JP3222708B2 - Liquid crystal display device and manufacturing method thereof - Google Patents

Liquid crystal display device and manufacturing method thereof

Info

Publication number
JP3222708B2
JP3222708B2 JP32548594A JP32548594A JP3222708B2 JP 3222708 B2 JP3222708 B2 JP 3222708B2 JP 32548594 A JP32548594 A JP 32548594A JP 32548594 A JP32548594 A JP 32548594A JP 3222708 B2 JP3222708 B2 JP 3222708B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
ultraviolet light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32548594A
Other languages
Japanese (ja)
Other versions
JPH08179310A (en
Inventor
理 石毛
一平 伊納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP32548594A priority Critical patent/JP3222708B2/en
Publication of JPH08179310A publication Critical patent/JPH08179310A/en
Application granted granted Critical
Publication of JP3222708B2 publication Critical patent/JP3222708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、基板上に透明電極、絶
縁薄膜及び配向膜が順次積層されてなる電極基板を備え
た液晶表示装置およびその製造方法に関するものであ
り、さらに詳しくは、液晶表示装置の製造を行う際に発
生する静電気が速やかに除去されるような液晶表示装置
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device having an electrode substrate in which a transparent electrode, an insulating thin film and an alignment film are sequentially laminated on a substrate, and a method for manufacturing the same. The present invention relates to a liquid crystal display device in which static electricity generated when manufacturing a display device is quickly removed, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より液晶表示装置は、上下基板間に
挟持される導電性異物による上下透明電極のリークを防
ぐため、シリカや架橋アクリルを主成分とする絶縁薄膜
を透明電極上に形成している。
2. Description of the Related Art Conventionally, a liquid crystal display device has an insulating thin film mainly composed of silica or crosslinked acryl formed on a transparent electrode in order to prevent leakage of the upper and lower transparent electrodes due to conductive foreign substances sandwiched between the upper and lower substrates. ing.

【0003】しかしながら、上記絶縁薄膜は基板上にパ
ターニングされた透明電極間の絶縁を保持するために1
13Ω/□以上の抵抗値を持っており、また、前記透明
電極と前記絶縁薄膜との界面、前記絶縁薄膜と前記配向
膜との界面の二つの界面を有しているため、該絶縁薄膜
を持たない液晶表示装置よりも帯電しやすく、特に、ラ
ビング時の擦過や、基板搬送時の剥離・擦過などによっ
て帯電しやすくなっている。
However, the above-mentioned insulating thin film is used to maintain insulation between the transparent electrodes patterned on the substrate.
0 13 Ω / □ or more, and has two interfaces of an interface between the transparent electrode and the insulating thin film and an interface between the insulating thin film and the alignment film. It is more easily charged than a liquid crystal display device having no thin film, and is particularly easily charged by rubbing at the time of rubbing and peeling and rubbing at the time of transporting a substrate.

【0004】このようにして帯電した静電気は、透明電
極パターン部分と非電極部分(電極パターン間)に不均
一に帯電するため、吐出・噴霧時に帯電したスペーサが
配向膜表面内で不均一に散布される。その結果、スペー
サを散布した側の透明電極基板の電極パターンに平行に
セルギャップのムラが発生し、このセルギャップのムラ
が液晶表示装置の色ムラとなって現れてしまう。
[0004] Since the static electricity thus charged is non-uniformly charged in the transparent electrode pattern portion and the non-electrode portion (between the electrode patterns), the charged spacers are sprinkled non-uniformly on the surface of the alignment film during ejection and spraying. Is done. As a result, cell gap unevenness occurs parallel to the electrode pattern of the transparent electrode substrate on which the spacers are dispersed, and the cell gap unevenness appears as color unevenness of the liquid crystal display device.

【0005】スペーサが不均一に散布された基板上の様
子を図8に模式的に示した。図8に示した下のグラフの
横軸は上の模式図中の位置と対応している。
FIG. 8 schematically shows a state on a substrate on which spacers are unevenly dispersed. The horizontal axis of the lower graph shown in FIG. 8 corresponds to the position in the upper schematic diagram.

【0006】図8に示すように、透明電極パターン部分
3上と非電極部分とでは帯電状態が異なるため、帯電し
たスペーサ6は非電極部に凝集してしまう。実際、パタ
ーン電極の長辺と垂直方向に適当な領域を何箇所か決め
て、その領域内のスペーサの散布密度を測定すると、図
8に示した下のグラフのように、電極部分と非電極部分
とでスペーサ散布密度のばらつきが生じてしまう。
As shown in FIG. 8, since the charged state is different between the transparent electrode pattern portion 3 and the non-electrode portion, the charged spacer 6 aggregates on the non-electrode portion. Actually, when an appropriate region is determined in several places in the direction perpendicular to the long side of the pattern electrode and the scattering density of the spacer in the region is measured, as shown in the lower graph in FIG. Variations in spacer distribution density occur between portions.

【0007】前述したような帯電を除去する方法として
は、イオンエアー式イオナイザー(例えば、テクノ菱和
社製除電イオナイザー)等により発生させたイオン風
を、帯電基板に吹きつけることによって、基板表面の電
荷を中和させることがなどが一般的に行われている。
[0007] As a method for removing the above-mentioned charge, an ion wind generated by an ion air type ionizer (for example, a static elimination ionizer manufactured by Techno Ryowa Co., Ltd.) or the like is blown onto the charged substrate to thereby remove the surface of the substrate. It is common practice to neutralize the charge.

【0008】また、別の方法としては、例えば特開平5
−232459号公報に開示されているように、アンチ
モン、インジウム、錫等の導電性酸化物の微粒子を絶縁
薄膜内に分散させることによって、該絶縁薄膜の表面抵
抗を109Ω/□程度まで下げるような方法も提案され
ている。
Further, as another method, for example,
As disclosed in JP-A-232459, by dispersing conductive oxide fine particles such as antimony, indium and tin in an insulating thin film, the surface resistance of the insulating thin film is reduced to about 10 9 Ω / □. Such a method has also been proposed.

【0009】[0009]

【発明が解決しようとする課題】ところが、前述した特
開平5−232459号公報に開示のように、絶縁薄膜
中に導電性の微粒子粉末を分散させた場合、同一基板上
における透明電極パターン間の絶縁を保持させる必要が
あるため、絶縁薄膜の表面抵抗を109Ω/□以下に下
げることは困難である。
However, as disclosed in the above-mentioned JP-A-5-232459, when conductive fine particle powder is dispersed in an insulating thin film, the transparent electrode Since it is necessary to maintain insulation, it is difficult to reduce the surface resistance of the insulating thin film to 10 9 Ω / □ or less.

【0010】したがって、配向膜表面に帯電した静電気
を除去する能力には限界があり、配向膜の帯電圧(表面
電位)が初期電圧の1/100になる時間(以下τ
1/100と定義する。)は、20〜30秒程度で、スペー
サの不均一散布に起因する液晶表示装置の色ムラを完全
に消失させることはできない。
Therefore, there is a limit to the ability to remove the static electricity charged on the alignment film surface, and the time (hereinafter referred to as τ) when the charged voltage (surface potential) of the alignment film becomes 1/100 of the initial voltage.
Defined as 1/100 . In (2), the color unevenness of the liquid crystal display device due to the uneven distribution of the spacers cannot be completely eliminated in about 20 to 30 seconds.

【0011】また、イオンエアー式イオナイザーを用い
た場合には、基板を帯電させたプロセスや、基板を構成
している物質によって、帯電電荷の正負や電荷量などの
帯電状態が変化するため、一般に効果的に帯電除去が行
われないことが多い。帯電状態を特定してイオン風の状
態を最適化した場合には、τ1/100は15〜60秒程度
であるものの、その帯電状態とイオン風との関係によっ
ては、帯電した静電気が全く除去されないということも
ある。
When an ion-air ionizer is used, the charge state such as the positive or negative charge or the amount of charge changes depending on the process of charging the substrate or the substance constituting the substrate. In many cases, the charge is not effectively removed. When the charged state is specified and the state of the ion wind is optimized, τ 1/100 is about 15 to 60 seconds, but depending on the relationship between the charged state and the ion wind, the charged static electricity is completely removed. Sometimes not.

【0012】また、たとえ帯電除去の条件が最適化され
たとしても、このイオンエアー式イオナイザーは風を発
生するため、粒子を吐出・噴霧する工程を含むスペーサ
散布装置内への設置は困難であり、効果的にスペーサの
不均一な散布を防止することはできなかった。
Further, even if the conditions for removing static electricity are optimized, since this ion air type ionizer generates wind, it is difficult to install the ion air type ionizer in a spacer spraying apparatus including a step of discharging and spraying particles. However, it was not possible to effectively prevent the non-uniform distribution of the spacer.

【0013】本発明は、このような問題点を解消するた
めになされたものであって、その目的とするところは、
紫外光の照射に伴って表面抵抗が降下するような絶縁薄
膜を透明電極上に形成し、製造プロセス中に設けた紫外
光照射装置から配向膜に紫外光を照射することにより、
配向膜表面の不均一な帯電を解消させ、スペーサの不均
一散布に起因する液晶表示装置の色ムラを消失させるよ
うな液晶表示装置およびその製造方法を提供することに
ある。
The present invention has been made to solve such a problem, and its object is to provide:
By forming an insulating thin film such that the surface resistance decreases with the irradiation of ultraviolet light on the transparent electrode, and irradiating the alignment film with ultraviolet light from an ultraviolet light irradiation device provided during the manufacturing process,
An object of the present invention is to provide a liquid crystal display device that eliminates uneven charging of the surface of an alignment film and eliminates color unevenness of the liquid crystal display device caused by uneven dispersion of spacers, and a method of manufacturing the same.

【0014】[0014]

【課題を解決するための手段】本発明の液晶表示装置
は、少なくとも透明電極と絶縁薄膜と配向膜とを有する
2枚の電極基板間に液晶を封入してなる液晶表示装置に
おいて、前記絶縁薄膜は、紫外光の照射時にのみ表面抵
抗が108Ω/□以下に降下するものであり、前記電極
基板に紫外光を遮断する機能をもつ偏光板が貼り付けら
ることを特徴としており、そのことにより上記目的が
達成される。
According to the present invention, there is provided a liquid crystal display device comprising a liquid crystal sealed between two electrode substrates having at least a transparent electrode, an insulating thin film and an alignment film. the state, and are not surface resistance drops to 10 8 Ω / □ or less only at the irradiation with ultraviolet light, the electrode
A polarizing plate with a function to block ultraviolet light is attached to the substrate
Re is characterized by Rukoto, the objects can be achieved.

【0015】本発明の液晶表示装置の製造方法は、少な
くとも透明電極と絶縁薄膜と配向膜とを有する2枚の電
極基板間に液晶を封入してなる液晶表示装置の製造方法
において、前記電極基板上に、紫外光を照射した時にの
み表面抵抗が108Ω/□以下に降下する絶縁薄膜を形
成する工程と、前記絶縁薄膜形成後の電極基板上に紫外
光を照射して電極基板の表面電位を低下させる工程と
前記電極基板に紫外光を遮断する機能をもつ偏光板を貼
り付ける工程と、を含むことを特徴としており、そのこ
とにより上記目的が達成される。
The method of manufacturing a liquid crystal display device according to the present invention is directed to a method of manufacturing a liquid crystal display device in which liquid crystal is sealed between two electrode substrates having at least a transparent electrode, an insulating thin film and an alignment film. Forming an insulating thin film whose surface resistance drops to 10 8 Ω / □ or less only when irradiating ultraviolet light, and irradiating the ultraviolet light onto the electrode substrate after the formation of the insulating thin film, Reducing the potential ;
A polarizing plate having a function of blocking ultraviolet light is attached to the electrode substrate.
And a bonding step, whereby the above object is achieved.

【0016】[0016]

【作用】本発明によれば、紫外光の照射時にのみ導電性
を発現し、表面抵抗を降下させる絶縁薄膜と配向処理を
施した配向膜とを、透明電極上に順次積層した液晶表示
装置用透明基板に、製造プロセス中に設けた紫外光照射
装置から紫外光を照射することによって、配向膜表面の
不均一な帯電を解消できることができる。その結果、配
向膜表面にスペーサを均一に散布することができるた
め、極めて表示均一性の優れた液晶表示装置を提供する
ことができる。
According to the present invention, there is provided a liquid crystal display device in which an insulating thin film which exhibits conductivity only when irradiated with ultraviolet light and lowers the surface resistance and an alignment film which has been subjected to an alignment treatment are sequentially laminated on a transparent electrode. By irradiating the transparent substrate with ultraviolet light from an ultraviolet light irradiation device provided during the manufacturing process, uneven charging of the surface of the alignment film can be eliminated. As a result, the spacers can be evenly dispersed on the surface of the alignment film, so that a liquid crystal display device having extremely excellent display uniformity can be provided.

【0017】紫外光の照射時にのみ表面抵抗を降下させ
る絶縁薄膜としては、シリカや架橋アクリルを主成分と
する絶縁薄膜形成用塗布液中に、ポリビニルカルバゾー
ル(以下PVKと記述する。)や、エチルカルバゾール
に代表されるような光導電性物質を該主成分に対して1
〜5wt%添加し、基板に塗布して焼成することによっ
て実現される。
As the insulating thin film that lowers the surface resistance only when irradiated with ultraviolet light, polyvinyl carbazole (hereinafter referred to as PVK) or ethyl in a coating liquid for forming an insulating thin film containing silica or crosslinked acryl as a main component is used. A photoconductive substance such as carbazole is
This is realized by adding 55 wt%, applying the mixture to a substrate, and baking.

【0018】代表的な光導電性物質であるPVKは、波
長300〜350nmの紫外光を吸収すると、エネルギ
ー的に励起され、ホールと電子の対を生成する。この状
態でPVKに電界を印加すれば、生成したホールと電子
がキャリアとなって導電率が上昇する。このキャリア
は、PVKの分子鎖内は容易にホッピング伝導できる
が、分子鎖間はその距離が大きくなるとホッピングが困
難になる。
PVK, which is a typical photoconductive substance, is excited energetically when absorbing ultraviolet light having a wavelength of 300 to 350 nm, and generates a hole-electron pair. When an electric field is applied to the PVK in this state, the generated holes and electrons serve as carriers to increase the conductivity. This carrier can easily conduct hopping conduction in the molecular chain of PVK, but hopping becomes difficult when the distance between the molecular chains increases.

【0019】また、PVKは紫外光を遮断すれば、可逆
的に導電率を降下させる。PVKをシリカや架橋アクリ
ルを主成分とする絶縁薄膜形成用塗布液中に添加する場
合、形成する絶縁薄膜の表面抵抗を、前記波長の紫外光
照射時に108Ω/□以下にし、静電気を散逸させるた
めに十分な光導電性を絶縁薄膜に与えるためには、塗布
液に対してPVKを1wt%以上加えなければならな
い。添加量が1wt%以下であるときには、分子鎖間の
ホッピング伝導が困難になり、紫外光を照射しても形成
する薄膜の表面抵抗は109Ω/□以上である。
Further, PVK reversibly lowers the conductivity when it blocks ultraviolet light. When PVK is added to a coating liquid for forming an insulating thin film containing silica or crosslinked acryl as a main component, the surface resistance of the formed insulating thin film is set to 10 8 Ω / □ or less at the time of irradiating the ultraviolet light having the above-mentioned wavelength, and the static electricity is dissipated. In order to impart sufficient photoconductivity to the insulating thin film, PVK must be added to the coating liquid in an amount of 1 wt% or more. When the addition amount is 1 wt% or less, hopping conduction between molecular chains becomes difficult, and the surface resistance of the thin film formed even when irradiated with ultraviolet light is 10 9 Ω / □ or more.

【0020】ただし、添加量が5wt%以上になると絶
縁薄膜形成時に主成分とPVKとの間で相分離を起こ
し、基板の透過率を低下させる。PVKを絶縁薄膜中に
添加しても、上記濃度範囲では、膜硬度5H以上、基板
の可視光透過率90%以上が維持され、液晶表示装置用
の基板として十分使用可能である。
However, when the addition amount is 5 wt% or more, phase separation occurs between the main component and PVK at the time of forming the insulating thin film, and the transmittance of the substrate is reduced. Even when PVK is added to the insulating thin film, in the above concentration range, the film hardness is maintained at 5H or more and the visible light transmittance of the substrate is 90% or more, and the substrate can be sufficiently used as a substrate for a liquid crystal display device.

【0021】こうして得られる基板に、プロセス中に設
けた紫外光照射装置から、前記波長の紫外光を照射する
ことによって、絶縁薄膜の表面抵抗を108Ω/□以下
まで降下させて、τ1/100を10秒程度にすることが可
能になる。その結果、スペーサ散布密度のばらつきを±
15%以内、セルギャップのばらつきを±4%以内に抑
制することが可能となり、前記のようなセルの色ムラが
解消される。
By irradiating the substrate thus obtained with ultraviolet light having the above-mentioned wavelength from an ultraviolet light irradiation device provided during the process, the surface resistance of the insulating thin film is reduced to 10 8 Ω / □ or less, and τ 1 / 100 can be reduced to about 10 seconds. As a result, the variation in the density of spacer
The variation of the cell gap can be suppressed to within 15% and the variation of the cell gap can be suppressed to within ± 4%, and the color unevenness of the cell as described above is eliminated.

【0022】特に、スペーサ散布装置内に紫外光照射装
置を設置し、スペーサ散布と同時に前記波長の紫外光の
照射によって帯電除去を行った場合には、スペーサ散布
の均一性が最も良好となり、スペーサ散布密度のばらつ
きは±10%以内となる。この場合に製造された液晶表
示装置のセルギャップのばらつきは±2%以内であり、
極めて表示均一性の高い液晶表示装置が提供される。
In particular, when an ultraviolet light irradiating device is installed in the spacer dispersing device and the charge is removed by irradiating the spacer with the ultraviolet light having the above-mentioned wavelength, the uniformity of the spacer dispersing becomes the best. The dispersion of the application density is within ± 10%. In this case, the variation of the cell gap of the manufactured liquid crystal display device is within ± 2%,
A liquid crystal display device having extremely high display uniformity is provided.

【0023】また、シリカや架橋アクリルを主成分とす
る塗布液に、PVKと共にアンチモン酸化物やインジウ
ム酸化物などの無機導電性物質や、ポリアニリンやポリ
ピロールなどの有機導電性物質を、主成分に対し1〜5
wt%添加することにより、PVKのみを添加した場合
には紫外光照射時に108Ω/□以下であった表面抵抗
を、107Ω/□以下まで降下させ、τ1/100を5秒以下
にすることも可能である。
In addition, an inorganic conductive material such as antimony oxide or indium oxide, or an organic conductive material such as polyaniline or polypyrrole, together with PVK, is added to a coating solution containing silica or crosslinked acryl as a main component. 1-5
By adding wt%, when only PVK was added, the surface resistance was 10 8 Ω / □ or less at the time of ultraviolet light irradiation, was reduced to 10 7 Ω / □ or less, and τ 1/100 was 5 seconds or less. It is also possible to

【0024】これらの物質を絶縁薄膜中に添加した場合
においても、上記濃度範囲では膜硬度5H以上、基板の
可視光透過率90%以上が維持された。
Even when these substances were added to the insulating thin film, the film hardness of 5H or more and the visible light transmittance of the substrate of 90% or more were maintained in the above concentration range.

【0025】こうして得られる基板を用いて、スペーサ
散布中に前記波長の紫外光を照射することによって帯電
除去を行った場合には、色ムラが無く、表示均一性の最
も良好な液晶表示セルが提供される。この時のスペーサ
散布密度のばらつきは±8%以内、セルギャップのばら
つきは±1%以内である。
When the substrate thus obtained is used to remove the charge by irradiating the ultraviolet light having the above-mentioned wavelength during the dispersion of the spacer, a liquid crystal display cell having no color unevenness and the best display uniformity can be obtained. Provided. At this time, the dispersion of the spacer distribution density is within ± 8%, and the dispersion of the cell gap is within ± 1%.

【0026】一方、PVKは波長350nm以上の光を
ほとんど吸収しないため、可視光によって導電性を発現
することはない。そのため、液晶表示セルを製造後は、
セルの両面に例えば紫外光を遮断する機能をもつ偏光板
(例えば日東電工社製)などを貼り付けることによっ
て、紫外光が遮断され、パターン電極間のリークは発生
しない。
On the other hand, since PVK hardly absorbs light having a wavelength of 350 nm or more, it does not exhibit conductivity by visible light. Therefore, after manufacturing the liquid crystal display cell,
By attaching, for example, a polarizing plate (for example, manufactured by Nitto Denko Corporation) or the like having a function of blocking ultraviolet light to both sides of the cell, ultraviolet light is blocked, and no leak occurs between the pattern electrodes.

【0027】[0027]

【実施例】以下本発明をその実施例を示す図面に基づい
て具体的に説明するが、本発明は下記の実施例に限定さ
れるものではない。図1は本発明に係る液晶表示装置の
構成断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to the drawings showing the embodiments, but the present invention is not limited to the following embodiments. FIG. 1 is a sectional view showing the configuration of the liquid crystal display device according to the present invention.

【0028】本発明によれば、それぞれの基板2、2a
上に、紫外光の照射により導電性を発現して、表面抵抗
を降下させるような絶縁薄膜4、4aと、配向処理を施
した配向膜5、5aとを、透明電極3、3a上に順次積
層した液晶表示装置用透明基板9、9a表面にスペーサ
6を散布後、液晶8をシール剤7により封入し、偏光板
17、17aを該基板2、2aの液晶層側とは反対側に
それぞれ貼り付けて液晶表示装置1は完成する。
According to the invention, each substrate 2, 2a
On the transparent electrodes 3, 3a, insulating thin films 4, 4a that exhibit conductivity by ultraviolet light irradiation and lower the surface resistance, and alignment films 5, 5a that have been subjected to an alignment treatment are sequentially formed. After the spacers 6 are sprayed on the surfaces of the laminated transparent substrates 9 and 9a for liquid crystal display devices, the liquid crystal 8 is sealed with a sealant 7, and the polarizing plates 17 and 17a are respectively placed on the opposite sides of the substrates 2 and 2a from the liquid crystal layer side. By pasting, the liquid crystal display device 1 is completed.

【0029】(実施例1)架橋アクリルを主成分とする
絶縁薄膜形成用塗布液(例えば、東京応化MOFNo.
15A)に、アクリルに対してPVK(例えば、関東化
学ポリ−N−ビニルカルバゾール)2wt%を添加して
塗布液を調製した。
Example 1 A coating liquid for forming an insulating thin film containing a crosslinked acrylic as a main component (for example, MOF No.
15A), 2 wt% of PVK (for example, Kanto Kagaku poly-N-vinyl carbazole) was added to acryl to prepare a coating solution.

【0030】図2に示すとおり、一般的なフォトプロセ
スによってパターン電極3を形成した透明基板2上に、
前記調製した塗布液を塗布し、80℃で乾燥した後、2
00℃で1時間焼成することにより、厚み100nmの
絶縁薄膜4を形成した。
As shown in FIG. 2, on a transparent substrate 2 on which a pattern electrode 3 is formed by a general photo process,
After applying the prepared coating solution and drying at 80 ° C, 2
By baking at 00 ° C. for 1 hour, an insulating thin film 4 having a thickness of 100 nm was formed.

【0031】次いで、前記形成した絶縁薄膜4上に、ポ
リイミド配向膜形成用塗布液(例えば日産化学SE−5
211)を塗布し、80℃で乾燥した後、200℃で1
時間焼成することにより、厚み50nmの配向膜5を形
成した。
Next, a coating liquid for forming a polyimide alignment film (for example, Nissan Chemical SE-5) is formed on the formed insulating thin film 4.
211) and dried at 80 ° C.
By firing for a time, an alignment film 5 having a thickness of 50 nm was formed.

【0032】このようにして得られた基板9上に、図3
に示したような装置を用いて、ラビング法によって配向
処理を施し、その後装置内に設置された高圧水銀ランプ
16から、波長313nmでの照度1000mW/cm
2の紫外光を照射した。
On the substrate 9 thus obtained, FIG.
Is subjected to an orientation treatment by a rubbing method using an apparatus as shown in (1), and then an illuminance of 1000 mW / cm at a wavelength of 313 nm from a high-pressure mercury lamp 16 installed in the apparatus.
2 UV light was applied.

【0033】ラビング直後及び紫外光照射後の前記配向
膜5の表面電位を、高速表面電位計(トレック(株)社
製)を用いて測定した結果、ラビング直後には約2kV
であった表面電位が、紫外光を照射して10秒後には、
20V程度まで低下することが確認された。
The surface potential of the alignment film 5 immediately after rubbing and after irradiation with ultraviolet light was measured using a high-speed surface potentiometer (manufactured by Trek Corporation).
Surface potential was 10 seconds after irradiation with ultraviolet light,
It was confirmed that the voltage dropped to about 20 V.

【0034】前述したような帯電除去を施した前記基板
9上にスペーサ6を散布し、上述したものと同様のプロ
セスで作成したもう一方の基板9aとシール剤7を用い
て貼合せた。
The spacers 6 were scattered on the substrate 9 from which the charge was removed as described above, and bonded to the other substrate 9a formed by the same process as described above using the sealing agent 7.

【0035】その後、両基板間に液晶8を封入して得ら
れたセルの両側に、紫外光を遮断する機能をもつ偏光板
17、17aをそれぞれ貼り付けることにより、液晶表
示装置を製造した。
Thereafter, polarizing plates 17 and 17a having a function of blocking ultraviolet light were attached to both sides of the cell obtained by sealing the liquid crystal 8 between the two substrates, thereby manufacturing a liquid crystal display device.

【0036】その結果、色ムラのない、表示均一性の良
好な液晶表示装置を得ることができた。また、この状態
で前記と同様の紫外光をセルに照射しても、パターン電
極間のリークは観察されなかった。
As a result, it was possible to obtain a liquid crystal display device having good display uniformity without color unevenness. Further, in this state, even if the cell was irradiated with the same ultraviolet light as described above, no leak was observed between the pattern electrodes.

【0037】図5に示すように、スペーサ6を散布した
基板9の透明電極パターン3の垂直方向13−13aに
何箇所か適当な領域18を定義し、該領域18のスペー
サ散布密度とセルギャップとを測定した。
As shown in FIG. 5, several suitable regions 18 are defined in the vertical direction 13-13a of the transparent electrode pattern 3 of the substrate 9 on which the spacers 6 are scattered. And were measured.

【0038】このときのスペーサ6の散布状態を、前記
従来例で用いた図8と同様の模式図で表すと、図6のよ
うに示される。電極パターン部分3と非電極部分とのス
ペーサ6の散布密度のばらつきは±15%以内になり、
その結果セルギャップのばらつきは±4%以内となっ
た。従来例である図8と比較すると、スペーサ6の散布
密度のばらつきが小さくなり、それによりセルギャップ
の均一性が改善された。また、紫外光の照射に起因する
ような液晶の配向不良は見られなかった。
FIG. 6 is a schematic diagram showing the state of dispersion of the spacers 6 at this time, similar to FIG. 8 used in the conventional example. The dispersion of the distribution density of the spacer 6 between the electrode pattern portion 3 and the non-electrode portion is within ± 15%,
As a result, the variation of the cell gap was within ± 4%. Compared with FIG. 8 which is a conventional example, the dispersion of the distribution density of the spacers 6 was reduced, and thereby the uniformity of the cell gap was improved. In addition, no defective alignment of the liquid crystal due to irradiation with ultraviolet light was observed.

【0039】さらに、電極の形成されていないガラス基
板に直接、前記と同様の方法で絶縁薄膜を形成し、該絶
縁薄膜の表面抵抗と膜硬度とを測定した。表面抵抗は三
菱油化製表面抵抗計を用いて、また膜硬度はJISK5
401に準拠する試験器を用いて測定した。その結果、
表面抵抗は紫外光非照射時に1012Ω/□程度であり、
波長313nmでの照度1000mW/cm2の紫外光
照射時には108Ω/□程度であった。また、その後紫
外光を遮断すれば、表面抵抗は再び1012Ω/□程度に
戻り、このときの膜硬度は、5Hであった。
Further, an insulating thin film was formed directly on a glass substrate on which no electrode was formed by the same method as described above, and the surface resistance and the film hardness of the insulating thin film were measured. The surface resistance was measured using a Mitsubishi Yuka surface resistance meter, and the film hardness was measured according to JIS K5.
It measured using the test device based on 401. as a result,
The surface resistance is about 10 12 Ω / □ when no ultraviolet light is irradiated,
It was about 10 8 Ω / □ at the time of irradiating an ultraviolet light with an illuminance of 1000 mW / cm 2 at a wavelength of 313 nm. Further, when the ultraviolet light was cut off thereafter, the surface resistance returned to about 10 12 Ω / □ again, and the film hardness at this time was 5H.

【0040】(実施例2)実施例1と同様の方法で、絶
縁薄膜形成用塗布液を調製し、透明基板に形成したパタ
ーン電極上に絶縁薄膜を形成し、さらに該絶縁薄膜上に
ポリイミド配向膜を形成した。
Example 2 In the same manner as in Example 1, a coating liquid for forming an insulating thin film was prepared, an insulating thin film was formed on a pattern electrode formed on a transparent substrate, and polyimide was oriented on the insulating thin film. A film was formed.

【0041】次に、紫外光を照射しないこと以外は実施
例1と同様の方法によって配向膜表面に配向処理を施し
た。
Next, an alignment treatment was performed on the alignment film surface in the same manner as in Example 1 except that no ultraviolet light was irradiated.

【0042】上記のようにして得られた液晶表示装置用
基板9に、図4に模式的に示したようなスペーサ散布装
置10を用いて、該スペーサ散布装置内に設置した高圧
水銀ランプ12から該基板9に波長313nmでの照度
1000mW/cm2の紫外光を照射した。紫外光を照
射して10秒後に、紫外光を照射したまま図中11の噴
霧ノズルからスペーサ6を該基板9上に散布した。
A liquid crystal display device substrate 9 obtained as described above is applied to a spacer dispersing device 10 as schematically shown in FIG. 4 from a high-pressure mercury lamp 12 installed in the spacer dispersing device. The substrate 9 was irradiated with ultraviolet light having an illuminance of 1000 mW / cm 2 at a wavelength of 313 nm. Ten seconds after the irradiation with the ultraviolet light, the spacer 6 was sprayed on the substrate 9 from the spray nozzle 11 in the drawing while the ultraviolet light was being irradiated.

【0043】その結果、紫外光照射前には1kV程度あ
った配向膜の表面電位が、紫外光を照射して10秒後に
は、10V程度まで低下することが確認された。
As a result, it was confirmed that the surface potential of the alignment film, which was about 1 kV before the irradiation with the ultraviolet light, was reduced to about 10 V 10 seconds after the irradiation with the ultraviolet light.

【0044】続いて実施例1と同様の方法で、液晶表示
装置を製造した。その結果、色ムラがなく、実施例1よ
りもさらに表示均一性の良好な液晶表示装置を得ること
ができた。また、この実施例においても、前記と同様の
紫外光をセルに照射しても、パターン電極間のリークは
観察されなかった。
Subsequently, a liquid crystal display device was manufactured in the same manner as in Example 1. As a result, it was possible to obtain a liquid crystal display device having no color unevenness and having better display uniformity than Example 1. Also in this example, even if the cell was irradiated with the same ultraviolet light as above, no leak between the pattern electrodes was observed.

【0045】また、実施例1と同様な方法で、スペーサ
6の散布密度とセルギャップを測定した結果、電極パタ
ーン部分と非電極部分とのスペーサ6の散布密度のばら
つきは±10%以内になり、その結果セルギャップのば
らつきは±2%以内と非常に小さくなった。また、紫外
光の照射に起因するような液晶の配向不良は見られなか
った。
The dispersion density and cell gap of the spacer 6 were measured in the same manner as in Example 1. As a result, the dispersion of the spacer 6 between the electrode pattern portion and the non-electrode portion was within ± 10%. As a result, the variation of the cell gap was extremely small, within ± 2%. In addition, no defective alignment of the liquid crystal due to irradiation with ultraviolet light was observed.

【0046】(実施例3)架橋アクリルを主成分とする
絶縁薄膜形成用塗布液に、アクリルに対してアンチモン
酸化物微粒子5wt%とPVK2wt%を分散させ塗布
液を調製した。
Example 3 A coating liquid was prepared by dispersing 5 wt% of antimony oxide fine particles and 2 wt% of PVK with respect to acryl in a coating liquid for forming an insulating thin film mainly containing crosslinked acrylic.

【0047】この塗布液を、実施例1と同様に、透明基
板上に形成されたパターン電極上に塗布し、80℃で乾
燥した後、200℃で1時間焼成することにより、厚み
100nmの絶縁薄膜を形成した。
This coating solution was applied on a pattern electrode formed on a transparent substrate in the same manner as in Example 1, dried at 80 ° C., and baked at 200 ° C. for 1 hour to form a 100 nm thick insulating film. A thin film was formed.

【0048】次いで、実施例2と同様のプロセスで液晶
表示装置を製造した。スペーサ散布時には、実施例2と
同様の方法で、図3に示したような装置内に設置された
高圧水銀ランプ16から、波長313nmでの照度10
00mW/cm2紫外光を基板上に照射した。
Next, a liquid crystal display device was manufactured in the same process as in Example 2. At the time of spraying the spacers, in the same manner as in the second embodiment, an illuminance of 10 nm at a wavelength of 313 nm is output from a high-pressure mercury lamp 16 installed in the apparatus as shown in FIG.
The substrate was irradiated with 00 mW / cm 2 ultraviolet light.

【0049】この結果、紫外光照射前には約500Vで
あった配向膜の表面電位は、紫外光を照射して5秒後に
は5V程度まで低下することが確認された。
As a result, it was confirmed that the surface potential of the alignment film, which was about 500 V before the irradiation with the ultraviolet light, was reduced to about 5 V 5 seconds after the irradiation with the ultraviolet light.

【0050】その結果、色ムラがなく、実施例2よりも
さらに表示均一性の良好な液晶表示装置を得ることがで
きた。また、この実施例においても、前記紫外光のセル
への照射によって、パターン電極間のリークは観察され
なかった。
As a result, it was possible to obtain a liquid crystal display device having no color unevenness and having better display uniformity than that of Example 2. Also in this example, leakage between the pattern electrodes was not observed by irradiation of the cell with the ultraviolet light.

【0051】また、実施例1と同様な方法で、スペーサ
6の散布密度とセルギャップを測定した結果、電極パタ
ーン部分と非電極部分とのスペーサ6の散布密度のばら
つきは±8%以内になり、その結果セルギャップのばら
つきは±1%以内と極めて小さくなった。
The dispersion density and cell gap of the spacers 6 were measured in the same manner as in Example 1. As a result, the dispersion of the spacers 6 between the electrode pattern portion and the non-electrode portion was within ± 8%. As a result, the variation in the cell gap was extremely small, within ± 1%.

【0052】このときのスペーサ6の散布状態を、前記
従来例で用いた図8及び前記実施例で用いた図6と同様
の模式図で表すと、図7のように示される。図7から分
かるとおり、スペーサ6の散布密度のばらつきは小さく
なり、それによりセルギャップの均一性が改善された。
また、紫外光の照射に起因するような液晶の配向不良は
見られなかった。
FIG. 7 is a schematic diagram showing the state of dispersion of the spacers 6 at this time, similar to FIG. 8 used in the conventional example and FIG. 6 used in the embodiment. As can be seen from FIG. 7, the dispersion of the distribution density of the spacers 6 was reduced, thereby improving the uniformity of the cell gap.
In addition, no defective alignment of the liquid crystal due to irradiation with ultraviolet light was observed.

【0053】さらに、実施例1と同様に、電極の形成さ
れていないガラス基板に直接、この絶縁薄膜を形成し、
該絶縁薄膜の表面抵抗と膜硬度とを測定した。その結
果、表面抵抗は波長313nmでの照度1000mW/
cm2の紫外光照射時には107Ω/□程度であり、紫外
光非照射時には1010Ω/□程度であった。また、この
ときの膜硬度は、5Hであった。
Further, in the same manner as in Example 1, this insulating thin film was formed directly on a glass substrate on which no electrode was formed.
The surface resistance and the film hardness of the insulating thin film were measured. As a result, the surface resistance was 1000 mW / illuminance at a wavelength of 313 nm.
It was about 10 7 Ω / □ when irradiated with ultraviolet light of cm 2 , and about 10 10 Ω / □ when not irradiated with ultraviolet light. At this time, the film hardness was 5H.

【0054】(実施例4)架橋アクリルを主成分とする
絶縁薄膜形成用塗布液に、アクリルに対してポリアニリ
ン5wt%とPVK2wt%を分散させ塗布液を調製し
た。
Example 4 A coating liquid was prepared by dispersing 5% by weight of polyaniline and 2% by weight of PVK with respect to acrylic in a coating liquid for forming an insulating thin film containing a crosslinked acrylic as a main component.

【0055】この塗布液を、実施例1と同様に、透明基
板上に形成されたパターン電極上に塗布し、80℃で乾
燥した後、200℃で1時間焼成することにより、厚み
100nmの絶縁薄膜を形成した。
This coating solution was applied on a pattern electrode formed on a transparent substrate in the same manner as in Example 1, dried at 80 ° C., and baked at 200 ° C. for 1 hour to form an insulating film having a thickness of 100 nm. A thin film was formed.

【0056】次いで、実施例2と同様のプロセスで液晶
表示装置を製造した。スペーサ散布時には、実施例2と
同様の方法で、図3に示したような装置内に設置された
高圧水銀ランプ16から、波長313nmでの照度10
00mW/cm2の紫外光を基板に照射した。
Next, a liquid crystal display device was manufactured in the same process as in Example 2. At the time of spraying the spacers, in the same manner as in the second embodiment, an illuminance of 10 nm at a wavelength of 313 nm is output from a high-pressure mercury lamp 16 installed in the apparatus as shown in FIG.
The substrate was irradiated with ultraviolet light of 00 mW / cm 2 .

【0057】この結果、紫外光照射前には約500Vで
あった配向膜の表面電位は、紫外光を照射して5秒後に
は5V程度まで低下することが確認された。
As a result, it was confirmed that the surface potential of the alignment film, which was about 500 V before the irradiation with the ultraviolet light, was reduced to about 5 V 5 seconds after the irradiation with the ultraviolet light.

【0058】その結果、色ムラがなく、実施例3と同等
に表示均一性の良好な液晶表示装置を得ることができ
た。また、この実施例においても、前記紫外光のセルへ
の照射によって、パターン電極間のリークは観察されな
かった。
As a result, it was possible to obtain a liquid crystal display device having no display unevenness and excellent display uniformity as in the third embodiment. Also in this example, leakage between the pattern electrodes was not observed by irradiation of the cell with the ultraviolet light.

【0059】また、実施例1と同様な方法で、スペーサ
6の散布密度とセルギャップを測定した結果、電極パタ
ーン部分と非電極部分とのスペーサ6の散布密度のばら
つきは±8%以内になり、その結果セルギャップのばら
つきは±1%以内と極めて小さくなった。また、紫外光
の照射に起因するような液晶の配向不良は見られなかっ
た。
The dispersion density and cell gap of the spacer 6 were measured in the same manner as in Example 1. As a result, the dispersion of the spacer 6 between the electrode pattern portion and the non-electrode portion was within ± 8%. As a result, the variation in the cell gap was extremely small, within ± 1%. In addition, no defective alignment of the liquid crystal due to irradiation with ultraviolet light was observed.

【0060】(比較例1)架橋アクリルを主成分とする
絶縁薄膜形成用塗布液に、アクリルに対しアンチモン酸
化物微粒子5wt%を分散させ、塗布液を調製した。
Comparative Example 1 A coating liquid was prepared by dispersing 5 wt% of antimony oxide fine particles with respect to acryl in a coating liquid for forming an insulating thin film containing a crosslinked acrylic as a main component.

【0061】この塗布液を、透明基板上に形成されたパ
ターン電極上に塗布し、80℃で乾燥した後、200℃
で1時間焼成することにより、厚み100nmの絶縁薄
膜を形成した。
This coating solution was applied on a pattern electrode formed on a transparent substrate, dried at 80 ° C., and then dried at 200 ° C.
For 1 hour to form an insulating thin film having a thickness of 100 nm.

【0062】次いで、前記形成した絶縁薄膜上に、ポリ
イミド配向膜形成用塗布液を塗布し、80℃で乾燥した
後、200℃で1時間焼成することにより、厚み50n
mの配向膜を形成し、ラビング処理によって表面に配向
処理を施した。
Next, a coating liquid for forming a polyimide alignment film is applied on the formed insulating thin film, dried at 80 ° C., and baked at 200 ° C. for 1 hour to obtain a film having a thickness of 50 nm.
An alignment film of m was formed, and the surface was subjected to an alignment treatment by a rubbing treatment.

【0063】次いで、一般的なスペーサ散布装置を用い
て、前記配向膜表面にスペーサを散布した。このときの
表面電位を測定した結果、ラビング直後には約1kVで
あった配向膜の表面電位は、散布直前には100V程度
であった。
Then, spacers were sprayed on the surface of the alignment film using a general spacer spraying apparatus. As a result of measuring the surface potential at this time, the surface potential of the alignment film, which was about 1 kV immediately after rubbing, was about 100 V immediately before spraying.

【0064】続いて実施例1と同様の方法で、液晶表示
装置を製造した。このようなプロセスで製造された液晶
表示装置には、スペーサを散布した基板上の電極パター
ンに沿って、スジ状の色ムラが観察された。このとき、
基板上のスペーサ散布密度のばらつきは±40%程度で
あり、その結果セルギャップのばらつきは±10%程度
であった。
Subsequently, a liquid crystal display device was manufactured in the same manner as in Example 1. In the liquid crystal display device manufactured by such a process, streak-like color unevenness was observed along the electrode pattern on the substrate on which the spacers were scattered. At this time,
The dispersion of the spacer distribution density on the substrate was about ± 40%, and as a result, the dispersion of the cell gap was about ± 10%.

【0065】(比較例2)透明基板上に形成されたパタ
ーン電極上に、比較例1と同様な手順で、絶縁薄膜と配
向膜を積層した。次いで、ラビング法によって配向膜表
面に配向処理を施し、その直後にイオンエアー式イオナ
イザーで帯電除去を行った。
Comparative Example 2 An insulating thin film and an alignment film were laminated on a pattern electrode formed on a transparent substrate in the same procedure as in Comparative Example 1. Next, an alignment treatment was performed on the alignment film surface by a rubbing method, and immediately after that, charge removal was performed by an ion air type ionizer.

【0066】その後、比較例1と同様の方法で液晶表示
装置を製造した。このようなプロセスで製造された液晶
表示装置の表面電位を測定した結果、ラビング直後には
約1kVであった配向膜の表面電位は、散布直前には5
0V程度であった。
Thereafter, a liquid crystal display device was manufactured in the same manner as in Comparative Example 1. As a result of measuring the surface potential of the liquid crystal display device manufactured by such a process, the surface potential of the alignment film, which was about 1 kV immediately after rubbing, became 5 k just before spraying.
It was about 0V.

【0067】その結果、このようなプロセスで製造され
た液晶表示装置においても、比較例1と同様に、スペー
サを散布した基板上の電極パターンに沿って、スジ状の
色ムラが観察された。このとき、基板上のスペーサ散布
密度のばらつきは±30%程度であり、その結果セルギ
ャップのばらつきは±8%であった。
As a result, in the liquid crystal display device manufactured by such a process, as in Comparative Example 1, streak-like color unevenness was observed along the electrode pattern on the substrate on which the spacers were scattered. At this time, the dispersion of the spacer scattering density on the substrate was about ± 30%, and as a result, the dispersion of the cell gap was ± 8%.

【0068】[0068]

【発明の効果】以上の如く本発明においては、紫外光の
照射時にのみ表面抵抗が108Ω/□以下に降下するよ
うな絶縁薄膜を透明電極上に形成し、製造プロセスの工
程内において、紫外光照射装置から配向膜上に紫外光を
照射することによって、配向膜表面の不均一な帯電を解
消できることができる。その結果、セルギャップ形成用
のスペーサを基板内に均一に散布することができ、表示
均一性のすぐれた液晶表示装置を提供することが可能と
なる。
As described above, according to the present invention, an insulating thin film having a surface resistance of 10 8 Ω / □ or less is formed on a transparent electrode only upon irradiation with ultraviolet light. Irradiating the alignment film with ultraviolet light from the ultraviolet light irradiation device can eliminate uneven charging of the alignment film surface. As a result, the spacers for forming the cell gap can be evenly dispersed in the substrate, and a liquid crystal display device having excellent display uniformity can be provided.

【0069】また、本発明によれば、スペーサ散布装置
内において帯電除去を行うことが可能となるため、静電
気によるスペーサの不均一な散布を極めて効果的に防止
することができる。
Further, according to the present invention, since it is possible to remove the charge in the spacer dispersing device, it is possible to extremely effectively prevent uneven dispersal of the spacer due to static electricity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明に係る液晶表示装置の構成断面図
を示す。
FIG. 1 is a sectional view showing the configuration of a liquid crystal display device according to the present invention.

【図2】図2は本発明に係る液晶表示装置用基板の構成
断面図を示す。
FIG. 2 is a sectional view showing the configuration of a substrate for a liquid crystal display device according to the present invention.

【図3】図3は本発明に係る液晶表示装置の製造方法に
おける1実施例を説明するラビング装置の模式図を示
す。
FIG. 3 is a schematic view of a rubbing device for explaining one embodiment of a method of manufacturing a liquid crystal display device according to the present invention.

【図4】図4は本発明に係る液晶表示装置の製造方法に
おける1実施例を説明するスペーサ散布装置の模式図を
示す。
FIG. 4 is a schematic view of a spacer dispersing device for explaining one embodiment of a method of manufacturing a liquid crystal display device according to the present invention.

【図5】図5は本発明に係る液晶表示装置におけるスペ
ーサ散布密度及びセルギャップの測定方法を説明する平
面図を示す。
FIG. 5 is a plan view illustrating a method for measuring a spacer scattering density and a cell gap in the liquid crystal display device according to the present invention.

【図6】図6は本発明に係る液晶表示装置のうち、実施
例1の液晶表示装置におけるスペーサ散布密度のばらつ
きを説明する模式図を示す。
FIG. 6 is a schematic diagram for explaining a variation in the density of spacers dispersed in the liquid crystal display device of Example 1 among the liquid crystal display devices according to the present invention.

【図7】図7は本発明に係る液晶表示装置のうち、実施
例3の液晶表示装置におけるスペーサ散布密度のばらつ
きを説明する模式図を示す。
FIG. 7 is a schematic diagram for explaining a variation in the density of spacer scatter in the liquid crystal display device of Example 3 among the liquid crystal display devices according to the present invention.

【図8】図8は従来の液晶表示装置におけるスペーサ散
布密度のばらつきを説明する模式図を示す。
FIG. 8 is a schematic diagram for explaining a variation in spacer scattering density in a conventional liquid crystal display device.

【符号の説明】[Explanation of symbols]

1 液晶表示装置 2 透明基板 2a 透明基板 3 パターン電極 3a パターン電極 4 絶縁薄膜 4a 絶縁薄膜 5 配向膜 5a 配向膜 6 スペーサ 7 シール剤 8 液晶 9 液晶表示装置用基板 9a 液晶表示装置用基板 10 スペーサ散布装置 11 スペーサ散布ノズル 12 高圧水銀ランプ 13−13a スペーサ散布密度およびセルギャップ
を測定した方向を示す直線 14 ラビングローラ 15 ステージ 16 高圧水銀ランプ 17 偏光板 17a 偏光板 18 スペーサ散布密度及びセルギャップを測定した
領域
DESCRIPTION OF SYMBOLS 1 Liquid crystal display device 2 Transparent substrate 2a Transparent substrate 3 Pattern electrode 3a Pattern electrode 4 Insulating thin film 4a Insulating thin film 5 Alignment film 5a Alignment film 6 Spacer 7 Sealant 8 Liquid crystal 9 Liquid crystal display substrate 9a Liquid crystal display substrate 10 Spacer scattering Apparatus 11 Spacer spray nozzle 12 High pressure mercury lamp 13-13a Straight line indicating the direction in which spacer spray density and cell gap were measured 14 Rubbing roller 15 Stage 16 High pressure mercury lamp 17 Polarizer 17a Polarizer 18 Spacer spray density and cell gap were measured region

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−232459(JP,A) 特開 平6−258663(JP,A) 特開 昭63−314714(JP,A) 実開 平3−110418(JP,U) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1333 505 G02F 1/13 101 G02F 1/1335 510 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-232459 (JP, A) JP-A-6-258663 (JP, A) JP-A-63-314714 (JP, A) 110418 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) G02F 1/1333 505 G02F 1/13 101 G02F 1/1335 510

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも透明電極と絶縁薄膜と配向膜
とを有する2枚の電極基板間に液晶を封入してなる液晶
表示装置において、 前記絶縁薄膜は、紫外光の照射時にのみ表面抵抗が10
8Ω/□以下に降下するものであり、前記電極基板に紫
外光を遮断する機能をもつ偏光板が貼り付けられること
を特徴とする液晶表示装置。
1. A liquid crystal display device in which liquid crystal is sealed between two electrode substrates having at least a transparent electrode, an insulating thin film and an alignment film, wherein the insulating thin film has a surface resistance of 10 only when irradiated with ultraviolet light.
8 Omega / □ all SANYO descending below purple to the electrode substrate
Attached polarizing plate adhered with the function of blocking external light liquid crystal display device according to claim Rukoto.
【請求項2】 少なくとも透明電極と絶縁薄膜と配向膜
とを有する2枚の電極基板間に液晶を封入してなる液晶
表示装置の製造方法において、 前記電極基板上に、紫外光を照射した時にのみ表面抵抗
が108Ω/□以下に降下する絶縁薄膜を形成する工程
と、 前記絶縁薄膜形成後の電極基板上に紫外光を照射して電
極基板の表面電位を低下させる工程と、前記電極基板に紫外光を遮断する機能をもつ偏光板を貼
り付ける工程と、 を含むことを特徴とする液晶表示装置の製造方法。
2. A method for manufacturing a liquid crystal display device comprising a liquid crystal sealed between two electrode substrates having at least a transparent electrode, an insulating thin film, and an alignment film, the method comprising: forming an insulating thin surface resistance drops to 10 8 Ω / □ or less only the steps of lowering the surface potential of the electrode substrate is irradiated with ultraviolet light in the insulating film after forming the electrodes on the substrate, the electrode A polarizing plate with a function to block ultraviolet light is attached to the substrate
Attaching a liquid crystal display device.
JP32548594A 1994-12-27 1994-12-27 Liquid crystal display device and manufacturing method thereof Expired - Fee Related JP3222708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32548594A JP3222708B2 (en) 1994-12-27 1994-12-27 Liquid crystal display device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32548594A JP3222708B2 (en) 1994-12-27 1994-12-27 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08179310A JPH08179310A (en) 1996-07-12
JP3222708B2 true JP3222708B2 (en) 2001-10-29

Family

ID=18177408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32548594A Expired - Fee Related JP3222708B2 (en) 1994-12-27 1994-12-27 Liquid crystal display device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3222708B2 (en)

Also Published As

Publication number Publication date
JPH08179310A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
US4874461A (en) Method for manufacturing liquid crystal device with spacers formed by photolithography
US5379139A (en) Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US6493057B1 (en) Liquid crystal device and method for manufacturing same with spacers formed by photolithography
JP3122985B2 (en) Liquid crystal display device and method of manufacturing the same
JPH1152403A (en) Liquid crystal display device
JP2729299B2 (en) Electrophoretic display
JP3222708B2 (en) Liquid crystal display device and manufacturing method thereof
JPH0437714A (en) Liquid crystal display device
JPS6267515A (en) Liquid crystal display element
JPS63266424A (en) Liquid crystal display element
JPH05232459A (en) Liquid crystal display cell and its production
KR20010028670A (en) Liquid crystal display
JPH1026755A (en) Liquid crystal electrooptical device
JP4119708B2 (en) Method for producing alignment control film for liquid crystal
JPH08114803A (en) Coating liquid for forming oriented film and liquid crystal display cell
JP3913962B2 (en) Liquid crystal display cell and manufacturing method thereof
JP3278614B2 (en) Liquid crystal display
JP3130570B2 (en) Liquid crystal display device
JPH09113885A (en) Liquid crystal display device and its production
JPH0695133A (en) Liquid crystal electrooptical device
JP2001108978A (en) Liquid crystal display element and method for manufacturing the same
JPH0829794A (en) Liquid crystal display device
JPS61245137A (en) Orientation processing method for substrate surface of optical modulating element
JPH11119222A (en) Production of orientation layer for liquid crystal display device and liquid crystal display device
JP3443389B2 (en) Manufacturing method of liquid crystal display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees