JP3224639B2 - Method for forming colorless chromate film on aluminum wheels - Google Patents

Method for forming colorless chromate film on aluminum wheels

Info

Publication number
JP3224639B2
JP3224639B2 JP17993293A JP17993293A JP3224639B2 JP 3224639 B2 JP3224639 B2 JP 3224639B2 JP 17993293 A JP17993293 A JP 17993293A JP 17993293 A JP17993293 A JP 17993293A JP 3224639 B2 JP3224639 B2 JP 3224639B2
Authority
JP
Japan
Prior art keywords
test
film
aqueous solution
corrosion resistance
acidic aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17993293A
Other languages
Japanese (ja)
Other versions
JPH0711494A (en
Inventor
勝也 山本
純 川口
昭彦 長谷部
憲文 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nihon Parkerizing Co Ltd
Original Assignee
Nissan Motor Co Ltd
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nihon Parkerizing Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP17993293A priority Critical patent/JP3224639B2/en
Publication of JPH0711494A publication Critical patent/JPH0711494A/en
Application granted granted Critical
Publication of JP3224639B2 publication Critical patent/JP3224639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルミホイールの塗装
前処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pre-painting an aluminum wheel.

【0002】[0002]

【従来技術】アルミニウム又はアルミニウム合金の表面
処理方法としては、陽極酸化(アルマイト法)、着色処
理、化学皮膜処理(反応クロメート法、MBV法、ベー
マイト法等)が一般に知られている。アルミホイールを
塗装する場合、耐食性及び塗装密着性の向上のため塗装
前処理として反応クロメート処理、ノンクロメート処理
(有機金属塩皮膜等)、陽極酸化皮膜処理が施されてい
る。
2. Description of the Related Art Anodizing (alumite method), coloring treatment, and chemical film treatment (reaction chromate method, MBV method, boehmite method, etc.) are generally known as surface treatment methods for aluminum or aluminum alloys. When painting aluminum wheels, reactive chromate treatment, non-chromate treatment (organic metal salt film etc.), and anodic oxide film treatment are applied as pre-coating treatments to improve corrosion resistance and paint adhesion.

【0003】アルミホイールの光輝性を生かしたクリヤ
ー塗装用前処理を考えた場合、ノンクロメート処理(有
機金属塩皮膜)では耐食性が不足しており、陽極酸化膜
では耐食性は良好であるが皮膜量が多く光沢が無くなる
ため、素材の光輝性を重視したクリヤー塗装用の前処理
としては不向きである。反応クロメート皮膜は優れた耐
食性を有しているが、無色の皮膜外観を求められた場
合、クロム付着量が10mg/m2以下に制限されるた
め糸錆耐食性が不足する。糸錆とは、金属表面の塗膜を
通して水が金属表面に侵入して局部的に電解腐食を起こ
し幅0.1〜0.5mm程度のミミズ這い状の錆が経時
と共に進行して行く状態を言う。
[0003] Considering the pretreatment for clear coating utilizing the glitter of aluminum wheels, the non-chromate treatment (organic metal salt film) is insufficient in corrosion resistance, and the anodic oxide film has good corrosion resistance, but the amount of film is good. However, it is not suitable as a pretreatment for clear coating, which emphasizes the glitter of the material. The reactive chromate film has excellent corrosion resistance, but when a colorless film appearance is required, the chromium adhesion amount is limited to 10 mg / m 2 or less, resulting in insufficient rust corrosion resistance. Yarn rust is a state in which water penetrates into the metal surface through a coating film on the metal surface, locally causes electrolytic corrosion, and earthworm crawling rust with a width of about 0.1 to 0.5 mm progresses over time. To tell.

【0004】[0004]

【発明が解決しようとする課題】以上のようにアルミホ
イールの素材の光輝性を保持し、且つ塗装後の耐食性並
びに密着性に満足できる前処理方法はまだ見いだされて
いない。本発明の目的はアルミホイール素材の光輝性を
保持し、且つ塗装後耐食性(特に糸錆耐食性)、密着性
に優れた前処理皮膜を形成する前処理方法を提供するこ
とにある。
As described above, no pretreatment method has yet been found which can maintain the brilliancy of the material of the aluminum wheel and satisfy the corrosion resistance and adhesion after coating. SUMMARY OF THE INVENTION An object of the present invention is to provide a pretreatment method for forming a pretreatment film that retains the brilliancy of an aluminum wheel material, has excellent corrosion resistance after coating (particularly, rust corrosion resistance), and has excellent adhesion.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記目的を
達成する為に鋭意研究を重ねた結果、アルミホイールを
特定した濃度の6価クロムイオン、硫酸イオン及びフッ
素イオンを含有し、かつ特定したpHに調整した酸性水
溶液中で、特定の電解方法で陰極電解処理することによ
り前記目的に適応した無色のクロメート皮膜を得ること
が出来ることを見いだし、かつ該皮膜は塗装後糸錆耐食
性、塗料密着性に優れている事を見いだして本発明を完
成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, the aluminum wheel contains hexavalent chromium ion, sulfate ion and fluorine ion at a specified concentration, and In an acidic aqueous solution adjusted to a specified pH, it was found that a colorless chromate film adapted for the above-mentioned purpose can be obtained by performing cathodic electrolysis by a specific electrolytic method, and the film has a rust corrosion resistance after coating, The inventors have found that they have excellent paint adhesion, and have completed the present invention.

【0006】すなわち、本発明は、アルミホイールを6
価クロムイオン2g/l以上、硫酸イオン20〜200
0ppm及びフッ素10〜400ppmを含有するpH
0.6〜1.7の酸性水溶液中に浸漬し、該アルミホイ
ールが該酸性水溶液中に全没してから0.5〜15A/
dm2の電流密度で4秒以上陰極電解処理し、通電終了
後1〜300秒経過してから該酸性水溶液から取り出す
ことを特徴とするアルミホイールの無色クロメート皮膜
形成方法を提供する。以下本発明の構成について具体的
に説明する。
[0006] That is, the present invention provides an aluminum wheel 6
Chromium ion 2g / l or more, sulfate ion 20-200
PH containing 0 ppm and 10 to 400 ppm of fluorine
Immersed in an acidic aqueous solution of 0.6 to 1.7, and 0.5 to 15 A /
A method for forming a colorless chromate film on an aluminum wheel, comprising performing cathodic electrolysis at a current density of dm 2 for 4 seconds or more, and removing from the acidic aqueous solution 1 to 300 seconds after the end of energization. Hereinafter, the configuration of the present invention will be specifically described.

【0007】まず、酸性水溶液を構成する各成分につい
て説明する。6価クロムイオンとしては、無水クロム
酸、重クロム酸、及び重クロム酸のアルカリ金属塩類な
どがあげられ、それらの化合物から任意に1種又は2種
以上を選んで使用でき、その濃度範囲は2〜50g/l
である。6価クロムイオン濃度が2g/l未満では、十
分な耐食性を有するクロメート皮膜が得られず、50g
/lを越えても性能上は問題ないが、排水処理等の負担
がかかり不経済である。また、電解処理を行うにつれ
て、3価のクロムイオンが増加するが、本発明を実施す
るに当たり、皮膜性能上3価のクロムイオンの濃度は影
響が少ないので、特に3価のクロムイオンについては限
定範囲を設ける必要がない。
First, each component constituting the acidic aqueous solution will be described. Hexavalent chromium ions include chromic anhydride, dichromic acid, and alkali metal salts of dichromic acid, and one or more of these compounds can be arbitrarily selected and used, and the concentration range is as follows. 2 to 50 g / l
It is. If the hexavalent chromium ion concentration is less than 2 g / l, a chromate film having sufficient corrosion resistance cannot be obtained, and
Even if it exceeds / l, there is no problem in performance, but the burden of wastewater treatment and the like is high and uneconomical. In addition, trivalent chromium ions increase as the electrolytic treatment is performed. However, in carrying out the present invention, the concentration of trivalent chromium ions has little effect on film performance. There is no need to set a range.

【0008】硫酸イオンとしては、硫酸、硫酸のアルカ
リ金属塩類が使用でき、その濃度範囲は20〜2000
ppmである。その濃度が20ppm未満では、無色の
クロメート皮膜が形成されない。又、2000ppmを
越えると、クロム付着量が減少し耐食性が低下するので
好ましくない。
As sulfate ions, sulfuric acid and alkali metal salts of sulfuric acid can be used, and the concentration range is from 20 to 2,000.
ppm. If the concentration is less than 20 ppm, a colorless chromate film will not be formed. On the other hand, when the content exceeds 2,000 ppm, the amount of chromium attached is reduced and the corrosion resistance is reduced, which is not preferable.

【0009】フッ素はフッ素イオン及び/又は、錯フッ
素イオンの形で存在し、フッ素イオンの供給源として
は、例えばフッ化水素酸、錯フッ素イオンの供給源とし
てはケイフッ化水素酸、ジルコンフッ化水素酸、ホウフ
ッ化水素酸等から任意に選んで使用することができる
が、ジルコンフッ化水素酸をもちいるのがより好まし
い。フッ素としての濃度範囲は10〜400ppmであ
る。10ppm未満では塗装後耐食性に優れたクロメー
ト皮膜を形成せず、400ppmを越えると、電解によ
るクロメート皮膜形成を抑制するので、所望するクロム
付着量が得難くなり、比較的少ないクロム付着量でも皮
膜が着色してしまう為、クリヤー塗装用として不適当で
ある。
Fluorine exists in the form of fluorine ions and / or complex fluoride ions. The source of the fluorine ions is, for example, hydrofluoric acid, and the source of the complex fluoride ions is hydrosilicofluoric acid, zircon hydrogen fluoride. An acid, borofluoric acid, or the like can be arbitrarily selected and used, but zircon hydrofluoric acid is more preferably used. The concentration range as fluorine is 10 to 400 ppm. If it is less than 10 ppm, a chromate film excellent in corrosion resistance after coating is not formed, and if it exceeds 400 ppm, the formation of a chromate film by electrolysis is suppressed, so that it is difficult to obtain a desired amount of chromium coating, and even if the amount of chromium is relatively small, the film can be formed. It is unsuitable for clear coating because of coloring.

【0010】酸性水溶液のpHはその値を0.6〜1.
7の範囲に限定する。pHをコントロールするために
は、水酸化アンモニウム、アルカリ金属水酸化物、アル
カリ金属炭酸化合物、クロム酸及び硫酸等より任意に選
んで水溶液に加えることが出来る。pHが0.6未満で
も塗装性能上は問題ないが、陰極電解処理することによ
り処理液のpHが上昇するため、工業生産上常時pH調
整が必要となり維持すること及びコントロールすること
が困難である。pHが1.7を越えるとクロメート皮膜
付着量が急激に減少し、適性クロム付着量を得るのが困
難となる。
The pH of the acidic aqueous solution is set to a value of 0.6 to 1.
7 range. In order to control the pH, it can be arbitrarily selected from ammonium hydroxide, alkali metal hydroxide, alkali metal carbonate, chromic acid, sulfuric acid and the like and added to the aqueous solution. Even if the pH is less than 0.6, there is no problem in the coating performance, but since the pH of the processing solution is increased by the cathodic electrolysis, it is necessary to constantly adjust the pH in industrial production, and it is difficult to maintain and control the pH. . When the pH exceeds 1.7, the amount of chromate film adhered decreases sharply, and it becomes difficult to obtain an appropriate amount of chromium film adhered.

【0011】処理液の温度は特定するものではないが、
電解による皮膜析出反応を一定条件で行うために、30
℃〜60℃の範囲から選ばれた温度で一定に維持するこ
とが必要である。ここで、30℃以下では電解による発
熱があるため温度維持に冷却が必要となり工業生産的に
は不経済である。また、60℃より高くしても、生成す
る皮膜の特性に大きな変化はないが、電解処理後、次の
水洗工程に移行する間に被処理物に処理液が付着したま
ま乾いてしまい、水洗工程での洗浄性を低下させるので
好ましくない。
Although the temperature of the processing liquid is not specified,
In order to perform the film deposition reaction by electrolysis under certain conditions, 30
It is necessary to keep the temperature constant at a temperature selected from the range of 60C to 60C. Here, when the temperature is 30 ° C. or less, heat is generated by electrolysis, and cooling is required to maintain the temperature, which is uneconomical for industrial production. Further, even if the temperature is higher than 60 ° C., there is no significant change in the characteristics of the formed film. However, after the electrolytic treatment, the processing liquid adheres to the object to be processed and dries while moving to the next washing step. It is not preferable because the washing property in the process is lowered.

【0012】次に電解処理は被処理物を陰極とし、陽極
には鉛系合金電極、ステンレス、チタン白金等を用いて
電解処理を行う。電解処理の条件は、陰極における電解
電流密度を0.5〜15A/dm2の範囲で行う。電流
密度が0.5A/dm2よりも低いときはクロメート皮
膜が形成され難く、また、15A/dm2より高いと皮
膜が着色し、さらに皮膜の再溶解が起こり、本発明の目
的である無色のクロメート皮膜は得られない。
Next, in the electrolytic treatment, an object to be treated is used as a cathode, and an electrolytic treatment is performed using a lead-based alloy electrode, stainless steel, titanium platinum or the like as an anode. The conditions for the electrolytic treatment are such that the electrolytic current density at the cathode is in the range of 0.5 to 15 A / dm 2 . When the current density is lower than 0.5 A / dm 2, it is difficult to form a chromate film. When the current density is higher than 15 A / dm 2 , the film is colored, and the film is redissolved. Cannot be obtained.

【0013】電解処理を行う際の通電開始は必ずアルミ
ホイールが該酸性水溶液に完全に浸漬されてから行う。
これは実際の処理を行うときにはアルミホイールの浸漬
が開始されてから完全に該酸性水溶液中に全没するまで
には数10秒を要するため、通電状態で浸漬するとアル
ミホイールの部位(上下)により電解時間が変化するこ
とにより均一な皮膜形成が困難になるためである。電解
が開始されてからの電解時間は形成皮膜量(クロム付着
量)を所望の範囲とするために4秒以上にコントロール
される。形成皮膜量(クロム付着量)を変動させる要因
としては種々挙げられるが、本発明の方法においては、
処理液の各成分の濃度、pH、温度および電流密度等
を、それぞれ本発明の好ましい条件に固定しておき、電
解時間を変えることにより所望のクロム付着量に制御す
ることができる。また、その逆に電解時間を固定して、
電流密度を変えることによりクロム付着量を制御するこ
ともできる。電解が所定の時間行われた後は、アルミホ
イールを、通電を停止した状態で1〜300秒間該酸性
水溶液中にて保持する。アルミホイールを通電状態で引
き上げたり、通電を停止しても1秒未満の時間内に引き
上げた場合には、アルミホイール表面に形成された皮膜
は黄色を呈し、クリア塗装下地には適さない皮膜となっ
てしまう。一方、300秒を超えて保持された場合には
アルミホイールに形成された皮膜は茶褐色を呈し、クリ
ア塗装下地には適さない皮膜となる。なお、生産ライン
における電解処理液中のアルミホイールの姿勢のバラツ
キ等を考慮すると、全体を均一の安定したクロム付着量
とするため、電流密度1〜3A/dm2で15〜60秒
の陰極電解処理とするのが好ましい。
The energization in the electrolytic treatment is always started after the aluminum wheel is completely immersed in the acidic aqueous solution.
This takes several tens of seconds from the start of immersion of the aluminum wheel to the complete immersion in the acidic aqueous solution when performing the actual treatment. This is because a change in the electrolysis time makes it difficult to form a uniform film. The electrolysis time from the start of the electrolysis is controlled to 4 seconds or more in order to keep the formed film amount (the amount of chromium adhered) in a desired range. There are various factors that change the amount of the formed film (the amount of chromium adhered), but in the method of the present invention,
The concentration, pH, temperature, current density, etc., of each component of the treatment liquid are fixed under preferable conditions of the present invention, and the desired amount of chromium can be controlled by changing the electrolysis time. On the contrary, fix the electrolysis time,
By changing the current density, the amount of deposited chromium can be controlled. After the electrolysis has been performed for a predetermined time, the aluminum wheel is held in the acidic aqueous solution for 1 to 300 seconds in a state where the current is stopped. If the aluminum wheel is pulled up while energized, or if it is pulled up in less than 1 second even after the energization is stopped, the film formed on the aluminum wheel surface will turn yellow, and a film that is not suitable for a clear paint base turn into. On the other hand, when the film is held for more than 300 seconds, the film formed on the aluminum wheel exhibits a brown color, which is not a film suitable for a clear coating base. In consideration of the variation in the position of the aluminum wheel in the electrolytic solution on the production line, the cathode electrolysis is performed at a current density of 1 to 3 A / dm 2 for 15 to 60 seconds in order to obtain a uniform and stable chromium deposition amount. Preferably, it is a treatment.

【0014】本発明において形成された皮膜のクロム付
着量は特に限定されないが、50〜250mg/m2
範囲が好適である。クロム付着量が50mg/m2未満
では、塗装後耐食性、特に糸錆性が劣り、また、250
mg/m2を越えるとクロメート皮膜が着色しクリヤー
塗装用に適さない。ただし、有色塗装の場合は、250
mg/m2以上でも使用できる。
The amount of chromium deposited on the film formed in the present invention is not particularly limited, but is preferably in the range of 50 to 250 mg / m 2 . When the chromium adhesion amount is less than 50 mg / m 2 , the corrosion resistance after coating, particularly the rust resistance, is poor.
If it exceeds mg / m 2 , the chromate film will be colored and not suitable for clear coating. However, in the case of colored paint, 250
mg / m 2 or more can be used.

【0015】また、該酸性処理液にコロイダルシリカ、
乾式シリカ、珪酸アルカリ金属塩等の化合物を含有させ
ることにより、無色で比較的厚膜のクロメート皮膜を形
成させることもできる。
Further, colloidal silica,
By containing a compound such as fumed silica or an alkali metal silicate, a colorless and relatively thick chromate film can be formed.

【0016】本発明により陰極電解処理されたアルミホ
イールは、水洗した後乾燥して、塗装下地用として適用
される。また、必要に応じて、前記水洗と乾燥の間に一
般的に用いられているクロメート水溶液、及び有機化合
物などによる後処理を行うこともできる。
The aluminum wheel which has been subjected to the cathodic electrolysis according to the present invention is washed with water, dried and applied as a coating base. If necessary, a post-treatment with an aqueous chromate solution, an organic compound, and the like, which are generally used between the water washing and drying, can be performed.

【0017】[0017]

【実施例】次に、本発明を実施例と比較例を挙げて具体
的に説明する。試験板は、一般にアルミホイールに用い
られるアルミニウム鋳造用合金(JIS記号AC4C、
サイズ70×150×7m/m)板の表面を研削したも
のを、アルカリ脱脂洗浄して表面を清浄にした後、電解
処理に供した。
Next, the present invention will be specifically described with reference to examples and comparative examples. The test plate is an aluminum casting alloy (JIS symbol AC4C, commonly used for aluminum wheels).
After grinding the surface of the plate (size 70 × 150 × 7 m / m), the surface was cleaned by alkali degreasing and cleaning, and then subjected to electrolytic treatment.

【0018】(実施例1〜3)6価クロムイオンを無水
クロム酸で20g/l、硫酸イオンを硫酸で400pp
m、ジルコンフッ化水素酸でフッ素を100ppm添加
した酸性水溶液のpHを水酸化アンモニウムを用いて表
1に示した条件(実施例1:pH0.6、実施例2:p
H1.0、実施例3:pH1.6)に調整した。試験板
を40℃に加温した前記酸性水溶液に浸漬後、通電を開
始し、電流密度を2A/dm2で、30秒陰極電解し
た。通電終了後5秒間前記酸性水溶液中に保持し、試験
板を取り出し水洗及び脱イオン水洗浄を行った後100
℃の乾燥炉で5分間乾燥した。次に試験板に熱硬化型ア
クリル樹脂クリヤーを塗装し(膜厚30μ)140℃3
0分焼付け乾燥後、耐食性試験(糸錆試験、塩水噴霧試
験)を実施した。結果を表1に示す。
(Examples 1 to 3) Hexavalent chromium ions were 20 g / l with chromic anhydride and sulfate ions were 400 pp with sulfuric acid.
m, the pH of an acidic aqueous solution to which 100 ppm of fluorine was added with zircon hydrofluoric acid using ammonium hydroxide under the conditions shown in Table 1 (Example 1: pH 0.6, Example 2: p
H1.0, Example 3: pH 1.6). After the test plate was immersed in the acidic aqueous solution heated to 40 ° C., energization was started and cathodic electrolysis was performed at a current density of 2 A / dm 2 for 30 seconds. After the completion of energization, the sample was kept in the acidic aqueous solution for 5 seconds, the test plate was taken out, washed with water and washed with deionized water, and then washed for 100 seconds.
It dried for 5 minutes in the drying oven of ° C. Next, a thermosetting acrylic resin clear was applied to the test plate (30 μm in thickness) at 140 ° C.
After baking and drying for 0 minutes, a corrosion resistance test (yarn rust test, salt spray test) was performed. Table 1 shows the results.

【0019】(比較例1〜2)6価クロムイオンを無水
クロム酸で20g/l、硫酸イオンを硫酸で400pp
m、ジルコンフッ化水素酸でフッ素を100ppm添加
した酸性水溶液のpHを水酸化アンモニウムを用いて表
1に示した条件(比較例1:pH2.0、比較例2:p
H3.0)に調整し、実施例1と同様の電解処理、塗装
を行い、耐食性試験を実施した。結果を表1に示す。
(Comparative Examples 1-2) Hexavalent chromium ions were 20 g / l with chromic anhydride, and sulfate ions were 400 pp with sulfuric acid.
m, the pH of an acidic aqueous solution to which 100 ppm of fluorine was added with zircon hydrofluoric acid using ammonium hydroxide under the conditions shown in Table 1 (Comparative Example 1: pH 2.0, Comparative Example 2: p
H3.0), the same electrolytic treatment and coating as in Example 1 were performed, and a corrosion resistance test was performed. Table 1 shows the results.

【0020】(比較例3)6価クロムイオンを無水クロ
ム酸で20g/l、硫酸イオンを硫酸で10ppm、ジ
ルコンフッ化水素酸でフッ素を5ppm添加した酸性水
溶液のpHを水酸化アンモニウムを用いて1.0に調整
し、実施例1と同様の電解処理、塗装を行い、耐食性試
験を実施した。結果を表1に示す。
(Comparative Example 3) The pH of an acidic aqueous solution in which hexavalent chromium ions were added with chromic anhydride at 20 g / l, sulfate ions at 10 ppm with sulfuric acid, and zircon hydrofluoric acid at 5 ppm with fluorine was adjusted to 1 pH using ammonium hydroxide. Was adjusted to 0.0, electrolytic treatment and coating were performed in the same manner as in Example 1, and a corrosion resistance test was performed. Table 1 shows the results.

【0021】(実施例4)6価クロムイオンを無水クロ
ム酸で5g/l、硫酸イオンを硫酸で100ppm、硅
フッ化水素酸でフッ素を30ppm添加した酸性水溶液
のpHを水酸化アンモニウムを用いて1.0に調整し、
実施例1と同様の電解処理、塗装を行い、耐食性試験を
実施した。結果を表1に示す。
Example 4 The pH of an acidic aqueous solution obtained by adding hexavalent chromium ions to chromic anhydride at 5 g / l, sulfuric acid ions to sulfuric acid at 100 ppm, and fluorosilicic acid to fluorine at 30 ppm was adjusted using ammonium hydroxide. Adjust to 1.0,
The same electrolytic treatment and painting as in Example 1 were performed, and a corrosion resistance test was performed. Table 1 shows the results.

【0022】(実施例5)6価クロムイオンを無水クロ
ム酸で50g/l、硫酸イオンを硫酸で1g/l、ジル
コンフッ化水素酸でフッ素を400ppm添加した酸性
水溶液のpHを水酸化アンモニウムを用いて1.0に調
整し、実施例1と同様の電解処理、塗装を行い、耐食性
試験を実施した。結果を表1に示す。
Example 5 The pH of an acidic aqueous solution obtained by adding hexavalent chromium ion to chromic anhydride at 50 g / l, sulfate ion to sulfuric acid at 1 g / l, and zircon hydrofluoric acid to 400 ppm of fluorine was adjusted using ammonium hydroxide. And the same electrolytic treatment and coating as in Example 1 were performed, and a corrosion resistance test was performed. Table 1 shows the results.

【0023】(実施例6)6価クロムイオンを無水クロ
ム酸で20g/l、硫酸イオンを硫酸で400ppm、
フッ化水素酸でフッ素を110ppmとなるように添加
した酸性水溶液を水酸化アンモニウムを用いてpH1.
0に調整し、実施例1と同様の電解処理、塗装を行い、
耐食性試験を実施した。ただし、通電時の電流密度を1
0A/dm2とし電解時間を10秒とした。結果を表2
に示す。
Example 6 Hexavalent chromium ions were 20 g / l with chromic anhydride and sulfate ions were 400 ppm with sulfuric acid.
An acidic aqueous solution to which fluorine was added to be 110 ppm with hydrofluoric acid was used to adjust the pH to 1.0 using ammonium hydroxide.
0, and the same electrolytic treatment and coating as in Example 1 were performed.
A corrosion resistance test was performed. However, when the current density during energization is 1
The electrolysis time was 10 seconds at 0 A / dm 2 . Table 2 shows the results
Shown in

【0024】(比較例4)6価クロムイオンを無水クロ
ム酸で20g/l、硫酸イオンを硫酸で400ppm、
フッ化水素酸でフッ素を110ppmとなるように添加
した酸性水溶液を水酸化アンモニウムを用いてpH1.
0に調整し、実施例1と同様の電解処理、塗装を行い、
耐食性試験を実施した。ただし、通電時の電流密度を2
0A/dm2とし電解時間を10秒とした。結果を表2
に示す。
Comparative Example 4 Hexavalent chromium ions were 20 g / l with chromic anhydride, sulfate ions were 400 ppm with sulfuric acid,
An acidic aqueous solution to which fluorine was added to be 110 ppm with hydrofluoric acid was used to adjust the pH to 1.0 using ammonium hydroxide.
0, and the same electrolytic treatment and coating as in Example 1 were performed.
A corrosion resistance test was performed. However, when the current density during energization is 2
The electrolysis time was 10 seconds at 0 A / dm 2 . Table 2 shows the results
Shown in

【0025】(実施例7)長さ方向が実際のアルミホイ
ール直径を想定したアルミニウム鋳造合金(JIS記号
AC4C,サイズ70×450×7m/m)板を用意
し、実施例2と同条件の酸性水溶液中(pH1.0)
に、長さ方向450mmが60秒間で全没する入槽速度
で入槽した。試験板が全没してから電流密度2A/dm
2で30秒間陰極電解し、さらに通電終了後に前記酸性
水溶液中にて5秒間保持してから試験板を取り出し水洗
および脱イオン水洗浄を行った後100℃の乾燥炉で5
分間乾燥した。このように作製された試験板の上方の1
00mm分と下方の100mm分を切断し、それぞれ別
々に熱硬化型アクリル樹脂クリヤーを塗装し(膜厚30
μ)140℃で30分焼付け乾燥後、耐食性試験(糸錆
試験、塩水噴霧試験)を実施した。結果を表3に示す。
(Example 7) An aluminum cast alloy (JIS symbol AC4C, size 70 × 450 × 7 m / m) plate was prepared assuming the actual aluminum wheel diameter in the length direction, and acidity under the same conditions as in Example 2 was prepared. In aqueous solution (pH 1.0)
Then, the tank was introduced at a tank entry speed in which the lengthwise direction of 450 mm was completely submerged in 60 seconds. Current density 2A / dm after the test plate is completely immersed
Cathodic electrolysis at 2 for 30 seconds, and after completion of energization, holding in the acidic aqueous solution for 5 seconds, removing the test plate, washing with water and washing with deionized water, and drying in a drying oven at 100 ° C.
Dried for minutes. The upper part of the test plate thus prepared
00 mm and the lower 100 mm were cut, and each was separately coated with a thermosetting acrylic resin clear (film thickness 30 mm).
μ) After baking and drying at 140 ° C. for 30 minutes, a corrosion resistance test (yarn rust test, salt spray test) was performed. Table 3 shows the results.

【0026】(比較例5)長さ方向が実際のアルミホイ
ール直径を想定したアルミニウム鋳造合金(JIS記号
AC4C、サイズ70×450×7m/m)板を用意
し、6.3Aの定電流電解条件(全没状態で電流密度2
A/dm2となる条件)で実施例2と同条件の酸性水溶
液中(pH1.0)に、長さ方向450mmが60秒間
で全没する入槽速度で通電入槽した。全没後30秒間通
電し、さらに通電終了後に前記酸性水溶液中にて5秒間
保持してから試験板を取り出し水洗および脱イオン水洗
浄を行った後100℃の乾燥炉で5分間乾燥した。この
ように作製された試験板の上方の100mm分と下方の
100mm分を切断し、それぞれ別々に熱硬化型アクリ
ル樹脂クリヤーを塗装し(膜厚30μ)140℃で30
分焼付け乾燥後、耐食性試験(糸錆試験、塩水噴霧試
験)を実施した。結果を表3に示す。
(Comparative Example 5) An aluminum cast alloy (JIS symbol AC4C, size 70 × 450 × 7 m / m) plate whose length direction is assumed to be the actual aluminum wheel diameter was prepared, and a constant current electrolytic condition of 6.3 A was prepared. (Current density 2
A / dm 2 ) was supplied in an acidic aqueous solution (pH 1.0) under the same conditions as in Example 2 at a bathing speed at which 450 mm in the length direction completely submerged in 60 seconds. After immersion, the battery was energized for 30 seconds. After the energization was completed, the test plate was kept in the acidic aqueous solution for 5 seconds. A 100 mm upper portion and a lower 100 mm portion of the test plate thus prepared were cut, and each was separately coated with a thermosetting acrylic resin clear (thickness: 30 μm) at 140 ° C.
After partial baking and drying, a corrosion resistance test (yarn rust test, salt spray test) was performed. Table 3 shows the results.

【0027】(実施例8)実施例2と同条件の酸性処理
液中(pH1.0)に試験板を浸漬後、通電を開始し電
流密度2A/dm2で30秒間陰極電解した。通電終了
後1秒間前記酸性水溶液中に保持し、試験板を取り出し
水洗および脱イオン水洗浄を行った後100℃の乾燥炉
で5分間乾燥した。次に、実施例2と同様に塗装し耐食
性試験(糸錆試験、塩水噴霧試験)を実施した。結果を
表3に示す。
(Example 8) After immersing the test plate in an acidic treatment solution (pH 1.0) under the same conditions as in Example 2, energization was started and cathodic electrolysis was performed at a current density of 2 A / dm 2 for 30 seconds. After the completion of energization, the sample was kept in the acidic aqueous solution for 1 second, the test plate was taken out, washed with water and deionized water, and then dried in a drying oven at 100 ° C. for 5 minutes. Next, the coating was performed in the same manner as in Example 2, and a corrosion resistance test (fiber rust test, salt spray test) was performed. Table 3 shows the results.

【0028】(実施例9)実施例2と同条件の酸性処理
液中(pH1.0)に試験板を浸漬後、通電を開始し電
流密度2A/dm2で30秒間陰極電解した。通電終了
後180秒間前記酸性水溶液中に保持し、試験板を取り
出し水洗および脱イオン水洗浄を行った後100℃の乾
燥炉で5分間乾燥した。次に、実施例2と同様に塗装し
耐食性試験(糸錆試験、塩水噴霧試験)を実施した。結
果を表3に示す。
Example 9 After the test plate was immersed in an acidic treatment solution (pH 1.0) under the same conditions as in Example 2, energization was started and cathodic electrolysis was performed at a current density of 2 A / dm 2 for 30 seconds. After the energization was completed, the sample was held in the acidic aqueous solution for 180 seconds, the test plate was taken out, washed with water and deionized water, and then dried in a drying oven at 100 ° C. for 5 minutes. Next, the coating was performed in the same manner as in Example 2, and a corrosion resistance test (fiber rust test, salt spray test) was performed. Table 3 shows the results.

【0029】(実施例10)実施例2と同条件の酸性処
理液中(pH1.0)に試験板を浸漬後、通電を開始し
電流密度2A/dm2で30秒間陰極電解した。通電終
了後300秒間前記酸性水溶液中に保持し、試験板を取
り出し水洗および脱イオン水洗浄を行った後100℃の
乾燥炉で5分間乾燥した。次に、実施例2と同様に塗装
し耐食性試験(糸錆試験、塩水噴霧試験)を実施した。
結果を表3に示す。
Example 10 A test plate was immersed in an acidic treatment solution (pH 1.0) under the same conditions as in Example 2, and then current was started and cathodic electrolysis was performed at a current density of 2 A / dm 2 for 30 seconds. After the energization was completed, the plate was kept in the acidic aqueous solution for 300 seconds, the test plate was taken out, washed with water and deionized water, and then dried in a drying oven at 100 ° C. for 5 minutes. Next, the coating was performed in the same manner as in Example 2, and a corrosion resistance test (fiber rust test, salt spray test) was performed.
Table 3 shows the results.

【0030】(比較例6)実施例2と同条件の酸性処理
液中(pH1.0)に試験板を浸漬後、通電を開始し電
流密度2A/dm2で30秒間陰極電解した。通電終了
後360秒間前記酸性水溶液中に保持し、試験板を取り
出し水洗および脱イオン水洗浄を行った後100℃の乾
燥炉で5分間乾燥した。次に、実施例2と同様に塗装し
耐食性試験(糸錆試験、塩水噴霧試験)を実施した。結
果を表3に示す。
(Comparative Example 6) After immersing the test plate in an acidic treatment solution (pH 1.0) under the same conditions as in Example 2, the current was started and the cathodic electrolysis was performed at a current density of 2 A / dm 2 for 30 seconds. After the energization was completed, the plate was kept in the aqueous acidic solution for 360 seconds, the test plate was taken out, washed with water and deionized water, and then dried in a drying oven at 100 ° C. for 5 minutes. Next, the coating was performed in the same manner as in Example 2, and a corrosion resistance test (fiber rust test, salt spray test) was performed. Table 3 shows the results.

【0031】(比較例7)実施例2と同条件の酸性処理
液中(pH1.0)に試験板を浸漬後、通電を開始し電
流密度2A/dm2で30秒間陰極電解した。通電終了
時通電したまま試験板を取り出し水洗および脱イオン水
洗浄を行った後100℃の乾燥炉で5分間乾燥した。次
に、実施例2と同様に塗装し耐食性試験(糸錆試験、塩
水噴霧試験)を実施した。結果を表3に示す。
(Comparative Example 7) After immersing the test plate in an acidic treatment solution (pH 1.0) under the same conditions as in Example 2, energization was started and cathodic electrolysis was performed at a current density of 2 A / dm 2 for 30 seconds. At the end of energization, the test plate was taken out with energization, washed with water and deionized water, and dried in a drying oven at 100 ° C. for 5 minutes. Next, the coating was performed in the same manner as in Example 2, and a corrosion resistance test (fiber rust test, salt spray test) was performed. Table 3 shows the results.

【0032】(比較例8)試験板をアルカリ脱脂洗浄し
て表面を清浄にした後、反応型クロメート処理(日本パ
ーカライジング製アルクロム3703使用)し、水洗及
び純水洗浄を行った後100℃の乾燥炉で5分間乾燥し
た。次に試験板に熱硬化型アクリル樹脂クリヤーを塗装
し(膜厚30μ)140℃30分焼付け乾燥後、耐食性
試験(糸錆試験、塩水噴霧試験)を実施した。結果を表
3に示す。
(Comparative Example 8) A test plate was cleaned by alkali degreasing to clean the surface, then subjected to a reactive chromate treatment (using Alchrome 3703 manufactured by Nippon Parkerizing), washed with water and pure water, and then dried at 100 ° C. Dry in oven for 5 minutes. Next, a thermosetting acrylic resin clear was applied to the test plate (thickness: 30 μm), baked and dried at 140 ° C. for 30 minutes, and then subjected to a corrosion resistance test (fiber rust test, salt spray test). Table 3 shows the results.

【0033】(比較例9)試験板をアルカリ脱脂洗浄、
苛性ソーダエッチング、デスマット処理して表面を清浄
にした後、一般的に使用されているアルマイト処理(硫
酸180g/l、溶存アルミニウム5g/l、浴温25
℃、電流密度1A/dm2の条件で15分間陽極酸化処
理を行う)し、水洗及び純水洗浄を行った後100℃の
乾燥炉で5分間乾燥した。次に試験板に熱硬化型アクリ
ル樹脂クリヤーを塗装し(膜厚30μ)140℃30分
焼付け乾燥後、耐食性試験(糸錆試験、塩水噴霧試験)
を実施した。結果を表3に示す。
(Comparative Example 9) A test plate was subjected to alkaline degreasing and washing,
After the surface is cleaned by caustic soda etching and desmutting, alumite treatment (180 g / l sulfuric acid, 5 g / l dissolved aluminum, bath temperature 25) is used.
Anodizing treatment was performed for 15 minutes at a temperature of 1 ° C. and a current density of 1 A / dm 2 ), followed by washing with water and pure water, followed by drying in a drying oven at 100 ° C. for 5 minutes. Next, a thermosetting acrylic resin clear was applied to the test plate (thickness: 30 μm), baked at 140 ° C. for 30 minutes, dried, and then subjected to a corrosion resistance test (yarn rust test, salt spray test).
Was carried out. Table 3 shows the results.

【0034】(比較例9)試験板をアルカリ脱脂洗浄し
て表面を清浄にした後、100℃の乾燥炉で5分間乾燥
した。次に試験板に熱硬化型アクリル樹脂クリヤーを塗
装し(膜厚30μ)140℃30分焼付け乾燥後、耐食
性試験(糸錆試験、塩水噴霧試験)を実施した。結果を
表3に示す。
Comparative Example 9 A test plate was cleaned by alkali degreasing to clean the surface, and then dried in a drying oven at 100 ° C. for 5 minutes. Next, a thermosetting acrylic resin clear was applied to the test plate (thickness: 30 μm), baked and dried at 140 ° C. for 30 minutes, and then subjected to a corrosion resistance test (fiber rust test, salt spray test). Table 3 shows the results.

【0035】(評価試験方法) 1)皮膜外観 無処理サンプルを基準として色差計によりJIS−Z8
730に規定されている色差を測定して下記のランクに
分けて評価した。 ◎ 色差 0〜3.2 (目視では変色が確認され
ず) ○ 色差 3.2〜6.5 (僅かに変色が認められ
る) △ 色差 6.5〜13 (明らかに変色が認められ
る) × 色差 13以上 (強く変色が認められる)
(Evaluation test method) 1) Appearance of coating film JIS-Z8 using a color difference meter based on an untreated sample.
The color difference specified in 730 was measured and evaluated according to the following ranks. ◎ Color difference 0 to 3.2 (discoloration is not visually observed) ○ Color difference 3.2 to 6.5 (slight discoloration is observed) △ Color difference 6.5 to 13 (discoloration is clearly observed) × color difference 13 or more (strong discoloration is observed)

【0036】2)クロム付着量 蛍光X線分析装置により測定。2) Chromium adhering amount Measured by a fluorescent X-ray analyzer.

【0037】3)糸錆試験 塗装した試験板にNTカッターで素地まで達するカット
傷をつけた後、腐食液(1規定塩酸と5%過酸化水素水
の混液)に1分浸漬後常温で乾燥し24時間経時する。
湿潤試験(温度50℃、湿度80%)を1000時間行
った後、カット傷より発生した糸錆の長さを測定する。 ◎ 最大糸錆長さ2mm以内 ○ 〃 3mm以内 △ 〃 5mm以内 × 〃 5mm以上
3) Yarn rust test A coated test plate was cut with an NT cutter to reach the substrate, immersed in a corrosive solution (a mixture of 1N hydrochloric acid and 5% hydrogen peroxide solution) for 1 minute, and dried at room temperature. And let it stand for 24 hours.
After performing a wet test (temperature of 50 ° C., humidity of 80%) for 1000 hours, the length of the thread rust generated from the cut scratch is measured. ◎ Maximum rust length 2mm or less ○ 〃 3mm or less △ 以内 5mm or less × 5 5mm or more

【0038】4)塩水噴霧試験(SST) 塗装した試験板にNTカッターで素地まで達するカット
傷をつけた後、JIS−Z2371に基いて1000時
間行った後、カット傷からの錆やフクレの最大幅を測定
する。 ◎ 最大フクレ錆幅1mm以内 ○ 〃 2mm以内 △ 〃 3mm以内 × 〃 3mm以上
4) Salt Spray Test (SST) After making a cut on the coated test plate to reach the substrate with an NT cutter, performing the test for 1000 hours in accordance with JIS-Z2371, and then examining rust and blistering from the cut. Measure significant. ◎ Maximum blister rust width 1mm or less ○ 以内 2mm or less △ 以内 3mm or less × 3 3mm or more

【0039】実施例および比較例から次のことが言え
る。 表1(酸性水溶液の組成)、表2(陰極電解電流密
度)、表3(処理方法)から明らかなように本発明の実
施例1〜10においては、外観および塗装後耐食性(耐
糸錆性、耐塩水噴霧性)ともに優れている。 一方、本発明の範囲外である比較例1〜4、6並びに
従来塗装下地処理法である反応型クロメートを用いた比
較例8、、アルマイトを用いた比較例9、アルカリ脱脂
のみを用いた比較例10では、外観および塗装後耐食性
ともに良好なものはなかった。 また、比較例5のように通電状態で入槽したものは試
験板の上下で皮膜量が異なり、不均一な外観となって好
ましくなかった。 また、比較例7のように通電状態で出槽したものは外
観が悪く、また塗装後の耐食性も良くなかった。
The following can be said from the examples and comparative examples. As is clear from Table 1 (composition of acidic aqueous solution), Table 2 (cathode electrolysis current density), and Table 3 (treatment method), in Examples 1 to 10 of the present invention, appearance and corrosion resistance after painting (fiber rust resistance) And salt spray resistance). On the other hand, Comparative Examples 1 to 4 and 6 which are out of the scope of the present invention, Comparative Example 8 using a reactive type chromate which is a conventional coating undercoating method, Comparative Example 9 using alumite, and a comparison using only alkali degreasing In Example 10, none was good in both appearance and corrosion resistance after painting. In the case where the tank was energized as in Comparative Example 5, the amount of the film was different between the upper and lower portions of the test plate, resulting in an uneven appearance, which was not preferable. In addition, as shown in Comparative Example 7, the one which was discharged from the tank in an energized state had a poor appearance and had poor corrosion resistance after painting.

【0040】[0040]

【発明の効果】本発明によれば、アルミホイール素材の
光輝性を保持し、かつ塗装後耐食性、密着性に優れた無
色クロメート皮膜を形成させることができ、クリヤー塗
装前処理として、従来問題となっていた耐食性、特に耐
糸錆性を向上させることができる。
According to the present invention, it is possible to form a colorless chromate film which retains the brilliancy of the aluminum wheel material and has excellent corrosion resistance and adhesion after coating, and has a problem as a conventional pretreatment for clear coating. The corrosion resistance, especially the thread rust resistance, which has been improved, can be improved.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷部 昭彦 東京都中央区日本橋1丁目15番1号 日 本パーカライジング株式会社内 (72)発明者 畑野 憲文 東京都中央区日本橋1丁目15番1号 日 本パーカライジング株式会社内 (56)参考文献 特開 平5−179488(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25D 11/38 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akihiko Hasebe 1-15-1 Nihonbashi, Chuo-ku, Tokyo Inside Japan Parkerizing Co., Ltd. (72) Inventor Norifumi Hatano 1-15-1 Nihonbashi, Chuo-ku, Tokyo Sun (56) References JP-A-5-179488 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25D 11/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミホイールを6価クロムイオン2g/
l以上、硫酸イオン20〜2000ppm及びフッ素1
0〜400ppmを含有するpH0.6〜1.7の酸性
水溶液中に浸漬し、該アルミホイールが該酸性水溶液中
に全没してから0.5〜15A/dm2の電流密度で4
秒以上陰極電解処理し、通電終了後、通電を停止した状
態で1〜300秒間該酸性水溶液中にて保持した後、
酸性水溶液から取り出すことを特徴とするアルミホイー
ルの無色クロメート皮膜形成方法。。
1. An aluminum wheel is made of hexavalent chromium ion 2 g /
l or more, sulfate ion 20 to 2000 ppm and fluorine 1
The aluminum wheel was immersed in an acidic aqueous solution having a pH of 0.6 to 1.7 containing 0 to 400 ppm, and then immersed in the acidic aqueous solution at a current density of 0.5 to 15 A / dm 2.
Sec cathodic electrolysis treatment, after application end, like stopping the energization
A method for forming a colorless chromate film on an aluminum wheel, wherein the colorless chromate film is held in the acidic aqueous solution for 1 to 300 seconds and then taken out of the acidic aqueous solution. .
JP17993293A 1993-06-25 1993-06-25 Method for forming colorless chromate film on aluminum wheels Expired - Fee Related JP3224639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17993293A JP3224639B2 (en) 1993-06-25 1993-06-25 Method for forming colorless chromate film on aluminum wheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17993293A JP3224639B2 (en) 1993-06-25 1993-06-25 Method for forming colorless chromate film on aluminum wheels

Publications (2)

Publication Number Publication Date
JPH0711494A JPH0711494A (en) 1995-01-13
JP3224639B2 true JP3224639B2 (en) 2001-11-05

Family

ID=16074457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17993293A Expired - Fee Related JP3224639B2 (en) 1993-06-25 1993-06-25 Method for forming colorless chromate film on aluminum wheels

Country Status (1)

Country Link
JP (1) JP3224639B2 (en)

Also Published As

Publication number Publication date
JPH0711494A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
KR100476497B1 (en) Processing method of aluminum alloy and the product manufactured by this method
US4184926A (en) Anti-corrosive coating on magnesium and its alloys
JP6513180B2 (en) Electroceramic coating for magnesium alloys
JPH11335865A (en) Processing agent for forming protective coating film on metal and its formation
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
KR0179687B1 (en) Surface treating composition for aluminum containing metallic material and surface treatment
JP3105322B2 (en) Method for forming colorless chromate film on glittering aluminum wheels
US3081238A (en) Electrolytic treatment of metal surfaces
US5462634A (en) Surface-treated aluminum material and method for its surface treatment
JP3224639B2 (en) Method for forming colorless chromate film on aluminum wheels
JP2000282251A (en) Coating method for aluminum base material and aluminum alloy base material, and coated article
JP2002053977A (en) Hydrophilization method for metallic surface
JPH11501366A (en) Chromium-free treatment method to improve paint adhesion after thin layer anodic oxidation
JPH05287589A (en) Formation of chemical coating film of aluminum or its alloy and fluorine-free phosphate chemical treating agent
JPS6270583A (en) Production of black zinc alloy plated steel sheet
JP3107883B2 (en) Pretreatment method for painting aluminum or aluminum alloy products
JP3212754B2 (en) Water-based inorganic paint coating pretreatment method for aluminum-based metal surfaces
JPH116078A (en) Chemical treating agent for aluminum and chemical treatment
JPH0419307B2 (en)
JP3499328B2 (en) Method for forming colorless chromate film on aluminum or aluminum alloy members
JP3107884B2 (en) Pretreatment method for painting aluminum plate or aluminum plated plate
JPS6242999B2 (en)
JP2947006B2 (en) Method for forming colorless chromate film on glittering aluminum wheels
US3112231A (en) Protective coating
JP3139838B2 (en) Surface-treated aluminum and aluminum alloy materials for clear coating and their manufacturing methods

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees