達しないようにされており、またいる。多孔質部を通過したガスは、触媒部に到達し再結合され、多孔質部を通って環流できると記載されている。
特開2017−201594号公報 米国特許第7326489号明細書
上述のとおり、一般的な鉛蓄電池では、充電時に発生する酸素や水素ガスが、ベントから外部に放出され、鉛蓄電池内の電解液量が減少する。電解液量が減少すると、電池化学反応が十分に行われなくなり、充電能力および放電能力が低下する。特定の理論に拘束されることを望むものではないが、電解液中の希硫酸濃度が上昇して正極板の腐食劣化により容量低下が進行すること、電解液面の低下により極板が電解液から露出することで放電容量が急激に低下すること、さらに、負極板とストラップとの接続部が腐食するといったことが考えられる。
さらに、電解液量の減少は、サルフェーションおよび浸透短絡にも繋がると考えられる。サルフェーションとは、放電によって生成された硫酸鉛を、充電によって二酸化鉛と鉛とに十分に回復することができず、硫酸鉛の粗大結晶が発生することである。この粗大結晶は、金属鉛への還元が困難であり、電池性能を低下させ、電池寿命を短くする。さらに、この粗大結晶は浸透短絡にも関係する。粗大結晶は電極上で成長して、「デンドライト」と呼称される針状結晶となる。このデンドライトが成長し続けると、他方の電極に到達して、短絡を生じる。これが浸透短絡であり、以後の充電放電はできなくなる。逆に言えば、電解液量の減少を防ぐことにより、サルフェーションおよび浸透短絡を防ぐことができる。
特許文献1、2では、電解液からのガス放出、それらによる電解液量の減少を抑制するための、触媒部品または触媒装置を開示している。つまり、鉛蓄電池内部から発生する酸素や水素ガスを、触媒により、水または水蒸気に再結合して、電池内部へ環流させている。
ただし、鉛蓄電池内部に、これらの触媒部品や触媒装置を取り付けた場合でも、電解液量の減少が十分に抑制できないことがある。電解液量の減少は、上述したような充放電能力の劣化、電池内部の損傷にも繋がる。したがって、電解液量の減少を抑制することが強く望まれる。
また、特許文献2の触媒装置は、比較的高温(およそ70〜90℃)に温度制御することが必要であり、電源設備のバックアップ用途で使われるような常時充電されるような環境では使用できるが、充電が不連続であり温度制御のできない環境では使用できない。例えば、自動車用鉛蓄電池等では、常時充電状態で使用されない場合や、寒冷地でも使用される場合があるため、特許文献2の装置は好適ではない。
上記に鑑みて、本考案は、電解液量の減少を抑制することができ、また温度制御等の冗長的な対策をする必要のない、鉛蓄電池において触媒層材を収容する容器、およびこれを用いた鉛蓄電池を提供することを目的とする。
本考案により、以下の態様が提供される。
[1]
鉛蓄電池において触媒材を収容する容器であって、
前記触媒材は、酸素および水素から水または水蒸気を生成する反応を促進する触媒を含み、且つ前記容器は膜で覆われた開口部を持ち、
前記膜は、前記酸素、前記水素および前記水蒸気を前記触媒層と当該容器の外部との間で連通し、且つ重力方向に対して0°以上80°以下の角度で配向される、ことを特徴とする、容器。
[2]
前記膜が疎水性多孔質膜を含んでなることを特徴とする、項目[1]に記載の容器。
[3]
前記膜が多孔質PTFEを含んでなることを特徴とする、項目[1]または[2]に記載の容器。
[4]
当該容器の境界形状の少なくとも一部は、円柱、円錐、円錐台、多角形柱、多角形錐、多角形錐台、または球体のいずれか少なくとも一つの形状の少なくとも一部を含む、ことを特徴とする、項目[1]〜[3]のいずれか1項に記載の容器。
[5]
項目[1]〜[4]のいずれか1項に記載の容器を含んでなる、鉛蓄電池。
本願考案により、電解液量の減少を十分に抑制することができ、また温度制御等の冗長的な対策をする必要のない、鉛蓄電池において触媒層材を収容する容器、およびこれを用いた鉛蓄電池が提供される。
この容器および鉛蓄電池では、電解液量の減少を十分に抑制することができるため、長期にわたってその充放電性能および電池内部の健全性を維持することができる。
鉛蓄電池内の触媒収容容器で生じる作用機序について説明する概略図である。 鉛蓄電池のベントキャップに触媒収容容器を取り付けたものを示す概略模式図である。 膜の配向角度が0°(垂直)である触媒収容容器とベントキャップを示す概略模式図である。
本考案の一態様である容器は、
鉛蓄電池において触媒材を収容する容器であって、
前記触媒材は、酸素および水素から水または水蒸気を生成する反応を促進する触媒を含み、且つ前記容器は膜で覆われた開口部を持ち、
前記膜は、前記酸素、前記水素および前記水蒸気を前記触媒材と当該容器の外部との間で連通し、且つ重力方向に対して0°以上80°以下の角度で配向される。
当該容器は、鉛蓄電池において触媒材を収容する容器である。
鉛蓄電池の電解液は希硫酸水溶液であるので、電池内部空間には、電解液(希硫酸水溶液)、硫酸ミスト、水分、電池反応によって生じた水素ガスおよび酸素ガスが存在している。水素ガスおよび酸素ガスは、電池容器のベントから外部環境へ放出されることがあり、これは電池内部の電解液量の減少につながり、ひいては電池性能および電池健全性の劣化につながる。
当該容器に収容される触媒材は、酸素および水素から水または水蒸気を生成する反応を促進する触媒を含む。そのため、電池反応によって生じた水素ガスおよび酸素ガスが、当該触媒材に接触することで、それらが再結合されて水または水蒸気となり、また場合により水または水蒸気は凝縮され、電池内部へ環流され、結果として電池内部の電解液中の水の減少が抑制される。なお、触媒材とは、触媒作用を有する材料であることを意味し、その形態は特に限定されるものではなく、層状であってもよく、粉末状であってもよく、焼結体や圧縮体等のように塊状であってもよく、担体に坦持された状態でもよく、または枠体等に充填された状態でもよい。触媒作用を有する材料の一例として、白金、パラジウム、ニッケル、鉄、コバルト等の金属元素を挙げることができる。
また、当該容器は膜で覆われた開口部を持ち、当該膜は、前記酸素、前記水素および前記水蒸気を前記触媒材と当該容器の外部との間で連通する。これらの開口部および膜により、容器に収容された前記触媒材に電池反応によって生じた水素ガスおよび酸素ガスが接触することが可能である。またこの構成により、前記触媒材は、当該容器内から漏出することなく、当該容器内に収容される。
さらに、前記開口部を覆う膜は、重力方向に対して0°以上80°以下の角度で配向される。
膜を配向させる理由および背景について説明する。
従来、例えば特許文献1、2に記載されるように、鉛蓄電池において触媒を用いて、電池反応によって生じた水素ガスおよび酸素ガスを再結合させて、電解液中の水の減少を抑制する試みは行なわれていた。しかしながら、本考案者らが実際に確認をしたところでは、開放型鉛蓄電では電解液中の水の減少を十分に抑制できないことがあり、その原因について検討した結果、以下の作用機序に想い至った。図1を参照しながら説明する。
鉛蓄電池内部の下部には電解液(希硫酸)が存在し、その液温は外気温や電池反応により約60℃になることがある。この温度の電解液からは水素ガス、酸素ガス、水蒸気、硫酸ミストが発生し、それらは鉛蓄電池の上部に存在し、その雰囲気温度は約40℃になることがある。そして、鉛蓄電池内部の上部(天井部)に、触媒を収容した容器は、取り付けられている。
このような環境下で、触媒およびその近傍では次の事象が生じる。
1.触媒収容容器の膜の表面で水が凝縮し、膜の表面に液体(水)の層が形成される。
2.膜表面の液体(水)の層が、水素ガスおよび酸素ガス(H/O)の触媒容器内部への流入を妨げる。
3.水素ガスおよび酸素ガス(H/O)の流入が低下し、触媒反応が低下するので、触媒温度も低下する。
4.(触媒温度低下により)触媒収容容器内部で水の凝縮が生じる。
5.(凝縮水により)さらに触媒温度が低下する。
6.触媒収容容器の内外で硫酸の濃度差(外部で高く、内部で低い)によって、硫酸が膜表面の液体の層を介して触媒収容容器内部へ浸入し、触媒が被毒し劣化する。
7.触媒の劣化により、水素ガスおよび酸素ガス(H/O)の反応が促進されず、電解液量の減少に繋がる。
上記の作用機序を考慮して、本考案者らは、触媒収容容器の膜の表面で水が凝縮することを防ぐことにより、当該作用機序の各ステップの進行を止めることができ、電解液量の減少を抑制することができる、ことを着想した。
本態様では、触媒材を収容する容器の開口部を覆う膜は、重力方向に対して0°以上80°以下の角度で配向される。この角度で膜を配向することにより、膜の表面で水が凝縮した場合であっても、凝縮水は重力方向へ滑落するので、膜の表面に液体(水)の層が形成されることを防ぐことができる。これにより、その後の一連の作用機序のステップも進行しない。結果として、触媒の劣化は生じず、電解液量の減少を十分に抑制することができる。また、この態様は、温度制御等の冗長的な作業およびそのための装置を必要とせず、その点で有利である。
なお、本考案者らは、本態様の着想を得るまでに、鉛蓄電池において触媒の性能を向上させる手法を見つけるために、電池容器の形状や構造を変更する種々の試行錯誤を重ねた。具体的には、触媒装置(触媒収容容器)を従来とは異なる位置に配置すること、触媒装置内の触媒量を従来より増加すること、触媒装置の開口部を覆う膜の素材、寸法、構成等を調整すること、および、触媒装置の配向(向き)を調整すること等を行なった。実際的には、これらの改良手法の候補は、電池容器の形状や構造によって制約を受けることがしばしばあるので、容易には実現できない。特に、触媒装置の配向を調整することは、電池の組み立ての深さへの影響が大きい点で、好ましくないこと、および触媒装置はフラットに配置をすることが好ましいことを当業者であれば容易に理解する。つまり、当業者が、触媒装置の配向を調整しようとする動機付けは、容易には得られないことに留意されたい。
それにも関わらず、本考案者らは、上記の試行錯誤を実際に行ない、そして、驚くべきことに、触媒装置の配向を調整することが、電解液量を減少させる点で、最も有効であることを見出した。
以下の簡便な方法で、本考案の効果を確認することができる。図2に、鉛蓄電池の封口栓に、触媒を収容した容器を取り付けたものを示す。図2(a)のもの(Flat design)は、触媒収容容器の膜が水平に(重力方向に対して90°の角度で)配向されて鉛蓄電池に設置される。図2(b)のもの(Vertical design)は、触媒収容容器の膜が垂直に(重力方向に対して0°の角度で)配向されて鉛蓄電池に設置される。これらの触媒収容容器を取り付けた14.4V鉛蓄電池をそれぞれ12週間に渡って温水浴(ウォーターバス)に設置して電解液の温度を60℃に維持し、電池内部の電解液の減少量を測定した。なお、温水浴の温水の高さと鉛蓄電池内部の電解液の高さがほぼ一致するように調整した。これは、電解液のみを60℃に維持しつつ、電解液より上方、言い換えると触媒収容容器の周囲の雰囲気温度を、できるだけ低温にして、触媒収容容器の膜での水の凝縮を促すためである。また、対照として、触媒収容容器を取り付けない(ベントキャップのみ取り付けた)鉛蓄電池も用意し、電解液の減少量を測定した。
さらに、参考のために、本考案者らが行なった試行錯誤の一部について紹介する。一つ目の試行錯誤は、「触媒量増量」であり、これは上述の水平型の触媒収容容器において、触媒材の充填密度を5倍にしたものである。大量の触媒材が反応熱を高くして、水の凝縮を抑えることを期待したものである。もう一つの試行錯誤は、「二重膜構造」であり、これは上述の水平型の触媒収容容器において、もとの膜の上にさらにもう1枚膜を設置したものである。二重膜構造により、凝縮した水が膜表面を閉塞することを抑えることを期待したものである。
上記の簡便な試験の結果、対照の触媒なしの鉛蓄電池では、12週間後の電解液の減少量は約650gであった。触媒収容容器の膜が水平に設置された(Flat design)鉛蓄電池では、約2週間で触媒が劣化し、触媒反応が進まないため、試験を中断した。その後は対照の触媒なしと同様に電解液が減少すると考えられ、12週間後の電解液の減少量は約550gであると考えられる。一方、触媒収容容器の膜が垂直に設置された(Vertical design)鉛蓄電池では、触媒の劣化は見られず、12週間後の電解液の減少量は約250gであった。また、参考用の「触媒量増量」および「二重膜構造」では、約4週間で触媒が劣化し、触媒反応が進まないため、試験を中断した。12週間後の電解液の減少量は約500gであると考えられる。このように、本考案の一態様による、触媒収容容器では、電解液の減少量を十分に抑制できることが確認できる。
触媒収容容器の膜の配向方向は、重力方向に対して0°以上80°以下である。配向方向は、重力方向、言い換えると0°またはそれに近いほど、凝縮水が膜から滑落しやすくなり有利である。膜の配向方向が重力方向に対して80°を越えると、凝縮水が膜から滑落せずに、膜の表面に液体(水)の層が形成されることがあり、その場合、電解液量の減少を十分に抑制できないことがある。したがって、膜の配向方向は、重力方向に対して0°以上80°以下である。なお、触媒収容容器を取り付けるためのスペースや周囲の構造物の形状に応じて、前記の範囲で適宜角度を調整してもよい。
本考案の一態様では、触媒収容容器の膜が疎水性多孔質膜を含んでいてもよい。
疎水性多孔質膜は、疎水(撥水)性であるため、硫酸ミストや電解液(希硫酸水溶液)が、触媒収容容器内の触媒材に直に接触することを防止することができ、触媒の寿命を長くすることができる。
本考案の一態様では、前記膜が多孔質PTFEを含んでもいてもよい。
前記膜の材質は、酸素、水素および水蒸気を透過できるものであれば特に限定されるものではないが、電池内部の他の材料、例えば硫酸塩等と反応を生じないものが好ましく、ポリエチレン(PE)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)等を用いることができ、それらの織布、不織布、編布または多孔質膜を用いてもよい。疎水性多孔質膜が、多孔質ポリテトラフルオロエチレン(PTFE)であってもよい。ポリテトラフルオロエチレンは、疎水性、耐薬品性、耐紫外線性、耐酸化性、耐熱性などの優れた性質を有しており、電池を構成する材料として適している。また、ポリテトラフルオロエチレンを延伸すること等により、容易に多孔質膜を得ることができる。
本考案の一態様では、触媒収容容器の境界形状の少なくとも一部は、円柱、円錐、円錐台、多角形柱、多角形錐、多角形錐台、または球体のいずれか少なくとも一つの形状の少なくとも一部を含んでもよい。
当該触媒収容容器の境界形状(または外形形状)は、前記膜が所定の角度で配向されるものであれば、特に限定されるものではなく、種々の形状を含んでよい。触媒材を収容しやすい観点から、円柱、多角形柱の形状を選択してもよい。触媒材の反応効率を高める観点から、単位体積あたりの表面積が大きくなる球体を選択してもよい。また、触媒収容容器を鉛蓄電池の内部、特に天井部に設置しやすい観点から、当該容器の一部に突起状の円錐、円錐台、多角形錐、多角形錐台の形状を選択してもよい。さらに、種々の形状を、目的用途に応じて、適宜組み合わせることもできる。なお、当該容器がカートリッジタイプであってもよい。
本考案の一態様では、前述の触媒収容容器を含んだ鉛蓄電池が提供される。
上述した触媒収容容器を含む鉛蓄電池では、電解液量の減少を十分に抑制でき、また温度制御等の冗長的な対策の必要もない。そのため、長期にわたってその充放電性能および電池内部の健全性を維持することができる。
以下、実施例および比較例を示して、本考案をより具体的に説明する。ただし、本考案は下記の実施例に限定して解釈されるものではない。
次の手順で、触媒を収容した容器を用意した。樹脂製の円筒を用意し、その底部に円筒(側面)と同素材の円板を溶着して、円筒の底部を密封した。円筒内部に、酸素および水素から水または水蒸気を生成する反応を促進する触媒材を詰め、円筒の上部(開口部)を表2に示す種々の材質の膜で覆った。なお、対照として、触媒材を詰めない容器のみも用意した。
用意した触媒収容容器を、膜が表2に示す配向角度(重力方向に対する膜の角度)になるように、鉛蓄電池の上部(天井部)に取り付けた。具体的には、触媒収容容器をベントキャップに取り付けて配向角度を調整し、当該ベントキャップを鉛蓄電池の天井部に取り付けた。図3は、膜の配向角度が0°(垂直)である触媒収容容器とベントキャップの例である。なお、鉛蓄電池は、市販のLN2型EFB(GSユアサ製ENJ375LN2−IS)を用いた。
触媒収容容器を取り付けた鉛蓄電池をそれぞれ12週間に渡って温水浴(ウォーターバス)に設置して電解液の温度を60℃に維持し、電池総重量を測定することにより電池内部の電解液の減少量を測定した。なお、温水浴の温水の高さと鉛蓄電池内部の電解液の高さがほぼ一致するように調整した。これは、電解液のみを60℃に維持しつつ、電解液より上方、言い換えると触媒収容容器の周囲の雰囲気温度を、できるだけ低温にして、触媒収容容器の膜での水の凝縮を促すためである。また、対照として、触媒材を詰めない容器を取り付けた鉛蓄電池も用意し、電解液の減少量を測定した。結果を表2に示す。
上記の結果から、対照の触媒なしの鉛蓄電池では、12週間後の電解液の減少量は約400gであった。
触媒収容容器の膜が本考案の範囲の角度で配向されている場合、12週間後でも電解液の減少量は約50〜200gと、対照に比べて大幅に減少しており、また、触媒収容容器およびその周囲の雰囲気は約40℃に維持されていた(特に温度制御のため加熱等の冗長的な操作は行なっていない)。これらのことから触媒反応が安定して進行していたことが示唆された。
一方、膜が90°の角度で、つまり水平に配向されている場合、電解液の減少量は約360gであり、対照に比べて十分に減少しなかった。この比較例では、膜の表面で水が凝縮し、膜が水平であるために当該凝縮水が滑落せずに、膜の表面に液体(水)の層が形成されて、触媒反応が促されず、最終的には触媒の劣化に至ったことが示唆された。
10 鉛蓄電池用ベントキャップ
20 触媒収容容器
30 触媒材
40 膜
50 ホルダー

Claims (5)

  1. 鉛蓄電池において触媒材を収容する容器であって、
    前記触媒材は、酸素および水素から水または水蒸気を生成する反応を促進する触媒を含み、且つ前記容器は膜で覆われた開口部を持ち、
    前記膜は、前記酸素、前記水素および前記水蒸気を前記触媒材と当該容器の外部との間で連通し、且つ重力方向に対して0°以上80°以下の角度で配向される、ことを特徴とする、容器。
  2. 前記膜が疎水性多孔質膜を含んでなることを特徴とする、請求項1に記載の容器。
  3. 前記膜が多孔質PTFEを含んでなることを特徴とする、請求項1または2に記載の容器。
  4. 当該容器の境界形状の少なくとも一部は、円柱、円錐、円錐台、多角形柱、多角形錐、多角形錐台、または球体のいずれか少なくとも一つの形状の少なくとも一部を含む、ことを特徴とする、請求項1〜3のいずれか1項に記載の容器。
  5. 請求項1〜4のいずれか1項に記載の容器を含んでなる、鉛蓄電池。
JP2020003623U 2020-08-25 2020-08-25 触媒材を収容する容器、およびこれを含んでなる鉛蓄電池 Active JP3229214U (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020003623U JP3229214U (ja) 2020-08-25 2020-08-25 触媒材を収容する容器、およびこれを含んでなる鉛蓄電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020003623U JP3229214U (ja) 2020-08-25 2020-08-25 触媒材を収容する容器、およびこれを含んでなる鉛蓄電池

Publications (1)

Publication Number Publication Date
JP3229214U true JP3229214U (ja) 2020-12-03

Family

ID=73544443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020003623U Active JP3229214U (ja) 2020-08-25 2020-08-25 触媒材を収容する容器、およびこれを含んでなる鉛蓄電池

Country Status (1)

Country Link
JP (1) JP3229214U (ja)

Similar Documents

Publication Publication Date Title
US20170040655A1 (en) Metal Oxygen Battery System
WO2009130740A1 (ja) 鉛蓄電池
JP6576297B2 (ja) 触媒部品ならびにこれを含む通気フィルター、通気栓および鉛蓄電池
US9209503B2 (en) Metal oxygen battery containing oxygen storage materials
US20110143226A1 (en) Metal Oxygen Battery Containing Oxygen Storage Materials
JP3229214U (ja) 触媒材を収容する容器、およびこれを含んでなる鉛蓄電池
WO2006134419A2 (en) Hydride-based fuel cell for the elimination of hydrogen therein
US20100330443A1 (en) Hydrogen production method, hydrogen production system, and fuel cell system
US8968942B2 (en) Metal oxygen battery containing oxygen storage materials
US20060057435A1 (en) Method and apparatus for preventing fuel decomposition in a direct liquid fuel cell
BRPI0617932A2 (pt) célula de zinco/ar
US6660425B2 (en) Catalyst design for VRLA batteries
EP3413381B1 (en) Non-sintered positive electrode for alkaline secondary battery and alkaline secondary battery including non-sintered positive electrode
JP7408760B2 (ja) 鉛蓄電池用の触媒デバイス及び鉛蓄電池
JP2006294291A (ja) 制御弁式鉛蓄電池
US20050158609A1 (en) Hydride-based fuel cell designed for the elimination of hydrogen formed therein
KR20160105384A (ko) 이산화탄소 복합 게터
JPH0447676A (ja) 密閉型蓄電池の製造法
EP1142050B1 (en) Improved catalyst design for vrla batteries
US20170237080A1 (en) Expanded graphite sheet and battery using the expanded graphite sheet
JP6799406B2 (ja) ベント
JPH11345605A (ja) 鉛蓄電池
JPH0432165A (ja) 密閉形鉛蓄電池
JPS63250052A (ja) 感圧性安全排気手段をもつ電気化学電池
JPH04328266A (ja) 密閉形鉛蓄電池

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3229214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250