JP3227269B2 - Constant temperature forging method - Google Patents

Constant temperature forging method

Info

Publication number
JP3227269B2
JP3227269B2 JP12705093A JP12705093A JP3227269B2 JP 3227269 B2 JP3227269 B2 JP 3227269B2 JP 12705093 A JP12705093 A JP 12705093A JP 12705093 A JP12705093 A JP 12705093A JP 3227269 B2 JP3227269 B2 JP 3227269B2
Authority
JP
Japan
Prior art keywords
temperature
mold
forging
nickel
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12705093A
Other languages
Japanese (ja)
Other versions
JPH06254648A (en
Inventor
輝 栄
統 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12705093A priority Critical patent/JP3227269B2/en
Publication of JPH06254648A publication Critical patent/JPH06254648A/en
Application granted granted Critical
Publication of JP3227269B2 publication Critical patent/JP3227269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル基合金あるい
は金属間化合物などの難塑性加工材料を成形する恒温型
鍛造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant temperature forging method for forming a non-plastic working material such as a nickel base alloy or an intermetallic compound.

【0002】[0002]

【従来の技術】航空機エンジン用のタービンデイスクや
ブレード等に用いられるニッケル基合金や金属間化合物
等からなる耐熱高合金は、その材料特性のために塑性加
工は著しく難しいそのため、通常その塑性加工には恒
温型鍛造法が適用され、また、その恒温型鍛造において
は、結晶粒の極めて微細な材料を用い、それら材料が超
塑性挙動を示す高温(1000℃以上)かつ低歪速度(10-2
〜10-4/sec)の領域において成形が行われる。
2. Description of the Related Art A heat-resistant high alloy made of a nickel-based alloy or an intermetallic compound used for a turbine disk or a blade of an aircraft engine is extremely difficult to plastically work due to its material properties . Therefore, constant temperature forging is usually applied to the plastic working, and in the constant temperature forging, extremely fine materials of crystal grains are used, and these materials exhibit superplastic behavior at a high temperature (1000 ° C or higher) and Low strain rate (10 -2
The shaping is performed in the region of 1010 −4 / sec).

【0003】一方、それら恒温型鍛造において、金型は
1000℃以上の高温でかつ比較的長時間の過酷な条件下に
おかれるため、モリブデン基合金等の耐熱合金およびフ
ァインセラミックス、あるいはニッケル基耐熱超合金か
らなるものが用いられる。
[0003] On the other hand, in those constant temperature forgings, the mold is
Since it is subjected to severe conditions at a high temperature of 1000 ° C. or more and for a relatively long time, heat-resistant alloys such as molybdenum-based alloys and fine ceramics, or nickel-based heat-resistant superalloys are used.

【0004】[0004]

【発明が解決しようとする課題】ところで、近年、航空
機エンジン用部材等に用いられる耐熱高合金としては、
性能向上のためにより優れた高温強度のものが求めら
れ、その塑性加工はより困難なものとなる傾向にある。
そのため、それら材料を超塑性加工する温度領域も1,10
0℃〜 1,200℃となるものが多くなり、その恒温型鍛造
は、より高い温度領域で効率良く行うことが必要となっ
ている。
However, in recent years, heat-resistant high alloys used for aircraft engine parts and the like include:
For higher performance, a material having higher high-temperature strength is required, and its plastic working tends to be more difficult.
Therefore, the temperature range in which these materials are superplastically processed is 1,10
The temperature in the range of 0 ° C. to 1,200 ° C. is increasing, and it is necessary to perform the constant temperature forging efficiently in a higher temperature range.

【0005】しかし、モリブデン基合金は、1100℃以上
の高温においても高強度を有するが、大気雰囲気下では
酸化して強度が著しく低下するので、これら合金を恒温
型鍛造用の金型として用いる場合、酸化防止のために真
空あるいは非酸化性雰囲気下で鍛造することが必要とな
る。そのため排気装置やチャンバー等を設けなければな
らず、それに伴い、装置構成が大がかりになって設備費
が高騰するだけでなく、被加工材の出し入れも困難とな
って生産性が低下する。
[0005] However, molybdenum-based alloys have high strength even at a high temperature of 1100 ° C or higher, but oxidize in an air atmosphere to significantly reduce the strength. Therefore, when these alloys are used as molds for constant-temperature forging. In order to prevent oxidation, it is necessary to forge in a vacuum or a non-oxidizing atmosphere. Therefore, an exhaust device, a chamber, and the like must be provided. As a result, not only does the equipment configuration become large and the equipment cost rises, but also it becomes difficult to take in and out the work material, and the productivity decreases.

【0006】また、ファインセラミックスは、高温な大
気雰囲気下においても酸化することなく高強度を有する
が、靭性に劣るため単独では金型として構成し難く、そ
れをバックアップする金属部材と複合して用いる必要が
あり、また、凹凸の多い複雑な金型や比較的大型な金型
に用いる場合、インプレッションのコーナー部等の応力
集中部からの破壊を防ぐために、金型をコーナー部等か
ら複数に分割した組立構成とする必要も生じ、その構成
が複雑になって製造コストが高騰するだけでなく、メン
テナンスにも大きな負担を強いられる。
[0006] Fine ceramics have high strength without oxidation even in a high-temperature air atmosphere, but are inferior in toughness, so that it is difficult to form a mold by itself. If it is necessary to use a complex mold with many irregularities or a relatively large mold, the mold is divided into multiple parts from the corners etc. to prevent damage from stress concentration parts such as corners of impressions It is necessary to adopt an assembled structure, and the structure becomes complicated, so that not only the manufacturing cost rises but also a heavy burden is imposed on maintenance.

【0007】一方、ニッケル基耐熱超合金製の一体金型
は、1000℃近傍の恒温大気雰囲気下で使用できるものと
されており、これを1100℃以上の恒温型鍛造に用いるこ
とができれば、設備および金型コストと生産効率面で非
常に有利となる。
On the other hand, an integrated mold made of a nickel-base heat-resistant superalloy is said to be usable in a constant temperature air atmosphere at around 1000 ° C. If it can be used for a constant temperature forging at 1100 ° C. or more, equipment And it is very advantageous in terms of mold cost and production efficiency.

【0008】しかし、ニッケル基耐熱超合金製の金型
は、1000℃以上では被鍛造材との間に焼付が生じ易くな
り、これが金型の耐用寿命および製品の品質を低下させ
るので、1100℃以上の恒温型鍛造に適用するには、金型
と被鍛造材との焼付を防止することが必要となるが、そ
の焼付を防止する方法を具体的に示したものは未だ知ら
れてない。例えば、従来ニッケル基耐熱超合金製の金型
を用いた1000℃近傍の大気雰囲気下での恒温型鍛造にお
いて、金型と被鍛造材との焼付を防止するために、通
常、ガラス系潤滑剤が用いられていたが、それらガラス
系潤滑剤は、1000℃を超えると発熱して飛散すると同時
に変質する傾向を示し、かつ1100℃以上の大気雰囲気下
では、ニッケル基耐熱超合金と化学反応を起こし、金型
の酸化腐食を促進して耐用寿命を著しく低下させるの
で、これを1100℃以上の大気雰囲気下で潤滑剤として使
用することができない。
However, in a mold made of a nickel-base heat-resistant superalloy, when the temperature is 1000 ° C. or more, seizure easily occurs between the mold and the material to be forged, which deteriorates the service life of the mold and the quality of the product. In order to apply to the above-mentioned constant temperature die forging, it is necessary to prevent seizure between the die and the material to be forged. However, a concrete method for preventing the seizure has not yet been known. For example, in a constant-temperature forging using a mold made of a conventional nickel-base heat-resistant superalloy in an air atmosphere at around 1000 ° C, a glass-based lubricant is usually used to prevent seizure between the mold and the material to be forged. However, those glass-based lubricants tend to generate heat and scatter at temperatures exceeding 1000 ° C, and also to change quality, and that they react chemically with nickel-based heat-resistant superalloys at atmospheric temperatures of 1100 ° C or more. This causes the oxidative corrosion of the mold and accelerates the service life thereof, so that it cannot be used as a lubricant in an air atmosphere at 1100 ° C. or higher.

【0009】更にまた、ニッケル基耐熱超合金は、モリ
ブデン基合金やファインセラミックスと同様に、通常の
熱間型用鋼より高い熱脆性を有するので、昇温に際する
熱応力によって割れが生じ易く、ニッケル基耐熱超合金
からなる金型を恒温型鍛造に適用するには、室温から11
00℃以上の高温域まで昇温する際の金型割れを防止する
ことが必要となるが、その割れを確実に防止する方法を
定量的に示したものは未だ知られていない。
Further, the nickel-base heat-resistant superalloy has a higher thermal brittleness than ordinary hot-forming steel, like the molybdenum-base alloy and fine ceramics, so that cracks are likely to occur due to thermal stress when the temperature is raised. In order to apply a mold made of nickel-base heat-resistant superalloy to constant-temperature die forging,
It is necessary to prevent mold cracking when the temperature is raised to a high temperature region of 00 ° C. or higher, but a method for quantitatively preventing such cracking has not yet been known.

【0010】すなわち、1100℃〜1200℃の温度範囲の大
気雰囲気下での恒温型鍛造において、ニッケル基耐熱超
合金からなる金型を用い、これにより設備および金型コ
ストの低減と生産効率の向上とを図るについては、金型
と被鍛造材との焼付を潤滑剤ないし離型剤によって防止
し、かつ、それら潤滑剤ないし離型剤と金型との化学反
応を抑えて金型の酸化腐食を防止する方法と、その金型
を室温から1100℃以上の高温域まで、熱応力割れを発生
させることなく昇温する方法とを新たに定める必要があ
る。
That is, in a constant temperature forging in an air atmosphere in a temperature range of 1100 ° C. to 1200 ° C., a mold made of a nickel-base heat-resistant superalloy is used, thereby reducing equipment and mold costs and improving production efficiency. In order to achieve this, the seizure between the mold and the forged material is prevented by a lubricant or a release agent, and the chemical reaction between the lubricant or the release agent and the mold is suppressed to prevent oxidative corrosion of the mold. And a method of raising the temperature of the mold from room temperature to a high temperature range of 1100 ° C. or higher without generating thermal stress cracks, must be newly defined.

【0011】本発明は、上記課題を解決すべくなされた
もので、ニッケル基耐熱合金からなる金型を用い、かつ
金型と被鍛造材との焼付を潤滑剤ないし離型剤の塗布に
より防止してなお、その潤滑剤や離型剤と金型との化学
反応を抑えて金型の酸化腐食を防止でき、もって1100℃
〜1200℃の温度範囲の大気雰囲気下での恒温型鍛造を高
い生産効率のもとで達成できる恒温型鍛造方法の提供
と、ニッケル基耐熱合金からなる金型を、室温から1100
℃以上の高温域まで割れを発生させることなく昇温させ
ることができ、それにより1100℃〜1200℃の温度範囲の
大気雰囲気下での恒温型鍛造を安定して達成できる恒温
型鍛造方法の提供とを目的する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and uses a mold made of a nickel-base heat-resistant alloy, and prevents the seizure between the mold and the forged material by applying a lubricant or a release agent. In addition, the chemical reaction between the lubricant and mold release agent and the mold can be suppressed to prevent oxidative corrosion of the mold.
Providing a constant temperature forging method that can achieve constant temperature forging under high atmospheric air temperature in a temperature range of ~ 1200 ° C and a mold made of nickel-base heat-resistant alloy from room temperature to 1100
Provide a constant temperature forging method that can raise the temperature to a high temperature range of over 100 ° C without causing cracks, thereby stably achieving constant temperature forging in the air atmosphere in the temperature range of 1100 ° C to 1200 ° C And aim.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成とされている。すなわち、
発明に係る恒温型鍛造方法は、塑性加工を施すにあた
り、1100℃〜1200℃の温度範囲で該塑性加工を行うこと
が必要な難塑性加工材料をニッケル基耐熱合金からなる
金型を用いて恒温型鍛造するに際して、その金型を、最
大 250℃昇温する都度にその昇温温度で最低30分間保持
する昇温条件のもとで、室温から1100℃〜1200℃の温度
範囲まで階段的に昇温させた後に、1100℃〜1200℃の温
度範囲の大気雰囲気下で恒温型鍛造することを特徴とす
る。
In order to achieve the above object, the present invention has the following arrangement. That is, the constant temperature forging method according to the present invention is suitable for performing plastic working.
And perform the plastic working in the temperature range of 1100 ° C to 1200 ° C.
Is required to be made of nickel-base heat-resistant alloy
When performing constant temperature die forging using a die, the die
Maintain at that temperature for at least 30 minutes each time the temperature rises to 250 ° C
Temperature from room temperature to 1100 ℃ ~ 1200 ℃ under rising temperature conditions
The method is characterized in that the temperature is stepwise raised to a range, and then a constant-temperature forging is performed in an air atmosphere in a temperature range of 1100 ° C to 1200 ° C.

【0013】[0013]

【0014】[0014]

【作用】ニッケル基耐熱合金からなる金型を用い、1100
℃〜1200℃の温度範囲の大気雰囲気下で恒温型鍛造する
場合、その金型と被鍛造材との焼付を防止するために用
いる潤滑剤ないし離型剤としては、まず、上記高温域で
金型と化学反応を起こして金型の酸化腐食を促進するも
のは、金型の耐用寿命を低下させるだけでなく、製品品
質を低下させるので忌避する必要がある。本発明者等
は、この観点から各種の潤滑剤および離型剤について検
討を加え、それら内から高温域でも化学的に安定なグ
ラファイト系の潤滑剤と窒化硼素系の離型剤を、適用可
能な潤滑剤ないし離型剤の候補として挙げた。
[Action] 1100 using a mold made of nickel-base heat-resistant alloy
In the case of constant temperature forging in an air atmosphere at a temperature in the range of ℃ to 1200 ° C, the lubricant or release agent used to prevent seizure between the die and the material to be forged is, first, a metal in the high temperature range described above. It is necessary to avoid those that cause a chemical reaction with the mold to promote oxidative corrosion of the mold, because it not only shortens the service life of the mold but also deteriorates the product quality. The present inventors have review the various lubricants and mold release agents from this viewpoint, a release agent lubricants and boron nitride-based chemically stable graphitic even in a high temperature region from among them, apply It was listed as a possible lubricant or release agent.

【0015】そして、これらについて、金型用材として
のニッケル基耐熱合金材との高温域における化学反応を
確認すべく、Mo:約10wt%(その他、W :約12wt%、A
l:約6wt%)含有し、残部実質的にNiからなり、かつγ
相が30〜 75vol%、γ’相が25〜 60vol%、α相が 2.5
〜 11vol%の相を有して、金型用材として高温強度特性
を高めたニッケル基超耐熱合金材からなる試験片(厚さ
10mm、幅10mm、長さ50mm、表面粗さ 6S)を複数準備
し、それらの試験片に、グラファイト系潤滑剤および窒
化硼素系離型剤を塗布して、大気雰囲気下で試験片の加
熱腐食についての実験を行った。また、比較ために、
同試験片にガラス系潤滑剤を塗布して同条件の実験を行
った。グラファイト系潤滑剤および窒化硼素系離型剤は
スプレー塗布にて、またガラス系潤滑剤は刷毛塗りにて
試験片全面に塗布し、これらを大気雰囲気下で1100℃と
1200℃の温度に加熱して約4時間保持後に放冷し、しか
る後、それぞれの試験片の表面状態を精査した。
Then, in order to confirm a chemical reaction of these with a nickel-base heat-resistant alloy material as a mold material in a high temperature range, Mo: about 10 wt% (others, W: about 12 wt%, A:
l: about 6 wt%), the balance substantially consisting of Ni, and γ
30 ~ 75vol% of phase, 25 ~ 60vol% of γ 'phase, 2.5% of α phase
Specimens (thickness) consisting of a nickel-base super heat-resistant alloy material with a phase
Prepare 10mm, width 10mm, length 50mm, surface roughness 6S), apply graphite lubricant and boron nitride release agent to the test pieces, and heat corrosion of the test pieces in air atmosphere The experiment about was performed. In addition, for the sake of comparison,
An experiment under the same conditions was performed by applying a glass-based lubricant to the test piece. Graphite-based lubricant and boron nitride-based release agent are applied by spray coating, and glass-based lubricant is applied by brush application over the entire surface of the test piece.
After heating to a temperature of 1200 ° C. and holding for about 4 hours, it was allowed to cool, and then the surface condition of each test piece was closely examined.

【0016】その結果、ガラス系潤滑剤を塗布した試験
片の表面には付着物が生成されており、その付着物を除
去した後の試験片の表面粗さは加熱前よりも著しく増加
していた。また、その付着物は試験片の主要成分の酸化
物と同定され、このことから同潤滑剤は、高温加熱によ
って、そのほとんどが発熱して飛散する一方、試験片と
の間に酸化腐食を助長する化学反応を生じることが確認
された。
As a result, deposits are formed on the surface of the test piece to which the glass-based lubricant has been applied, and the surface roughness of the test piece after removing the deposit is remarkably increased as compared with that before heating. Was. The deposits were identified as oxides, which are the main components of the test specimen. From this fact, most of the lubricant generated heat by high-temperature heating and scattered, but promoted oxidative corrosion between the lubricant and the test specimen. It was confirmed that a chemical reaction occurred.

【0017】これに対して、グラファイト系潤滑剤を塗
布した試験片の表面には、緻密で薄い膜層が形成されて
残留しており、その薄膜層を除去した後の試験片の表面
粗さは加熱前とほとんど変化していなかった。また、そ
の薄膜層は同潤滑剤の主要成分であるグラファイトから
なるものと同定され、このことから同潤滑剤は、高温加
熱によって、その一部が発熱して飛散するものの、一部
がグラファイトからなる薄膜層を形成して試験片表面に
残留し、かつ試験片との間に化学反応を生じないことが
確認された。また、窒化硼素系離型剤を塗布した試験片
の表面には、同離型剤の塗布膜層があまり変化せずに残
留し、かつその膜層を除去した後の試験片の表面粗さは
加熱前とほとんど変化しておらず、このことから同離型
剤は、高温加熱によって、試験片との間に化学反応を生
じないことが確認された。また、その膜層は、グラファ
イト系潤滑剤を塗布した例で形成された薄膜層よりも格
段に容易に剥離した。すなわち、グラファイト系の潤滑
剤と窒化硼素系の離型剤は、高温域の大気雰囲気下でニ
ッケル基超耐熱合金とほとんど化学反応せずに膜層を形
成するので、ニッケル基超耐熱合金からなる金型を用い
て1100℃〜1200℃の温度範囲の大気雰囲気下で恒温型鍛
造するについて、その金型と被鍛造材との焼付を防止す
る潤滑剤ないし離型剤としての役割を充分に果たし得る
ものであることが判った。
On the other hand, a dense and thin film layer is formed and remains on the surface of the test piece coated with the graphite-based lubricant, and the surface roughness of the test piece after the thin film layer is removed. Was almost unchanged from before heating. The thin film layer was identified as being composed of graphite, which is a major component of the lubricant. From this, the lubricant was partially heated by high-temperature heating and scattered, but a part of the lubricant was dispersed from graphite. It was confirmed that a thin film layer was formed and remained on the surface of the test piece, and no chemical reaction occurred with the test piece. Also, on the surface of the test piece coated with the boron nitride-based release agent, the coating film layer of the same release agent remains without much change, and the surface roughness of the test piece after removing the film layer Hardly changed from before heating, which confirmed that the release agent did not cause a chemical reaction with the test piece due to the high-temperature heating. Further, the film layer was peeled off much more easily than the thin film layer formed in the example in which the graphite-based lubricant was applied. In other words, the graphite-based lubricant and the boron nitride-based release agent form a film layer with almost no chemical reaction with the nickel-based super-heat-resistant alloy under a high-temperature air atmosphere, and are therefore formed of a nickel-based super-heat-resistant alloy. In a constant temperature die forging under the air atmosphere at a temperature range of 1100 ° C to 1200 ° C using a die, it plays a sufficient role as a lubricant or release agent to prevent seizure between the die and the forged material. It turned out to be a gain.

【0018】記実験により把握された条件に基づ
ニッケル基耐熱合金からなる金型に、グラファイト系の
潤滑剤ないしは窒化硼素系の離型剤を塗布することによ
って、その潤滑剤や離型剤と金型との化学反応を抑えて
金型の酸化腐食を防止できると共に、金型と被鍛造材と
の焼付を防止でき、もって1100℃〜1200℃の温度範囲の
大気雰囲気下での恒温型鍛造を達成することができる。
[0018] based-out in conditions that have been grasped by the upper Symbol experiment,
By applying a graphite-based lubricant or a boron nitride-based release agent to a mold made of a nickel-base heat-resistant alloy, the chemical reaction between the lubricant and the release agent and the mold is suppressed to oxidize the mold. Corrosion can be prevented, and seizure of the die and the forged material can be prevented, whereby constant temperature forging in an air atmosphere at a temperature in the range of 1100 ° C to 1200 ° C can be achieved.

【0019】なお、上記グラファイト系の潤滑剤として
は、その主組成分がグラファイトであって、その他、
K、Si、Na、S、Cl、Al等を単独ないし複合し
て含有してなるものが用いられ、また、上記窒化硼素系
の離型剤としては、その主組成分が窒化硼素であって、
その他、O、Al、C等を単独ないし複合して含有して
なるものが用いられる。
[0019] As the lubricant of the upper Symbol graphitic, its main composition content a graphite, other,
Those containing K, Si, Na, S, Cl, Al, etc. singly or in combination are used, and as the boron nitride release agent, the main component is boron nitride. ,
In addition, those containing O, Al, C or the like alone or in combination are used.

【0020】一方、昇温による金型の破壊は、その昇温
中における過大な引張熱応力の発生に起因し、また、昇
温に際して発生する熱応力値は、金型を予熱する各熱履
歴における最大昇温値と、各昇温段階における最低保持
時間値との設定によって低く制御することができる。本
発明者等は、この観点に基づく適性な昇温条件を定量化
すべく、Mo:約10wt%(その他、W :約12wt%、Al:約
6wt%)含有し、残部実質的にNiからなり、かつγ相が
30〜 75vol%、γ’相が25〜 60vol%、α相が 2.5〜 1
1vol%の相を有して、金型用材として高温強度特性を高
めたニッケル基超耐熱合金材からなる一体型の上下金型
を用い、その昇温による破壊実験およびその熱応力の数
値解析を行った。
On the other hand, the destruction of the mold due to the temperature rise is caused by the generation of excessive tensile thermal stress during the temperature rise, and the value of the thermal stress generated at the time of the temperature rise depends on each thermal history that preheats the mold. Can be controlled to be low by setting the maximum temperature rising value in the above and the minimum holding time value in each temperature rising stage. In order to quantify suitable heating conditions based on this viewpoint, the present inventors have determined that Mo: about 10 wt% (others, W: about 12 wt%, Al: about
6 wt%), the balance substantially consisting of Ni, and the γ phase
30 ~ 75vol%, γ 'phase 25 ~ 60vol%, α phase 2.5 ~ 1
Using an integrated upper and lower mold made of a nickel-base super heat-resistant alloy material with a 1 vol% phase and enhanced high-temperature strength characteristics as a mold material, a fracture test by increasing the temperature and a numerical analysis of the thermal stress were performed. went.

【0021】それら金型に対する昇温および各昇温段階
における保持時間の設定値を種々に変化させて、室温か
ら1100℃〜1200℃の温度までの昇温を繰り返し行い、各
熱履歴後の金型内面における亀裂の有無を精査したとこ
ろ、一段階での最大昇温値を300℃以上とした場合で
は、亀裂の発生頻度が高く実操業に適用し難く、これに
対して 250℃以下とした場合では、亀裂の発生頻度が低
下して実用に十分耐え得ることが判明した。また、その
金型内部に生じた熱応力を求めたところ、一段階での最
大昇温値を 250℃以下とし、かつその昇温温度で30分間
保持すれば、その一段階での昇温によって生じた熱応力
が殆ど全て開放緩和されて、次の昇温段階に残留しない
ことが解明した。
The temperature of the mold and the set value of the holding time in each temperature raising step are variously changed, and the temperature is repeatedly raised from room temperature to a temperature of 1100 ° C. to 1200 ° C. A close examination of the presence or absence of cracks on the inner surface of the mold revealed that if the maximum heating value in one step was 300 ° C or more, the frequency of cracks was high and it was difficult to apply it to actual operation. In such a case, it was found that the frequency of occurrence of cracks was reduced, and that it could sufficiently withstand practical use. Also, when the thermal stress generated inside the mold was determined, the maximum temperature rise value in one step was set to 250 ° C or less, and if the temperature was kept at that temperature rise for 30 minutes, the temperature rise in one step It was found that almost all of the generated thermal stress was released and relaxed and did not remain in the next heating stage.

【0022】発明は、上記金型の昇温破壊実験および
熱応力の解析により把握された条件に基づいて完成され
たものであって、塑性加工を施すにあたり、1100℃〜12
00℃の温度範囲で該塑性加工を行うことが必要な難塑性
加工材料をニッケル基耐熱合金からなる金型を用いて恒
温型鍛造するに際して、その金型を、最大 250℃昇温す
る都度にその昇温温度で最低30分間保持する昇温条件の
もとで、室温から1100℃〜1200℃の温度範囲まで階段的
に昇温させることによって、各昇温段階で金型に生じる
熱応力を割れの生じない低いレベルに抑えると共に、生
じた熱応力をそれぞれの昇温段階において開放緩和させ
ることができ、もって当該金型の昇温による割れを防い
で、1100℃〜1200℃の温度範囲の大気雰囲気下での恒温
型鍛造を安定して達成することができる。
The present invention, which has been completed based on the conditions grasped by the analysis of temperature increase fracture experiments and thermal stress of the die, when subjected to plastic working, 1100 ° C. to 12
Difficult-to-plasticity required to perform the plastic working in the temperature range of 00 ° C
When forging a working material using a mold made of a nickel-base heat-resistant alloy at a constant temperature forging, the mold must be kept at that temperature for at least 30 minutes each time the temperature is raised by a maximum of 250 ° C. By increasing the temperature stepwise from room temperature to a temperature range of 1100 ° C to 1200 ° C, the thermal stress generated in the mold at each heating step is suppressed to a low level that does not cause cracking, and the generated thermal stress is reduced to each level. The opening can be relaxed at the heating stage, thereby preventing the mold from cracking due to the heating, and stably achieving a constant temperature forging under an air atmosphere in a temperature range of 1100 ° C to 1200 ° C. .

【0023】[0023]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。〔図1〕は本発明の実施例の恒温型鍛造方
法に用いた金型および恒温鍛造装置の概要構成を示す図
面である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a drawing showing a schematic configuration of a mold and a thermostatic forging apparatus used in a thermostatic forging method according to an embodiment of the present invention.

【0024】〔図1〕において、(1) は上金型、(2) は
下金型であって、これら上・下金型(1),(2) は、特にM
o:約10wt%(その他、W :約12wt%、Al:約 6wt%)
含有し、残部実質的にNiからなり、かつγ相が30〜 75v
ol%、γ’相が25〜 60vol%、α相が 2.5〜 11vol%の
相を有して、高温強度特性を高めたニッケル基超耐熱合
金材からなり、通常の密閉型鍛造に用いられる形態のも
ので、対向するキス面側に型鍛造品(本例では、タービ
ンディスク)を成形する対のインプレッションを設けた
ものである。
In FIG. 1, (1) is an upper mold and (2) is a lower mold. These upper and lower molds (1) and (2)
o: about 10 wt% (others, W: about 12 wt%, Al: about 6 wt%)
Contains, the balance substantially consisting of Ni, and the γ phase is 30 to 75 v
ol%, γ 'phase 25 ~ 60vol%, α phase 2.5 ~ 11vol%, made of nickel-base super heat resistant alloy material with enhanced high-temperature strength characteristics, used in normal closed mold forging And a pair of impressions for forming a die forging (turbine disk in this example) is provided on the opposing kissing surface side.

【0025】(3) は恒温鍛造装置であって、この恒温鍛
造装置(3) は、その作業部を囲撓するヒータ(4) を備え
た大気開放型のプレス装置である。ここで、下金型(2)
は、この恒温鍛造装置(3) の下アンビル(3b)に取り付け
られて、ヒータ(4) の内下部に位置させられ、一方、上
金型(1) は、圧下アンビル(3a)に取り付けられて下金型
(2) に向けて圧下され、ヒータ(4) による恒温下におい
て、下金型(2) との間のインプレッション内に配置され
た被鍛造材(M) を低歪速度で加圧成形する。また、ヒー
タ(4) は、ここでは図示を省略した入力制御装置に連結
されており、その入力制御装置により出力を制御される
ことで、上・下金型(1),(2) を所定条件で昇温させると
共に、所定高温域の恒温に保持できるものとされてい
る。
(3) is a constant temperature forging device, and this constant temperature forging device (3) is a press device of the open-to-atmosphere type equipped with a heater (4) for surrounding the working part. Where the lower mold (2)
Is mounted on the lower anvil (3b) of the constant temperature forging device (3) and located at the lower inside of the heater (4), while the upper mold (1) is mounted on the rolling anvil (3a). Lower mold
The forged material (M) disposed in the impression between the lower die (2) and the lower die (2) is pressed at a low strain rate under the constant pressure of the heater (4). The heater (4) is connected to an input control device (not shown). The output of the heater (4) is controlled by the input control device, so that the upper and lower molds (1) and (2) can be controlled in a predetermined manner. In addition to raising the temperature under the conditions, the temperature can be maintained at a constant high temperature range.

【0026】本実施例では上記構成のもとで、ニッケル
基粉末超合金からなる被鍛造材(M)を、大気雰囲気下で
恒温型鍛造して、所期のタービンデイスク材に成形した
が、その恒温型鍛造に先立ち、次の金型昇温実験を行っ
た。
In the present embodiment, the forged material (M) made of a nickel-based powder superalloy was forged in a constant temperature mold in an air atmosphere under the above-mentioned structure to form a desired turbine disk material. Prior to the isothermal die forging, the following mold temperature raising experiment was performed.

【0027】まず、下金型(2) 上にニッケル基粉末超合
金からなるモデル材を配すると共に、上金型(1) を降下
させて両者閉じる一方、上記図外の入力制御装置を介し
てヒータ(4) に入力して、その上・下金型(1),(2) を大
気雰囲気下で昇温させ、室温から1100℃、1150℃および
1175℃までの昇温実験をそれぞれ行った。また、それら
の昇温実験では、上・下金型(1),(2) が 250℃昇温する
都度に、その昇温温度で30分間保持する昇温条件のもと
で上記各設定温度まで階段的に昇温させた。
First, a model material made of a nickel-based powder superalloy is placed on a lower mold (2), and the upper mold (1) is moved down and closed, while the upper mold (1) is closed via an input control device (not shown). To the heater (4) to raise the temperature of the upper and lower molds (1) and (2) in the air atmosphere.
Temperature rising experiments up to 1175 ° C. were respectively performed. In addition, in these heating experiments, each time the upper and lower molds (1) and (2) were heated to 250 ° C, the above-mentioned set temperature was maintained under the heating condition of maintaining the heating temperature for 30 minutes. The temperature was raised stepwise.

【0028】そして数次の昇温実験を繰り返すと共に、
各昇温実験後の上・下金型について割れの有無を精査し
たが、それら上・下金型は数次の昇温実験を繰り返した
後においても極めて良好な状態に保たれており、それら
結果から、金型を最大 250℃昇温する都度にその昇温温
度で最低30分間保持する昇温条件のもとで、室温から11
00℃〜1200℃の温度範囲まで階段的に昇温させる本発明
方法の優れた効果を確認することができた。
Then, a number of heating experiments are repeated,
The upper and lower dies after each heating test were carefully inspected for cracks.The upper and lower dies were kept in an extremely good condition even after repeating several heating tests. The results show that each time the mold is heated to a maximum of 250 ° C, the temperature is maintained at room temperature for at least 30 minutes.
The excellent effect of the method of the present invention in which the temperature was raised stepwise to a temperature range of 00 ° C to 1200 ° C could be confirmed.

【0029】次いで、第1例として、上・下金型(1),
(2) のインプレッション面と被鍛造材(M) の全面とに、
グラファイト系潤滑剤(本例では、主成分として結晶性
のグラファイトを99wt%、その他、K: 0.2wt%、S
i: 0.2wt%、Na: 0.2wt%、S: 0.1wt%、Cl:
0.1wt%、Al: 0.1wt%を含有してなる潤滑剤)をそ
れぞれスプレー塗布して恒温型鍛造を行った。
Next, as a first example, upper and lower molds (1),
On the impression surface of (2) and the entire surface of the forged material (M),
Graphite-based lubricant (in this example, 99% by weight of crystalline graphite as a main component, other: K: 0.2% by weight, S
i: 0.2 wt%, Na: 0.2 wt%, S: 0.1 wt%, Cl:
A lubricant containing 0.1 wt% and Al: 0.1 wt%) was spray-coated, respectively, to carry out constant temperature forging.

【0030】また、第2例として、上・下金型(1),(2)
のインプレッション面には窒化硼素系離型剤(本例で
は、主成分として窒化硼素を86wt%、その他、O: 5.4
wt%、Al: 4.1wt%、C: 3.1wt%を含有してなる離
型剤)を、被鍛造材(M) の全面には上記と同じグラファ
イト系潤滑剤をそれぞれスプレー塗布して恒温型鍛造を
行った。
As a second example, upper and lower molds (1) and (2)
A boron nitride release agent (86 wt% of boron nitride as a main component, O: 5.4
mold agent containing 0.1 wt%, Al: 4.1 wt%, and C: 3.1 wt%), and the same graphite-based lubricant as described above by spray coating on the entire surface of the forged material (M). Forging was performed.

【0031】また、それら恒温型鍛造における被鍛造材
(M) の加圧成形は、10-2〜10-4/sec範囲内から選ばれた
低歪速度に設定する一方、ヒータ(4) による加圧成形時
の保持温度は1100℃、1150℃および1175℃と変化させた
が、それら恒温型鍛造によって得られたタービンデイス
ク材は、全て形状が良好で、かつ金型との焼付も一切な
く表面状態が極めて滑らかであり、また、数次の恒温型
鍛造を繰り返した後の金型にも酸化腐食等の異常がなく
健全な状態に保たれており、優れた焼き付き防止効果を
確認することができた。
Further, the material to be forged in those constant temperature forgings
The pressure molding of (M) is set at a low strain rate selected from the range of 10 -2 to 10 -4 / sec, while the holding temperature during pressure molding by the heater (4) is 1100 ° C, 1150 ° C And 1175 ° C, the turbine disk materials obtained by those constant-temperature forgings were all good in shape, without any seizure with the mold, and the surface condition was extremely smooth. is kept in the abnormal without healthy state, such as oxidation corrosion to the mold after repeated isothermal forging, it could be seen excellence in seizure preventing effect.

【0032】なお、以上の2実施例では、被鍛造材にグ
ラファイト系潤滑剤を塗布したが、これは金型と被鍛造
材との焼付をより確実に防止するためであって、金型に
グラファイト系潤滑剤ないしは窒化硼素系離型剤が塗布
されている限り、被鍛造材にグラファイト系潤滑剤を塗
布することを省略しても、焼き付き防止効果が損なわれ
るものでないことは言うまでもない。
In the above two embodiments, the graphite-based lubricant was applied to the material to be forged, but this is to prevent seizure between the mold and the material to be forged more reliably. As long as the graphite-based lubricant or the boron nitride-based release agent is applied, it goes without saying that even if the application of the graphite-based lubricant to the forged material is omitted , the anti-seizure effect is not impaired.

【0033】[0033]

【発明の効果】以上に述べたように、本発明に係る恒温
型鍛造方法によれば、ニッケル基耐熱合金からなる金型
を室温から1100℃以上の高温域まで割れを発生させるこ
となく昇温させることができ、それにより1100℃〜1200
℃の温度範囲の大気雰囲気下での恒温型鍛造を安定して
達成でき、よって難塑性加工性のニッケル基合金や金属
間化合物等からなる耐熱高合金部材の恒温型鍛造に適用
して、その生産性の向上に大きく寄与することができ
る。
As described above, according to the isothermal forging method according to the present invention, a mold made of a nickel-based heat-resistant alloy is used.
Cracking can be heated without generating from room temperature to a high temperature range of not lower than 1100 ° C., thereby 1100 ° C. to 1200
It can stably achieve constant temperature forging under air atmosphere in the temperature range of ℃, and is therefore applied to constant temperature forging of heat-resistant high alloy members composed of nickel-base alloys and intermetallic compounds with low plasticity. This can greatly contribute to improvement in productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の恒温型鍛造方法に用いた金型
および恒温鍛造装置の概要構成を示す面図である。
FIG. 1 is a plan view showing a schematic configuration of a mold and a thermostat forging apparatus used in a thermostat forging method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

(1) --上金型 (2) --下金型 (3) --恒温鍛造装置 (3a)--上アンビル (3b)--下アンビル (4) --ヒータ。 (1)-Upper die (2)-Lower die (3)-Constant temperature forging device (3a)-Upper anvil (3b)-Lower anvil (4)-Heater.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−50429(JP,A) 特開 平4−41642(JP,A) 特開 昭50−128656(JP,A) 特開 昭51−137663(JP,A) 特開 平4−182010(JP,A) 特開 平1−299732(JP,A) 特開 昭55−152105(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21J 1/00 - 13/14 B21J 17/00 - 19/04 B21K 1/00 - 31/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-50429 (JP, A) JP-A-4-41642 (JP, A) JP-A-50-128656 (JP, A) JP-A-51- 137663 (JP, A) JP-A-4-182010 (JP, A) JP-A-1-299732 (JP, A) JP-A-55-152105 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B21J 1/00-13/14 B21J 17/00-19/04 B21K 1/00-31/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 塑性加工を施すにあたり、1100℃〜1200
℃の温度範囲で該塑性加工を行うことが必要な難塑性加
工材料をニッケル基耐熱合金からなる金型を用いて恒温
型鍛造するに際して、その金型を、最大 250℃昇温する
都度にその昇温温度で最低30分間保持する昇温条件のも
とで、室温から1100℃〜1200℃の温度範囲まで階段的に
昇温させた後に、1100℃〜1200℃の温度範囲の大気雰囲
気下で恒温型鍛造することを特徴とする恒温型鍛造方
法。
(1) In performing plastic working, 1100 ° C. to 1200
It is difficult to perform plastic working in the temperature range of ℃
When forging a work material using a mold made of a nickel-base heat-resistant alloy, the mold is held at the temperature for at least 30 minutes each time the temperature is raised to a maximum of 250 ° C. A constant-temperature forging method, comprising: raising the temperature stepwise from room temperature to a temperature range of 1100 ° C. to 1200 ° C .;
JP12705093A 1993-01-07 1993-05-28 Constant temperature forging method Expired - Lifetime JP3227269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12705093A JP3227269B2 (en) 1993-01-07 1993-05-28 Constant temperature forging method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP127993 1993-01-07
JP5-1279 1993-01-07
JP12705093A JP3227269B2 (en) 1993-01-07 1993-05-28 Constant temperature forging method

Publications (2)

Publication Number Publication Date
JPH06254648A JPH06254648A (en) 1994-09-13
JP3227269B2 true JP3227269B2 (en) 2001-11-12

Family

ID=26334478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12705093A Expired - Lifetime JP3227269B2 (en) 1993-01-07 1993-05-28 Constant temperature forging method

Country Status (1)

Country Link
JP (1) JP3227269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019065543A1 (en) * 2017-09-29 2019-11-21 日立金属株式会社 Manufacturing method of hot forging
JPWO2019065542A1 (en) * 2017-09-29 2019-12-19 日立金属株式会社 Manufacturing method of hot forging

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660106B (en) 2014-09-29 2019-05-07 日立金属株式会社 The manufacturing method of Ni base superalloy
JP6619621B2 (en) * 2015-05-22 2019-12-11 株式会社神戸製鋼所 Hot forging method
CN110337335B (en) 2016-12-21 2021-04-20 日立金属株式会社 Method for producing hot forged material
EP4159342A4 (en) 2020-05-26 2023-04-12 Hitachi Metals, Ltd. Ni-based alloy for hot die, and hot-forging die using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019065543A1 (en) * 2017-09-29 2019-11-21 日立金属株式会社 Manufacturing method of hot forging
JPWO2019065542A1 (en) * 2017-09-29 2019-12-19 日立金属株式会社 Manufacturing method of hot forging

Also Published As

Publication number Publication date
JPH06254648A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
US7422644B2 (en) Thin parts made of β or quasi-β titanium alloys; manufacture by forging
JP3944271B2 (en) Grain size control in nickel-base superalloys.
JP5904431B1 (en) Method for producing Ni-base superalloy
US2206395A (en) Process for obtaining pure chromium, titanium, and certain other metals and alloys thereof
US5451142A (en) Turbine engine blade having a zone of fine grains of a high strength composition at the blade root surface
EP0513407A1 (en) Method of manufacture of a turbine blade
JPS60228659A (en) Malleable improvement for nickel base superalloy
JPH05169323A (en) Method for joining and repairing of forged article
US10875080B2 (en) Method of producing forged product
WO2015151318A1 (en) METHOD FOR PRODUCING Fe-Ni-BASED SUPER HEAT-RESISTANT ALLOY
CN106756685A (en) A kind of method for refining nickel-based high-temperature alloy forge piece grain structure
JP3227269B2 (en) Constant temperature forging method
JP7452172B2 (en) Method for manufacturing hot forged materials
JP2659833B2 (en) Hot forging method for Ni-base superalloys
JP4175209B2 (en) High temperature components for gas turbines
JP3227223B2 (en) Constant temperature forging method
Mahmoudi et al. Microstructure evolution, hot deformation behaviour and processing map of Inconel X-750 superalloy in sub-solvus and super-solvus temperature ranges
CN113523278B (en) Sintering method of low-stress hard alloy die material
JPH1150227A (en) Formation of surface oxidized coating on ti alloy or machine parts made of ti alloy
CN115747688B (en) Aging heat treatment method for improving creep endurance life of nickel-based superalloy
CN114672680B (en) Step-by-step hot isostatic pressing method for additive manufacturing of nickel-based high-temperature alloy
JP3837230B2 (en) Method for producing heat-resistant Al alloy structural member
JP3314408B2 (en) Manufacturing method of titanium alloy member
EP4067526A1 (en) Manufacturing method for nickel-base alloy product or titanium-base alloy product
JP2007321187A (en) METHOD FOR PRODUCING beta TITANIUM ALLOY MATERIAL FOR COLD WORKING, AND METHOD FOR COLD-WORKING beta TITANIUM ALLOY MATERIAL

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

EXPY Cancellation because of completion of term