JP3227528B2 - Conductive acrylic fiber and method for producing the same - Google Patents

Conductive acrylic fiber and method for producing the same

Info

Publication number
JP3227528B2
JP3227528B2 JP21894295A JP21894295A JP3227528B2 JP 3227528 B2 JP3227528 B2 JP 3227528B2 JP 21894295 A JP21894295 A JP 21894295A JP 21894295 A JP21894295 A JP 21894295A JP 3227528 B2 JP3227528 B2 JP 3227528B2
Authority
JP
Japan
Prior art keywords
core
sheath
fiber
conductive
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21894295A
Other languages
Japanese (ja)
Other versions
JPH08337925A (en
Inventor
康夫 柳
博之 河内
宏明 大西
明巳 木谷
宏 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP21894295A priority Critical patent/JP3227528B2/en
Publication of JPH08337925A publication Critical patent/JPH08337925A/en
Application granted granted Critical
Publication of JP3227528B2 publication Critical patent/JP3227528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた導電性、白
度及び糸強度を有し、セーター等の衣料用途に幅広い用
途展開の可能な導電性アクリル系繊維とその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive acrylic fiber having excellent conductivity, whiteness and yarn strength, which can be widely used for clothing such as sweaters and a method for producing the same.

【0002】[0002]

【従来の技術】一般に合成繊維は電気絶縁性であり、接
触や摩擦により発生した静電気は容易に漏洩することは
ない。この結果、(1)衣類のまとわりつき、(2)汚
れの付着、(3)衣服に帯電した静電気が原因となる可
燃ガス、粉塵への引火、爆発、(4)電子機器の誤動作
など種々の問題を引き起こす。特にパソコン等の電子機
器の普及に伴って上記(4)の障害は近年クローズアッ
プされている。
2. Description of the Related Art In general, synthetic fibers are electrically insulating, and static electricity generated by contact or friction does not easily leak. As a result, there are various problems such as (1) clinging of clothes, (2) adhesion of dirt, (3) flammable gas and dust ignited by static electricity charged to clothes, explosion, and (4) malfunction of electronic equipment. cause. Particularly, with the spread of electronic devices such as personal computers, the obstacle (4) has recently been highlighted.

【0003】特に、アクリル繊維は他の繊維に比べて静
電気が帯電しやすい欠点を有しており、前述の種々の問
題を引き起こしやすいため、アクリル系繊維においては
特に高い制電性すなわち導電性が要求されている。
[0003] In particular, acrylic fibers have a drawback that static electricity is easily charged compared to other fibers and tend to cause the above-mentioned various problems. Therefore, acrylic fibers have particularly high antistatic properties, that is, conductivity. Has been requested.

【0004】アクリル系繊維に導電性を付与する技術と
して、従来よりカーボンブラックを紡糸原液に混入して
紡糸した繊維が提案されているが、色相面から白度、発
色性が要求される衣料用途には適応が困難である。
[0004] As a technique for imparting conductivity to acrylic fibers, fibers spun by mixing carbon black into a spinning solution have been conventionally proposed. However, clothing applications requiring whiteness and color development from the hue surface are required. Is difficult to adapt to.

【0005】また、これら色相を白色系に改善する方法
として、酸化錫に代表される金属酸化物を用いる方法が
あり、アクリル繊維に対しての適用例が特開昭59−2
23309号公報、特開昭57−39213号公報等に
開示されている。特開昭59−223309号公報に開
示された、アクリル系重合体溶液と導電性微粒子を分散
した弾性重合体溶液を混合し紡糸する技術では、アクリ
ル重合体から相分離した導電性微粒子を含有する弾性重
合体が繊維表面に露出するため高い導電性能が得られる
が紡糸工程において導電性微粒子が紡糸ノズルに付着す
るため繊度むらやノズルの吐出方向不良が発生したり、
紡糸から紡績に至る全工程でポリマーの剥離、ガイドの
磨耗、導電性微粒子の脱落を引き起こすという工業的課
題を有している。
[0005] As a method for improving these hues to a white color, there is a method using a metal oxide represented by tin oxide.
No. 23309, JP-A-57-39213 and the like. Japanese Patent Application Laid-Open No. 59-223309 discloses a technique of mixing and spinning an acrylic polymer solution and an elastic polymer solution in which conductive fine particles are dispersed, which contains conductive fine particles phase-separated from an acrylic polymer. High conductive performance is obtained because the elastic polymer is exposed on the fiber surface.However, in the spinning process, conductive fine particles adhere to the spinning nozzle, causing unevenness of fineness and a defective ejection direction of the nozzle,
In all processes from spinning to spinning, there is an industrial problem of causing peeling of the polymer, abrasion of the guide, and dropping of the conductive fine particles.

【0006】特開昭57−39213号公報で開示され
た、導電性皮膜を有する酸化チタンを分散した重合体溶
液と分散していない重合体溶液を芯鞘形態等に複合紡糸
した導電性複合繊維では、芯鞘形態を選んだ場合には上
記欠点はないものの導電性能が十分ではない。
Japanese Patent Application Laid-Open No. 57-39213 discloses a conductive composite fiber obtained by compound-spinning a polymer solution in which titanium oxide having a conductive film is dispersed and a non-dispersed polymer solution in a core-sheath form or the like. Then, when the core-sheath form is selected, the above-mentioned drawbacks are not obtained but the conductive performance is not sufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、優れ
た導電性、かつ優れた白度を有し、しかも、優れた工程
通過性を兼ね備えた導電性アクリル系繊維とその製造方
法を提供することにある。本発明者らは導電性アクリル
系繊維において上記従来技術の欠点を取り除くため鋭意
検討をした結果、本発明に到達した。
SUMMARY OF THE INVENTION An object of the present invention is to provide a conductive acrylic fiber having excellent conductivity, excellent whiteness, and excellent processability, and a method for producing the same. Is to do. The present inventors have conducted intensive studies on conductive acrylic fibers in order to eliminate the above-mentioned drawbacks of the prior art, and have reached the present invention.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明の第1
の要旨は、芯鞘ともにアクリロニトリル系共重合体から
なる芯鞘複合繊維であって、繊維断面における芯部と鞘
部の面積比が芯部/鞘部=5/95〜60/40であ
り、芯部に導電率10-3S/cm以上の導電性物質を1
5〜70体積%含有し、芯部の断面積が7μm2以上で
あり、鞘部の厚みが少なくとも一部において3μm以下
で、かつ芯部の繊維表面の露出量が繊維表面の5%以下
であることを特徴とする導電性アクリル系繊維にあり、
第2の要旨は、導電率が10-3S/cm以上の導電性物
質をアクリロニトリル系共重合体に対して15〜70体
積%含有するアクリロニトリル系共重合体の有機溶剤溶
液、アクリロニトリル系共重合体の有機溶剤溶液を芯鞘
複合紡糸口金の芯部、鞘部にそれぞれ配して、芯鞘複合
紡糸口金の芯部、鞘部より繊維断面での芯部と鞘部の面
積比が芯部/鞘部=5/95〜60/40となるように
不活性ガス中に吐出して紡糸し、続いて、70℃以上の
熱水中で2〜7倍に延伸を施した後、熱処理により5〜
50%収縮させることを特徴とする導電性アクリル系繊
維の製造方法にある。
That is, the first aspect of the present invention is as follows.
The gist of the present invention is that the core / sheath is a core / sheath composite fiber composed of an acrylonitrile copolymer, wherein the area ratio of the core to the sheath in the fiber cross section is 5/95 to 60/40. A conductive material having a conductivity of 10 −3 S / cm or more is applied to the core.
5 to 70% by volume, the cross-sectional area of the core is 7 μm 2 or more, the thickness of the sheath is 3 μm or less in at least a part, and the exposed amount of the fiber surface of the core is 5% or less of the fiber surface. A conductive acrylic fiber characterized by the fact that
The second gist is that an acrylonitrile-based organic solvent solution containing a conductive substance having a conductivity of 10 −3 S / cm or more with respect to the acrylonitrile-based copolymer in an amount of 15 to 70% by volume, an acrylonitrile-based copolymer Core-sheath of the combined organic solvent solution
The core / sheath portion is arranged on the core portion and the sheath portion of the composite spinneret, and the area ratio of the core portion and the sheath portion in the fiber cross section from the core portion and the sheath portion of the core / sheath portion is 5/95 to 5/95. To be 60/40
Spinning by discharging into inert gas , followed by 70 ° C or higher
After stretched 2 to 7 times in hot water , heat treatment
A method for producing a conductive acrylic fiber, characterized in that the conductive acrylic fiber is contracted by 50%.

【0009】以下に本発明を詳細に説明する。本発明に
おいて、芯成分と鞘成分を構成するアクリル系重合体は
通常アクリル系繊維の製造に用いられるアクリル系共重
合体であればよく特に限定しない。また、芯成分と鞘成
分を構成するアクリル系重合体は同一組成であっても異
なる組成であってもよいが、その単量体の構成は少なく
とも50重量%のアクリロニトリルを含有していること
が必要である。単量体構成のうち、アクリロニトリル構
成比が50重量%未満の場合には、得られる繊維がアク
リル系繊維本来の特性を発現せず本発明の目的に適さな
い。
Hereinafter, the present invention will be described in detail. In the present invention, the acrylic polymer constituting the core component and the sheath component is not particularly limited as long as it is an acrylic copolymer usually used for producing acrylic fibers. The acrylic polymer constituting the core component and the sheath component may have the same composition or different compositions, but the composition of the monomer should contain at least 50% by weight of acrylonitrile. is necessary. When the acrylonitrile composition ratio is less than 50% by weight of the monomer composition, the resulting fiber does not exhibit the inherent properties of the acrylic fiber and is not suitable for the purpose of the present invention.

【0010】アクリロニトリルと共重合する単量体とし
ては、通常アクリル系繊維を構成するアクリル系重合体
を構成する単量体であればよく特に限定しないが、例え
ば、アクリル酸メチル、アクリル酸エチル、アクリル酸
イソプロピル、アクリル酸n−ブチル、アクリル酸2−
エチルヘキシル、アクリル酸2−ヒドロキシエチル、ア
クリル酸ヒドロキシプロピルなどに代表されるアクリル
酸エステル類、メタクリル酸メチル、メタクリル酸エチ
ル、メタクリル酸イソプロピル、メタクリル酸n−ブチ
ル、メタクリル酸イソブチル、メタクリル酸t−ブチ
ル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘ
キシル、メタクリル酸ラウリル、メタクリル酸2−ヒド
ロキシエチル、メタクリル酸ヒドロキシプロピルなどに
代表されるメタクリル酸エステル類、さらにアクリル
酸、メタクリル酸、マレイン酸、イタコン酸、アクリル
アミド、N−メチロールアクリルアミド、スチレン、ビ
ニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデ
ン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ
化ビニリデンなどが挙げられる。
The monomer copolymerized with acrylonitrile is not particularly limited as long as it is a monomer constituting an acrylic polymer constituting an acrylic fiber, and examples thereof include, but are not limited to, methyl acrylate, ethyl acrylate, and the like. Isopropyl acrylate, n-butyl acrylate, 2-acrylate
Acrylic esters represented by ethylhexyl, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, etc., methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate Methacrylates represented by n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, etc., and also acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide , N-methylolacrylamide, styrene, vinyltoluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, vinyl fluoride, vinylidene fluoride and the like. It is.

【0011】また、アクリル系重合体にp−スルホフェ
ニルメタリルエーテル、メタリルスルホン酸、アリルス
ルホン酸、スチレンスルホン酸、2−アクリルアミド−
2−メチルプロパンスルホン酸、及びこれらのアルカリ
塩を共重合することは染色性の改良のために好ましい。
Also, p-sulfophenyl methallyl ether, methallyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2-acrylamide-
It is preferable to copolymerize 2-methylpropanesulfonic acid and an alkali salt thereof for improving dyeability.

【0012】本発明においてアクリル系重合体の重合度
は特に限定しないが、重合体0.1gを0.1Nロダン
酸ソーダを含有するジメチルホルムアミド100mlに
溶解し、25℃で測定した比粘度で測定して換算した分
子量で10万〜100万の範囲であることが好ましい。
分子量がこの範囲未満の場合には、紡糸性の低下と同時
に原糸の糸質の低下が顕著となる傾向にあり、分子量が
100万を越えると紡糸原液の最適粘度となる重合体濃
度が低くなり生産性が低下する傾向にある。
In the present invention, the degree of polymerization of the acrylic polymer is not particularly limited, but 0.1 g of the polymer is dissolved in 100 ml of dimethylformamide containing 0.1N sodium rhodanate, and the specific viscosity is measured at 25 ° C. It is preferable that the calculated molecular weight is in the range of 100,000 to 1,000,000.
When the molecular weight is less than this range, the yarn quality of the raw yarn tends to be remarkable at the same time as the spinnability, and when the molecular weight exceeds 1,000,000, the polymer concentration at which the optimum viscosity of the spinning dope becomes low is low. Productivity tends to decrease.

【0013】芯成分に含有される導電性物質は、粉末状
での導電率が10-3S/cm以上の白度の高い金属酸化
であることが好ましく、例えば酸化錫、酸化亜鉛、酸
化インジウム、酸化錫または酸化亜鉛で表面を被覆した
酸化チタンが挙げられ、さらに導電性を高めるために、
酸化錫、酸化インジウムに対して酸化アンチモンを、
酸化亜鉛に対しては酸化錫、酸化インジウム、酸化アル
ミニウム、酸化カリウム、酸化ゲルマニウム等を、併用
してもよい
The conductive substance contained in the core component is preferably a metal oxide having a high whiteness of 10 -3 S / cm or more in the form of a powder, for example, tin oxide, zinc oxide, and oxide. Titanium oxide whose surface is coated with indium, tin oxide or zinc oxide is mentioned .
Tin oxide, for indium oxide antimony oxide,
For zinc oxide, tin oxide, indium oxide, aluminum oxide
Combined use of minium, potassium oxide, germanium oxide, etc.
May be .

【0014】そして、導電性物質の形態には特に限定は
ないが、それが粒状の場合は、平均粒径が3μ以下であ
ることが、原液の濾過工程、紡糸工程での安定性から好
ましい。さらに導電性の向上の意味からは粒状よりもア
スペクト比の大きい針状の方が好ましい。導電性物質の
含有量は、粒子の形態、種類、必要な導電性能によって
異なるが、粒状の場合は芯部に対して20〜70体積
%、針状の場合は同じく芯部に対して15〜70体積%
である。含有量が前記範囲未満の場合には導電性能が不
十分であり、前記範囲を超える場合には紡糸安定性、後
工程において延伸性が低下し十分な糸質が得られない。
ここでいう良好な導電性能とは単繊維の導電率が10-6
S/cm以上、表面抵抗率が109Ω以下である。
The form of the conductive substance is not particularly limited, but when it is granular, the average particle diameter is preferably 3 μm or less from the viewpoint of stability in the filtration step and the spinning step of the stock solution. Further, from the viewpoint of improving conductivity, a needle shape having a larger aspect ratio than a granular shape is preferable. The content of the conductive substance varies depending on the form, type, and required conductivity of the particles, but in the case of granular, 20 to 70% by volume based on the core, and in the case of acicular, the content is 15 to 70% by volume. 70% by volume
It is. When the content is less than the above range, the conductive performance is insufficient, and when it exceeds the above range, the spinning stability and the stretchability in the subsequent step are reduced, and sufficient yarn quality cannot be obtained.
The good conductive performance here means that the conductivity of the single fiber is 10 -6.
S / cm or more and surface resistivity is 10 9 Ω or less.

【0015】本発明の導電性アクリル系繊維は、繊維断
面において、芯部と鞘部の面積比が芯部/鞘部=5/9
5〜60/40であることが必要であり、さらに好まし
くは10/90〜50/50である。芯部の占める割合
が5%未満の場合は、後で述べる条件が満たされていて
も導電性能が十分でない。また60%を超える場合は完
全な芯鞘構造が得られず芯部が繊維表面に露出する部分
が多くなり好ましくない。
The conductive acrylic fiber of the present invention has a core / sheath area ratio of 5/9 in the fiber cross section.
It is necessary to be 5/60/40, more preferably 10 / 90-50 / 50. When the proportion occupied by the core is less than 5%, the conductive performance is not sufficient even if the conditions described later are satisfied. On the other hand, if it exceeds 60%, a complete core-sheath structure cannot be obtained, and the portion of the core exposed on the fiber surface is undesirably increased.

【0016】本発明の導電性アクリル系繊維において
は、上述の繊維断面における芯部の面積、即ち、芯部の
断面積の絶対値が重要であり、7μm2以上であることが
必要である。7μm2に満たない場合は他の条件が満た
されていても本発明の目的とする導電性が十分でない。
In the conductive acrylic fiber of the present invention, the area of the core in the cross section of the fiber, that is, the absolute value of the cross-sectional area of the core is important and needs to be 7 μm 2 or more. If it is less than 7 μm 2 , the conductivity intended by the present invention is not sufficient even if other conditions are satisfied.

【0017】さらに、本発明の制電性アクリル系繊維に
おいて、繊維断面において鞘部厚みが少なくとも1カ所
で3μ以下であることが特に好ましい。この厚みが3μ
以下となるところがない場合は絶縁破壊に要する電圧が
高くなり導電性能が十分でなくなる。芯部を繊維表面近
くに偏在させる偏心型の芯鞘複合形態、繊維断面が扁平
の芯鞘複合繊維は、絶縁体である鞘部を超えて電気を流
すために必要な電圧(絶縁破壊電圧)を低下するのに効
果的である。
Further, in the antistatic acrylic fiber of the present invention, it is particularly preferable that the sheath has a thickness of 3 μm or less at at least one position in the fiber cross section. This thickness is 3μ
When there is no place below, the voltage required for dielectric breakdown increases and the conductive performance becomes insufficient. An eccentric core-sheath composite in which the core is unevenly distributed near the surface of the fiber, a core-sheath composite fiber with a flat fiber cross section is a voltage (dielectric breakdown voltage) required to pass electricity across the sheath, which is an insulator. It is effective in lowering.

【0018】特に、図1、2に図示した、繊維断面にお
いて、両端間長さ(A)、くびれ部の厚み(C)がA/
Cが2〜7である扁平の芯鞘複合繊維は、芯部が偏心し
た芯鞘複合繊維に比べ、上述した芯部と鞘部の面積比、
導電性物質の含有量、鞘部の最低厚みがバランスがと
れ、導電性能が最もよく発揮されるとともに、扁平に起
因する柔軟性も併せ持ち、製造面でも鞘部の厚みの制御
に起因する安定な紡糸性、一定した導電性の発現の面で
好ましい最も好ましい。
In particular, in the fiber cross section shown in FIGS. 1 and 2, the length between both ends (A) and the thickness of the constricted portion (C) are A /
The flat core-sheath conjugate fiber in which C is 2 to 7 has an area ratio of the core portion and the sheath portion described above, as compared with the core-sheath conjugate fiber in which the core portion is eccentric.
The content of the conductive material and the minimum thickness of the sheath are well balanced, the conductive performance is best exhibited, and the flexibility due to the flatness is also provided. It is most preferable in view of spinnability and constant conductivity.

【0019】ところで、サイドバイサイド型に代表され
るように繊維表面に露出させた場合、一般に高い導電性
能が得られるものの紡糸から紡績に至る各工程において
各種ガイドの摩耗や繊維の毛羽立ち、さらには繊維から
の導電性物質が脱落する等の問題が発生し、工業的に安
定に生産することが困難となる。特に溶液紡糸の場合、
延伸または脱溶剤工程において繊維表面からの残存溶媒
の拡散が著しいため、導電部の切断が発生しやすく導電
性能の点からも好ましくない。許容される芯部の繊維表
面への露出量は繊維表面に対して5%以下、好ましくは
1%以下である。
By the way, when exposed to the fiber surface as represented by the side-by-side type, generally high conductivity is obtained, but wear of various guides, fuzzing of the fiber, and fiber In such a case, a problem such as the loss of the conductive material occurs, and it is difficult to stably produce the product industrially. Especially in the case of solution spinning,
In the stretching or desolvation step, the residual solvent diffuses significantly from the fiber surface, so that the conductive portion is likely to be cut, which is not preferable from the viewpoint of conductive performance. The permissible amount of the exposed core portion on the fiber surface is 5% or less relative to the fiber surface , preferably
1% or less .

【0020】本発明の導電性アクリル系繊維は例えば次
の製造方法で得られる。芯部を形成する紡糸原液は、ア
クリロニトリル系共重合体が5〜25重量%となるよう
に調製した紡糸原液にさらに導電性物質を導電性物質と
アクリロニトリル系共重合体との体積比が15/85〜
70/30となるよう添加し、調整し、鞘部を形成する
紡糸原液は、アクリロニトリル系共重合体が20〜40
重量%となるように別々に調製する。この時使用する溶
剤は特に限定しないが、例えば、硝酸(水溶液)、塩化
亜鉛水溶液、ロダン塩水溶液の無機溶剤、ジメチルホル
ムアミド、ジメチルアセトアミド、ジメチルスルホキシ
ド、エチレンカーボネート、γ−ブチロラクトン、及
び、アセトン等の有機溶剤が好都合である。溶剤は芯
部、鞘部で異なっていても特に問題はないが溶剤回収の
点から同一であることが好ましい。
The conductive acrylic fiber of the present invention can be obtained, for example, by the following production method. The spinning dope for forming the core is prepared by further adding a conductive substance to the spinning dope prepared so that the acrylonitrile-based copolymer is 5 to 25% by weight, and the volume ratio of the conductive substance to the acrylonitrile-based copolymer is 15 /. 85-
The acrylonitrile-based copolymer was added in an amount of 70/30 and adjusted to form a sheath, and the acrylonitrile copolymer was 20 to 40.
It is separately prepared so as to be% by weight. Although the solvent used at this time is not particularly limited, for example, an inorganic solvent such as nitric acid (aqueous solution), an aqueous solution of zinc chloride, or an aqueous solution of rhodanate, dimethylformamide, dimethylacetamide, dimethylsulfoxide, ethylene carbonate, γ-butyrolactone, and acetone. Organic solvents are advantageous. There is no particular problem even if the solvent is different between the core and the sheath, but it is preferable that the solvent be the same from the viewpoint of solvent recovery.

【0021】さらに、最終繊維の種々の性能向上を目的
として、白度向上のため鞘部を形成する紡糸原液に酸化
チタン等を添加したり、導電性をさらに向上するため芯
部に親水性化合物やゴム状成分を添加することが適宜可
能である。
Further, for the purpose of improving various properties of the final fiber, titanium oxide or the like is added to a spinning solution for forming a sheath portion for improving whiteness, or a hydrophilic compound is added to a core portion for further improving conductivity. It is possible to add a rubber component or a rubber component as appropriate.

【0022】芯部、鞘部をそれぞれ形成する2つの紡糸
原液は、芯鞘複合紡糸口金で繊維形態に賦型し未延伸糸
とする。このとき、湿式、乾湿式を選択する場合には、
芯部吐出孔が偏芯した芯鞘複合紡糸口金を用いることに
より容易に上述した鞘部厚みの条件を満たすことができ
る。導電性物質の含有率が多い繊維を紡糸するときは孔
径の大きな口金を用いて高ドラフト紡糸が可能な乾式、
乾湿式の方が好ましい。
The two spinning stock solutions forming the core portion and the sheath portion, respectively, are shaped into a fiber form by a core-sheath composite spinneret to obtain undrawn yarn. At this time, if you choose wet type, dry-wet type,
By using a core-sheath composite spinneret in which the core discharge hole is eccentric, the above-mentioned condition of the sheath thickness can be easily satisfied. When spinning a fiber with a high content of conductive material, a dry method capable of high draft spinning using a large diameter die,
Dry-wet type is preferred.

【0023】未延伸糸は、70℃以上の熱水中で2〜7
倍延伸するとともに脱溶剤し、次いで乾燥、緩和熱処理
により5〜50%収縮する。延伸時の熱水の温度が70
℃未満では十分な延伸倍率が得られず、得られる繊維は
十分な糸質が得られない傾向にある。延伸倍率が2倍に
満たないと同様に十分な糸質が得られず、また、7倍を
超えると糸切れが多発するとともに芯部の切断が発生し
導電性能が低下するので好ましくない。上記の乾燥、緩
和熱処理は、従来アクリル系繊維の製造に用いられてい
る、熱ロールやネットプロセスによる乾燥とアニール、
熱板緩和、スチーム緩和といった緩和方法を単独または
組み合わせて行うことができる。緩和熱処理における収
縮率は良好な染色性または紡績、編織時に必要な糸質を
確保するために5%以上、好ましくは10%以上とす
る。
The undrawn yarn is heated in hot water at 70 ° C. or higher for 2 to 7
The film is stretched twice and the solvent is removed, and then the film is shrunk by 5 to 50% by drying and relaxing heat treatment. The temperature of hot water during stretching is 70
If the temperature is lower than 0 ° C, a sufficient draw ratio cannot be obtained, and the obtained fiber tends to be unable to obtain sufficient yarn quality. If the draw ratio is less than 2 times, similarly, sufficient yarn quality cannot be obtained, and if the draw ratio exceeds 7 times, the yarn breakage frequently occurs and the core is cut, which is not preferable because the conductive performance is deteriorated. The above-mentioned drying and relaxation heat treatments are conventionally used for the production of acrylic fibers, drying and annealing by a hot roll or a net process,
Relaxation methods such as hot plate relaxation and steam relaxation can be performed alone or in combination. The shrinkage ratio in the relaxation heat treatment is set to 5% or more, preferably 10% or more in order to secure good dyeability or necessary yarn quality at the time of spinning and weaving.

【0024】次に本発明の導電性アクリル系繊維の最も
好ましい扁平断面を有する導電性アクリル系繊維を得る
のに最も適した製造方法について説明する。上述したよ
うに、繊維断面において、両端間長さ(A)、先端部極
大部(B)、くびれ部の厚み(C)がA/Cが2〜7か
つB/Cが1以上である扁平の芯鞘複合繊維は、芯部と
鞘部の面積比、導電性物質の含有量、鞘部の最低厚みが
バランスがとれ、導電性能が最もよく発揮されるととも
に、扁平に起因する柔軟性も併せ持ち最も好ましいが、
この断面形態は、上記の導電性物質をアクリロニトリル
系共重合体15〜70体積%含有する上記のアクリロニ
トリル系共重合体の有機溶剤溶液、同じく上記のアクリ
ロニトリル系共重合体の有機溶剤溶液を芯鞘複合紡糸口
金のそれぞれ芯部、鞘部より芯部と鞘部の面積比が上記
の範囲となるように不活性ガス中に吐出し、得られた凝
固糸を洗浄、延伸を施した後、熱処理により5〜50%
収縮することによって得られる。
Next, a production method most suitable for obtaining the conductive acrylic fiber having the most preferable flat cross section of the conductive acrylic fiber of the present invention will be described. As described above, in the cross section of the fiber, the length between both ends (A), the tip maximum part (B), and the thickness (C) of the constricted part are A / C of 2 to 7 and B / C of 1 or more. The core-sheath composite fiber has a well-balanced area ratio between the core and the sheath, the content of the conductive material, and the minimum thickness of the sheath. Most preferred, but
This cross-sectional form is obtained by using an organic solvent solution of the above-mentioned acrylonitrile copolymer containing 15 to 70% by volume of the above-mentioned conductive material and an organic solvent solution of the above-mentioned acrylonitrile copolymer. After discharging into an inert gas such that the area ratio of the core and the sheath from the core and the sheath of the composite spinneret is within the above range, the obtained coagulated yarn is washed, stretched, and then heat-treated. 5 to 50%
Obtained by shrinking.

【0025】ここで、不活性ガスの温度は特に限定しな
いが、160〜400℃がA/Cが2〜7かつB/Cが
1以上の断面を形成する上で重要である。また、凝固糸
は洗浄、延伸を施した後、熱を付与して5〜50%収縮
することが、芯部の導電性物質間の距離を近付け、アク
リル繊維に十分な導電性を付与するために、また、良好
な染色性または紡績、編織時に必要な糸質を確保するた
めに必要である。
Here, the temperature of the inert gas is not particularly limited, but 160 to 400 ° C. is important for forming a cross section having an A / C of 2 to 7 and a B / C of 1 or more. In addition, after the coagulated yarn is washed and stretched, heat is applied to cause shrinkage by 5 to 50%, thereby shortening the distance between the conductive materials in the core and providing sufficient conductivity to the acrylic fiber. In addition, it is necessary for ensuring good dyeability or spinning and necessary yarn quality at the time of knitting and weaving.

【0026】[0026]

【実施例】以下実施例を示し、発明を詳細に説明する。
なお、実施例においては次の方法により測定した。 (繊維の表面抵抗率)繊維束より単繊維を取り出し、こ
れに正確に1cm離して銀ペースト(藤倉化成株式会社
製ドータイト)により金属端子に接着した。20℃、相
対湿度40RH%において、この端子間に1000Vの
直流電圧を印可し、端子間の抵抗値RS(Ω)を超絶縁
計(東亜電波株式会社製SM−8210)により測定し
た。これから表面抵抗率σ(Ω)を次式によって求め
た。 σ=3.7×10-3×RS×(d/ρ)1/2 ここで、dは繊度、ρは繊維の比重である。
The present invention will be described in detail below with reference to examples.
In addition, in the Example, it measured by the following method. (Surface resistivity of fiber) A single fiber was taken out from the fiber bundle, separated exactly 1 cm from the fiber, and adhered to a metal terminal with a silver paste (Doitite manufactured by Fujikura Kasei Co., Ltd.). At 20 ° C. and a relative humidity of 40 RH%, a DC voltage of 1000 V was applied between the terminals, and the resistance value R S (Ω) between the terminals was measured by a super insulation meter (SM-8210 manufactured by Toa Denpa Co., Ltd.). From this, the surface resistivity σ (Ω) was determined by the following equation. σ = 3.7 × 10 −3 × R S × (d / ρ) 1/2 where d is fineness and ρ is specific gravity of the fiber.

【0027】(繊維の導電率)繊維束より単繊維を取り
出し、これを正確に1cmに切断して端部を銀ペースト
(藤倉化成株式会社製ドータイト)により金属端子に接
着した。20℃、相対湿度40RH%において、この端
子間に1000Vの直流電圧を印可し、端子間の抵抗値
V(Ω)を超絶縁計(東亜電波株式会社製SM−82
10)により測定した。これから、導電率ζ(S/c
m)を次式によって求めた。 ζ=1/(1.11×10-6×RV×(d/ρ)) ここで、dは繊度、ρは繊維の比重である。
(Electrical Conductivity of Fiber) A single fiber was taken out from the fiber bundle, cut exactly to 1 cm, and the end was bonded to a metal terminal with a silver paste (Doitite manufactured by Fujikura Kasei Co., Ltd.). At 20 ° C. and a relative humidity of 40 RH%, a DC voltage of 1000 V is applied between the terminals, and the resistance value R V (Ω) between the terminals is measured with a super-insulation meter (SM-82 manufactured by Toa Denpa Co., Ltd.).
10). From this, the conductivity ζ (S / c
m) was determined by the following equation. ζ = 1 / (1.11 × 10 −6 × R V × (d / ρ)) where d is the fineness and ρ is the specific gravity of the fiber.

【0028】(鞘部の最低厚み、鞘/芯比率)鞘部の最
低厚み、鞘/芯比率、芯部の断面積は、繊維の断面の顕
微鏡写真より計測し、平均値として求めた。
(Minimum thickness of sheath portion, sheath / core ratio) The minimum thickness of the sheath portion, the sheath / core ratio, and the cross-sectional area of the core portion were measured from a micrograph of a cross section of the fiber, and determined as an average value.

【0029】(比較例1)アクリロニトリル93.5重
量%、アクリル酸メチル6.0重量%、メタリルスルホ
ン酸ソーダ0.5重量%からなるアクリル系重合体(分
子量16万)をジメチルホルムアミドに溶解し、重合体
濃度が30重量%の紡糸原液(a)を得た。
Comparative Example 1 An acrylic polymer (molecular weight: 160,000) consisting of 93.5% by weight of acrylonitrile, 6.0% by weight of methyl acrylate and 0.5% by weight of sodium methallylsulfonate was dissolved in dimethylformamide. Thus, a spinning dope (a) having a polymer concentration of 30% by weight was obtained.

【0030】さらに粒径0.2〜0.3μ、導電率0.
4S/cmの粒状導電性酸化チタン(石原産業株式会社
製ET−500W)16重量部を紡糸原液(a)と同じ
組成の紡糸原液100重量部に分散し、紡糸原液(b)
を調製した。芯部を形成する紡糸原液としてbを鞘部を
形成する紡糸原液としてaを用いた。
Further, the particle size is 0.2 to 0.3 μm, and the conductivity is 0.1.
16 parts by weight of 4 S / cm granular conductive titanium oxide (ET-500W manufactured by Ishihara Sangyo Co., Ltd.) is dispersed in 100 parts by weight of a spinning dope having the same composition as the spinning dope (a), and a spinning dope (b) is prepared.
Was prepared. B was used as a stock solution for forming a core portion, and a was used as a stock solution for forming a sheath portion.

【0031】紡糸原液を別々に130℃に加熱した後、
孔数400、孔径0.2mmφの芯鞘紡糸口金を用いて
230℃の不活性ガス中に吐出した。得られた未延伸糸
を引き続き、100℃の熱水中で3.75倍に延伸し、
さらに95℃の熱水中で洗浄した。得られた繊維束は無
緊張状態下に相対湿度40%、温度150℃で乾燥、緩
和処理し、20%収縮した。得られた繊維は、繊度が3
デニールであった。表面抵抗率、毛羽の発生状態を評価
し、表1に示した。
After separately heating the spinning dope to 130 ° C.,
It was discharged into an inert gas at 230 ° C. using a core-sheath spinneret having 400 holes and a hole diameter of 0.2 mmφ. The obtained undrawn yarn was subsequently drawn 3.75 times in hot water at 100 ° C.
Further, it was washed in hot water at 95 ° C. The obtained fiber bundle was dried and relaxed at a relative humidity of 40% and a temperature of 150 ° C. under a non-tension state, and contracted by 20%. The resulting fiber has a fineness of 3
It was denier. The surface resistivity and the state of generation of fluff were evaluated and are shown in Table 1.

【0032】(実施例1、2、比較例2、3)芯部を形
成する紡糸原液を紡糸原液(b)の代わりに次のように
して調製した紡糸原液(c)を用い、鞘と芯の紡糸原液
の吐出割合をかえたほかは比較例1と同様にして、繊度
3デニールの繊維を得た。表面抵抗率、毛羽の発生状態
を評価し、表1に示した。あわせて比較例3では、露出
した芯部の面積を顕微鏡写真から測定し、繊維側表面に
しめる割合を示した。
(Examples 1, 2 and Comparative Examples 2, 3) Instead of the spinning dope (b), the spinning dope (c) prepared as follows was used as the spinning dope for forming the core, and the sheath and the core were used. A fiber having a fineness of 3 denier was obtained in the same manner as in Comparative Example 1 except that the discharge ratio of the spinning dope was changed. The surface resistivity and the state of fluff generation were evaluated and are shown in Table 1. In addition, in Comparative Example 3, the area of the exposed core portion was measured from a micrograph, and the ratio of the exposed core portion to the fiber side surface was shown.

【0033】紡糸原液(c)は粒状導電性酸化チタン
(石原産業株式会社製ET−500W)90重量部を紡
糸原液(a)と同じ組成の紡糸原液100重量部に分散
し調製した。
The stock solution for spinning (c) was prepared by dispersing 90 parts by weight of granular conductive titanium oxide (ET-500W manufactured by Ishihara Sangyo Co., Ltd.) in 100 parts by weight of stock solution for spinning having the same composition as the stock solution for spinning (a).

【0034】[0034]

【表1】 [Table 1]

【0035】(比較例4)芯部を形成する紡糸原液を紡
糸原液(b)の代わりに次のようにして調製した紡糸原
液(d)を用いたほかは、比較例1と同様にして、繊度
3デニールの繊維を得た。表面抵抗率、毛羽の発生状態
を評価し、表2に示した。
Comparative Example 4 The same procedure as in Comparative Example 1 was carried out except that the spinning dope (d) prepared as follows was used instead of the spinning dope (b) to form the core. A fiber having a fineness of 3 denier was obtained. The surface resistivity and the state of fluff generation were evaluated and are shown in Table 2.

【0036】紡糸原液(d)は、導電性物質として長軸
2.9μ、アスペクト比13、導電率0.2S/cmの
針状導電性酸化チタン(石原産業株式会社製FT−20
00)13重量部を紡糸原液(a)と同じ組成の紡糸原
液100重量部に分散し導電性微粒子を30重量%含有
するよう調製した。
The spinning dope (d) is a needle-shaped conductive titanium oxide having a major axis of 2.9 μ, an aspect ratio of 13, and a conductivity of 0.2 S / cm (FT-20 manufactured by Ishihara Sangyo Co., Ltd.).
00) 13 parts by weight were dispersed in 100 parts by weight of a spinning dope having the same composition as that of the spinning dope (a) to prepare 30% by weight of conductive fine particles.

【0037】(実施例3、4、比較例5)芯部を形成す
る紡糸原液を紡糸原液(b)の代わりに次のようにして
調製した紡糸原液(e)を用い、鞘と芯の紡糸原液の吐
出割合かえたほかは比較例1と同様にして、繊度3デニ
ールの繊維を得た。表面抵抗率、毛羽の発生状態を評価
し、表2に示した。
(Examples 3, 4 and Comparative Example 5) A spinning dope (e) prepared as follows was used as a spinning dope (e) instead of the spinning dope (b) to form a core, and a sheath and a core were spun. A fiber having a fineness of 3 denier was obtained in the same manner as in Comparative Example 1 except that the discharge ratio of the stock solution was changed. The surface resistivity and the state of fluff generation were evaluated and are shown in Table 2.

【0038】[0038]

【表2】 [Table 2]

【0039】紡糸原液(e)は、導電性物質として長軸
2.9μ、アスペクト比13、導電率0.2S/cmの
針状導電性酸化チタン(石原産業株式会社製FT−20
00)30重量部を紡糸原液(a)と同じ組成の紡糸原
液100重量部に分散して調製した。
The spinning dope (e) is a needle-shaped conductive titanium oxide having a major axis of 2.9 μ, an aspect ratio of 13, and a conductivity of 0.2 S / cm (FT-20 manufactured by Ishihara Sangyo Co., Ltd.).
00) 30 parts by weight were dispersed in 100 parts by weight of a spinning dope having the same composition as the spinning dope (a).

【0040】(実施例5、6)鞘部を形成する紡糸原液
として紡糸原液(a)を芯部を形成する紡糸原液として
紡糸原液(b)を使用し、紡糸口金を通常の偏心タイプ
の芯鞘複合紡糸口金にかえ鞘と芯の紡糸原液の吐出割合
をかえたほかは、比較例1と同様にして、繊度3デニー
ルの繊維を得た。表面抵抗率、毛羽の発生状態を評価
し、表3に示した。あわせて比較例6では、露出した芯
部の面積を顕微鏡写真から測定し、繊維側表面にしめる
割合を示した。
(Examples 5 and 6) A stock solution for spinning (a) was used as a stock solution for forming a sheath, and a stock solution for spinning (b) was used as a stock solution for forming a core. A fiber having a fineness of 3 denier was obtained in the same manner as in Comparative Example 1, except that the discharge ratio of the spinning solution for the sheath and the core was changed to the sheath composite spinneret. The surface resistivity and the state of fluff generation were evaluated and are shown in Table 3. In addition, in Comparative Example 6, the area of the exposed core was measured from a micrograph, and the ratio of the exposed core to the fiber side surface was shown.

【0041】(実施例7)鞘部を形成する紡糸原液とし
て紡糸原液(a)を芯部を形成する紡糸原液として紡糸
原液(e)を使用したほかは、実施例6と同様にして繊
度が3デニールの繊維を得た。表面抵抗率、毛羽の発生
状態を評価し、表3に示した。
Example 7 The fineness was the same as in Example 6, except that the stock solution for spinning (a) was used as the stock solution for forming the sheath and the stock solution for spinning (e) was used as the stock solution for forming the core. 3 denier fiber was obtained. The surface resistivity and the state of fluff generation were evaluated and are shown in Table 3.

【0042】(比較例6)紡糸口金を通常のサイドバイ
サイド型複合紡糸口金とかえたほかは実施例6と同様に
して繊度が3デニールの繊維を得た。表面抵抗率、毛羽
の発生状態を評価し、表3に示した。
Comparative Example 6 A fiber having a fineness of 3 denier was obtained in the same manner as in Example 6, except that the spinneret was changed to a normal side-by-side composite spinneret. The surface resistivity and the state of fluff generation were evaluated and are shown in Table 3.

【0043】(実施例8)アクリロニトリル93重量
%、酢酸ビニル6.5重量%、メタリルスルホン酸ソー
ダ0.5重量%からなるアクリル系重合体(分子量15
万)をジメチルアセトアミドに溶解し、重合体濃度が2
5重量%の紡糸原液(f)を得た。
Example 8 An acrylic polymer (molecular weight: 15%) composed of 93% by weight of acrylonitrile, 6.5% by weight of vinyl acetate, and 0.5% by weight of sodium methallylsulfonate.
Is dissolved in dimethylacetamide and the polymer concentration is 2
A spinning dope (f) of 5% by weight was obtained.

【0044】さらに粒径0.2〜0.3μ、導電率0.
4S/cmの粒状導電性酸化チタン(石原産業株式会社
製ET−500W)75重量部を紡糸原液(f)100
重量部に分散し、紡糸原液(g)を調製した。
Further, the particle size is 0.2 to 0.3 μm, and the conductivity is 0.1.
75 parts by weight of 4S / cm granular conductive titanium oxide (ET-500W manufactured by Ishihara Sangyo Co., Ltd.) is used as a spinning dope (f) 100
The mixture was dispersed in parts by weight to prepare a spinning stock solution (g).

【0045】鞘部を形成する紡糸原液として紡糸原液
(f)を、芯部を形成する紡糸原液として紡糸原液
(g)を、孔径0.15mm、孔数60個の偏心タイプ
の芯鞘紡糸口金より、一旦空気中に吐出し約7mm空間
を走行させた後、35℃、70重量%ジメチルアセトア
ミド水溶液凝固浴中に導入し、凝固せしめた。凝固糸は
この凝固浴より60m/分の速度で引き取り、60℃温
水中で洗浄、95℃熱水中で3倍延伸、油剤付与後、1
40℃加熱ロールで乾燥し、260℃の熱板を用いて1
0%の収縮緩和を行い、180デニール/60フィラメ
ントで丸断面を有するアクリル系長繊維を得た。表面抵
抗率、毛羽の発生状態を評価し、表3に示した。
A stock solution for spinning (f) as a stock solution for forming a sheath portion and a stock solution for spinning (g) as a stock solution for forming a core portion were prepared. An eccentric type core-sheath spinneret having a hole diameter of 0.15 mm and 60 holes. After being discharged into the air and allowed to travel through a space of about 7 mm, the mixture was introduced into a coagulation bath of a 70% by weight aqueous solution of dimethylacetamide at 35 ° C. for coagulation. The coagulated yarn is taken out of the coagulation bath at a speed of 60 m / min, washed in warm water at 60 ° C., stretched three times in hot water at 95 ° C.
Dry with a heating roll at 40 ° C, and use a hot plate at 260 ° C for 1
By reducing the shrinkage by 0%, an acrylic long fiber having a round cross section with 180 denier / 60 filaments was obtained. The surface resistivity and the state of fluff generation were evaluated and are shown in Table 3.

【0046】(実施例9)アクリロニトリル93重量
%、酢酸ビニル7重量%からなるアクリル系重合体(分
子量15万)をジメチルアセトアミドに溶解し、重合体
濃度が25重量%の紡糸原液(h)を得た。さらに粒径
0.2〜0.3μ、導電率0.4S/cmの粒状導電性
酸化チタン(石原産業株式会社製ET−500W)75
重量部を紡糸原液(f)100重量部に分散し、紡糸原
液(i)を調製した。
Example 9 An acrylic polymer (molecular weight: 150,000) composed of 93% by weight of acrylonitrile and 7% by weight of vinyl acetate was dissolved in dimethylacetamide, and a spinning solution (h) having a polymer concentration of 25% by weight was prepared. Obtained. Further, a particulate conductive titanium oxide (ET-500W manufactured by Ishihara Sangyo Co., Ltd.) 75 having a particle size of 0.2 to 0.3 μ and a conductivity of 0.4 S / cm 75
Parts by weight were dispersed in 100 parts by weight of the spinning dope (f) to prepare a spinning dope (i).

【0047】鞘部を形成する紡糸原液として紡糸原液
(h)を、芯部を形成する紡糸原液として紡糸原液
(i)を、孔径0.07mm、孔数400個の偏心タイ
プの芯鞘紡糸口金より、40℃、55重量%ジメチルア
セトアミド水溶液凝固浴中に吐出し、凝固せしめた。凝
固糸はこの凝固浴より8m/分の速度で引き取り、沸水
中で洗浄、95℃熱水中で5倍延伸、油剤付与後、14
0℃加熱ロールで乾燥し、3.0kg/cm2の飽和水
蒸気により20%の収縮緩和を行い、3デニールの丸断
面を有するアクリル系繊維を得た。表面抵抗率、毛羽の
発生状態を評価し、表3に示した。
An undiluted spinning solution (h) as the undiluted spinning solution for forming the sheath portion and an undiluted spinning solution (i) as the undiluted spinning solution for forming the core portion were prepared. An eccentric type core-sheath spinneret having a hole diameter of 0.07 mm and 400 holes. Then, the mixture was discharged into a coagulation bath of a 55% by weight dimethylacetamide aqueous solution at 40 ° C. for coagulation. The coagulated yarn is taken from the coagulation bath at a speed of 8 m / min, washed in boiling water, stretched 5 times in hot water at 95 ° C.
It was dried with a heating roll at 0 ° C. and relaxed by 20% shrinkage with 3.0 kg / cm 2 of saturated steam to obtain an acrylic fiber having a round cross section of 3 denier. The surface resistivity and the state of fluff generation were evaluated and are shown in Table 3.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【発明の効果】本発明の導電性アクリル系繊維は、優れ
た導電性、白度及び糸強度を有し、セーター等の衣料用
途を中心に幅広い用途展開の可能である。さらに本発明
の導電性アクリル系繊維の製造方法は、上記の導電性ア
クリル系繊維のなかでもとりわ性能に優れたものを生産
性よく製造することが可能である。
Industrial Applicability The conductive acrylic fiber of the present invention has excellent conductivity, whiteness and yarn strength, and can be used in a wide variety of applications, mainly for clothing such as sweaters. Further, the method for producing a conductive acrylic fiber according to the present invention makes it possible to produce, among the above-mentioned conductive acrylic fibers, those having excellent handling performance with good productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の導電性アクリル系繊維のうち、扁平断
面を有するものの断面の概念図である。
FIG. 1 is a conceptual view of a cross section of a conductive acrylic fiber of the present invention having a flat cross section.

【符号の説明】[Explanation of symbols]

1 鞘部 2 芯部 A 両端間長さ B 先端極大分厚さ C くびれ分厚さ 1 Sheath 2 Core A A Length between both ends B Tip maximum thickness C Constriction thickness

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木谷 明巳 広島県大竹市御幸町20番1号 三菱レイ ヨン株式会社大竹事業所内 (72)発明者 細川 宏 広島県大竹市御幸町20番1号 三菱レイ ヨン株式会社大竹事業所内 (56)参考文献 特開 昭57−39214(JP,A) 特開 平6−81216(JP,A) 特開 平6−220720(JP,A) (58)調査した分野(Int.Cl.7,DB名) D01F 8/08 D01D 5/34 D01D 10/02 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Akimi Kitani 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Otake Works (72) Inventor Hiroshi Hosokawa 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi (56) References JP-A-57-39214 (JP, A) JP-A-6-81216 (JP, A) JP-A-6-220720 (JP, A) (58) Field (Int.Cl. 7 , DB name) D01F 8/08 D01D 5/34 D01D 10/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 芯鞘ともにアクリロニトリル系共重合体
からなる芯鞘複合繊維であって、繊維断面における芯部
と鞘部の面積比が芯部/鞘部=5/95〜60/40で
あり、芯部に導電率10-3S/cm以上の導電性物質を
15〜70体積%含有し、芯部の断面積が7μm2以上
であり、鞘部の厚みが少なくとも一部において3μm以
下で、かつ芯部の繊維表面の露出量が繊維表面の5%以
下であることを特徴とする導電性アクリル系繊維。
1. A core / sheath composite fiber comprising an acrylonitrile copolymer for both the core and the sheath, wherein the area ratio of the core to the sheath in the fiber cross section is from 5/95 to 60/40. The core contains a conductive substance having a conductivity of 10 −3 S / cm or more at 15 to 70% by volume, the cross-sectional area of the core is 7 μm 2 or more, and the thickness of the sheath is at least 3 μm or less at least in part. A conductive acrylic fiber, wherein the exposed amount of the fiber surface of the core is 5% or less of the fiber surface.
【請求項2】 繊維断面における両端間長さ(A)、く
びれ部の厚み(C)がA/Cが2〜7である請求項1記
載の導電性アクリル系繊維。
2. The conductive acrylic fiber according to claim 1, wherein the ratio A / C of the length between both ends (A) and the thickness (C) of the constricted portion in the fiber cross section is 2 to 7.
【請求項3】 導電率が10-3S/cm以上の導電性物
質をアクリロニトリル系共重合体に対して15〜70体
積%含有するアクリロニトリル系共重合体の有機溶剤溶
液、アクリロニトリル系共重合体の有機溶剤溶液を芯鞘
複合紡糸口金の芯部、鞘部にそれぞれ配して、芯鞘複合
紡糸口金の芯部、鞘部より繊維断面での芯部と鞘部の面
積比が芯部/鞘部=5/95〜60/40となるように
不活性ガス中に吐出して紡糸し、続いて、70℃以上の
熱水中で2〜7倍に延伸を施した後、熱処理により5〜
50%収縮させることを特徴とする導電性アクリル系繊
維の製造方法。
3. An organic solvent solution of an acrylonitrile copolymer containing 15 to 70% by volume of a conductive substance having a conductivity of 10 −3 S / cm or more based on the acrylonitrile copolymer, and an acrylonitrile copolymer. Organic solvent solution of core-sheath
The core / sheath portion is arranged on the core portion and the sheath portion of the composite spinneret, and the area ratio of the core portion and the sheath portion in the fiber cross section from the core portion and the sheath portion of the core / sheath portion is 5/95 to 5/95. To be 60/40
Spinning by discharging into inert gas , followed by 70 ° C or higher
After stretched 2 to 7 times in hot water , heat treatment
A method for producing a conductive acrylic fiber, wherein the conductive acrylic fiber is contracted by 50%.
【請求項4】 繊維断面での両端間長さ(A)、くびれ
部の厚み(C)がA/Cが2〜7となるように、芯鞘複
合紡糸口金の芯部、鞘部に配された有機溶剤溶液を、芯
鞘複合紡糸口金のそれぞれ芯部、鞘部より160〜40
0℃の不活性ガス中に吐出して紡糸する請求項3記載の
導電性アクリル系繊維の製造方法。
4. A core-sheath composite having a length (A) between both ends in a fiber cross section and a thickness (C) of a constricted portion of A / C of 2-7.
The organic solvent solution disposed in the core portion and the sheath portion of the spinning spinneret is 160 to 40 from the core portion and the sheath portion of the core- sheath composite spinneret , respectively.
The method for producing a conductive acrylic fiber according to claim 3, wherein the fiber is spun by discharging into an inert gas at 0 ° C.
JP21894295A 1995-04-12 1995-08-28 Conductive acrylic fiber and method for producing the same Expired - Lifetime JP3227528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21894295A JP3227528B2 (en) 1995-04-12 1995-08-28 Conductive acrylic fiber and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-87203 1995-04-12
JP8720395 1995-04-12
JP21894295A JP3227528B2 (en) 1995-04-12 1995-08-28 Conductive acrylic fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08337925A JPH08337925A (en) 1996-12-24
JP3227528B2 true JP3227528B2 (en) 2001-11-12

Family

ID=26428498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21894295A Expired - Lifetime JP3227528B2 (en) 1995-04-12 1995-08-28 Conductive acrylic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3227528B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363826A (en) * 2001-06-06 2002-12-18 Unitica Fibers Ltd Conductive yarn
JP4564322B2 (en) * 2004-10-01 2010-10-20 三菱レイヨン株式会社 Method for producing conductive acrylic fiber
JP4773849B2 (en) * 2005-06-02 2011-09-14 三菱レイヨン株式会社 Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property
US8183324B2 (en) 2008-07-16 2012-05-22 Japan Exlan Company Limited Antistatic acrylic fiber and a method for manufacturing the same
JP2010254744A (en) * 2009-04-21 2010-11-11 Fujikura Rubber Ltd Rubber composition, electroconductive rubber layer containing the same, method for forming the layer, electric double layer capacitor equipped with the layer, and electroconductive laminate equipped with the layer
WO2018084040A1 (en) * 2016-11-01 2018-05-11 帝人株式会社 Fabric, method for manufacturing same, and fiber product

Also Published As

Publication number Publication date
JPH08337925A (en) 1996-12-24

Similar Documents

Publication Publication Date Title
JP4773849B2 (en) Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property
JP3227528B2 (en) Conductive acrylic fiber and method for producing the same
JP2012188781A (en) Carbon fiber and method for manufacturing the same
TW201920800A (en) Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP3808643B2 (en) Acrylonitrile fiber bundle and method for producing the same
JPH11200149A (en) White electroconductive fiber
JPH0978354A (en) Electroconductive acrylic fiber
JPH0978377A (en) Antistatic acrylic spun yarn
JPH0227442B2 (en) DODENSEIAKURIRUKEIGOSEISENIOYOBISONOSEIZOHOHO
JP4564322B2 (en) Method for producing conductive acrylic fiber
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JP2601775B2 (en) Flame retardant acrylic composite fiber
JP3278228B2 (en) Flat acrylic fiber and method for producing the same
JP3048449B2 (en) Acrylonitrile precursor fiber
JP2000096346A (en) Heat-storing and conductive fiber and yarn and fabric
JPH0227441B2 (en) DODENSEIAKURIRUKEIGOSEISENINOSEIZOHOHO
JP2000096347A (en) Heat-storing and conductive fiber and yarn and fabric
JP2006348439A (en) Conductive acrylic fiber
JP2009221632A (en) Sheath-core conjugate conductive acrylic filament
DE3021889A1 (en) POROESE, FIRE-COMBUSTIBLE SYNTHETIC ACRYLIC FIBERS AND METHOD FOR THE PRODUCTION THEREOF
JP7394439B2 (en) Conductive multifilament, method for manufacturing conductive multifilament, woven or knitted fabric, and brush
JP5765877B2 (en) Conductive core-sheath composite acrylic fiber for brush
JPH09228148A (en) Electroconductive fiber
JP3289817B2 (en) Method for producing conductive fiber
JPH101851A (en) Antistatic short fiber assembly and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term