JP3219506B2 - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP3219506B2
JP3219506B2 JP33244092A JP33244092A JP3219506B2 JP 3219506 B2 JP3219506 B2 JP 3219506B2 JP 33244092 A JP33244092 A JP 33244092A JP 33244092 A JP33244092 A JP 33244092A JP 3219506 B2 JP3219506 B2 JP 3219506B2
Authority
JP
Japan
Prior art keywords
refrigerant
leeward
heat exchanger
connection end
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33244092A
Other languages
Japanese (ja)
Other versions
JPH06159735A (en
Inventor
昇平 野村
和伸 細貝
円 落合
暁 家村
貞治 斉藤
淳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP33244092A priority Critical patent/JP3219506B2/en
Publication of JPH06159735A publication Critical patent/JPH06159735A/en
Application granted granted Critical
Publication of JP3219506B2 publication Critical patent/JP3219506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器、特に空気調
和機や冷凍装置に用いられる熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger, and more particularly to a heat exchanger used for an air conditioner or a refrigeration system.

【0002】[0002]

【従来の技術】例えば、空気調和機においては、圧縮
機、室外熱交換器、減圧器、室内熱交換器を備えたもの
があり、かかる空気調和機の室外熱交換器は、熱交換効
率の向上を目的として冷媒管を複数個並列に接続して、
通風路中に配置している。
2. Description of the Related Art For example, an air conditioner includes a compressor, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger. The outdoor heat exchanger of such an air conditioner has a high heat exchange efficiency. Connect multiple refrigerant tubes in parallel for the purpose of improvement,
It is located in the ventilation path.

【0003】この室外熱交換器においては、最初、風上
側の冷媒通路に流した冷媒を途中で風下側の冷媒通路に
流す一方、風下側の冷媒管群に流した冷媒を風上側の冷
媒通路に流すように冷媒通路を交差させて冷媒を流すよ
うにしたものがある(以下、「交差型熱交換器」とす
る)。このような熱交換器においては、一般に風上側の
冷媒通路の熱交換効率が高く、風下側の冷媒通路の熱交
換効率が低いので、風上側の冷媒通路と風下側の冷媒通
路とに冷媒量を等しく流すとともに、途中で冷媒通路を
交差させて風上と風下とに平等に流すようにして冷媒の
均一な熱交換を図っている。
In this outdoor heat exchanger, first, the refrigerant flowing in the leeward side refrigerant passage is flowed in the middle to the leeward side refrigerant passage, while the refrigerant flowing in the leeward side refrigerant pipe group is supplied to the leeward side refrigerant passage. There is a type in which the refrigerant is made to flow by intersecting the refrigerant passages so as to flow into the heat exchanger (hereinafter, referred to as a "crossed heat exchanger"). In such a heat exchanger, the heat exchange efficiency of the refrigerant passage on the leeward side is generally high, and the heat exchange efficiency of the refrigerant passage on the leeward side is low. Are made to flow equally, and the refrigerant passages are crossed on the way, so that the refrigerant flows evenly upstream and downstream to achieve uniform heat exchange of the refrigerant.

【0004】例えば、特開昭59ー41745号公報に
は、各冷媒通路にかかる圧力がそれぞれ異なることか
ら、通路内の圧力が均一になるように、補助圧力素子を
配置して、各通路に均一な量の冷媒を流す構成が開示さ
れている。
For example, in Japanese Patent Application Laid-Open No. 59-41745, since the pressures applied to the respective refrigerant passages are different from each other, auxiliary pressure elements are arranged so that the pressures in the passages are uniform, and each of the auxiliary pressure elements is provided in each passage. An arrangement for flowing a uniform amount of refrigerant is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述した従来
の交差型熱交換器にあっては、冷媒の熱交換を均一にす
るためには一つの冷媒通路における風上側と風下側との
配管数を同じにしなければならないため、熱交換器の設
計上の制約を受けて、熱交換器の小型化が容易にはかれ
ないという問題点がある。
However, in the above-mentioned conventional cross-type heat exchanger, in order to make the heat exchange of the refrigerant uniform, the number of pipes on the upstream and downstream sides in one refrigerant passage is required. Must be the same, there is a problem that the heat exchanger cannot be easily downsized due to restrictions on the design of the heat exchanger.

【0006】また、交差型でなく、単に風上側と風下側
とに並列に配列した熱交換器(以下、「並列型熱交換
器」とする)の場合には、風上側と風下側で熱交換効率
が異なることから、各冷媒通路に異なる流量を流す必要
があるが、流量調節が困難であるとともに、高価な装置
を必要とすることになる。
In the case of a heat exchanger which is not a cross type but is simply arranged in parallel on the leeward and leeward sides (hereinafter referred to as "parallel type heat exchanger"), heat is generated on the leeward and leeward sides. Since the exchange efficiency is different, it is necessary to flow a different flow rate through each refrigerant passage. However, it is difficult to adjust the flow rate, and an expensive device is required.

【0007】そこで、本発明の目的は、送風空気の風上
側と風下側との冷媒通路に流れる冷媒の流量を容易に調
節し、これによって装置の小型化を図ることができる熱
交換器を提供することである。
Accordingly, an object of the present invention is to provide a heat exchanger capable of easily adjusting the flow rate of the refrigerant flowing through the refrigerant passages on the upstream and downstream sides of the blown air, thereby achieving a reduction in the size of the apparatus. It is to be.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、送風空気の風上側と風下側とに冷媒通路
が夫々配置される熱交換器において、一端に冷媒の導入
管が接続される導入管接続端部を有し、他端に前記風上
側と風下側とのそれぞれの冷媒通路に接続される風上側
接続部と風下側接続部とが二股に分かれて形成された冷
媒通路接続端部を有する略U字形状に形成された分配管
を備え、この分配管は組み立て時には前記導入管接続端
部が前記冷媒通路接続端部に対し回転可能であり、前記
風上側接続部及び前記風下側接続部に対する冷媒の分配
比に応じて、前記冷媒通路接続端部の軸線と前記冷媒導
入管の軸線との成す角度を設定し、この設定位置で前記
導入管接続端部と前記冷媒通路接続端部とを固定可能に
構成したことを特徴とする。
In order to achieve the above object, the present invention provides a heat exchanger in which refrigerant passages are arranged on the windward and leeward sides of blown air, respectively. A refrigerant having an introduction pipe connection end connected thereto, and a leeward connection portion and a leeward connection portion connected to the respective refrigerant passages on the leeward side and the leeward side at the other end, and are formed in a forked manner. A distribution pipe formed in a substantially U shape having a passage connection end, wherein the distribution pipe has an inlet pipe connection end rotatable with respect to the refrigerant passage connection end during assembly, and And, according to the distribution ratio of the refrigerant to the leeward connection portion, an angle between the axis of the refrigerant passage connection end and the axis of the refrigerant introduction pipe is set, and at this set position, the introduction pipe connection end and the It is characterized in that it can be fixed to the refrigerant passage connection end. To.

【0009】[0009]

【作用】本発明の熱交換器では、交差型熱交換器にあっ
ては、冷媒管接続端部の軸線と導入管の軸線とが形成す
る角度を所定の角度に設定し、この角度に応じて風上側
接続端部と風下側接続端部とに流れる冷媒の流量を調節
するが、風上側と風下側とに配管される冷媒管の数が異
なる場合には、異なる冷媒管数により風上側と風下側と
に流す冷媒の流量を調節する。これにより、冷媒管数が
風上側と風下側とで異なっても、冷媒を均一に熱交換を
することができ、熱交換器の冷媒管数における設計上の
制約をうけることがないので装置の小型化を図ることが
できる。
In the heat exchanger of the present invention, in the cross type heat exchanger, the angle formed by the axis of the refrigerant pipe connection end and the axis of the introduction pipe is set to a predetermined angle, and the angle is determined according to this angle. The flow rate of the refrigerant flowing between the leeward connection end and the leeward connection end is adjusted.However, when the number of refrigerant pipes arranged on the leeward side and the leeward side is different, The flow rate of the refrigerant flowing to the leeward side is adjusted. Thus, even if the number of refrigerant tubes is different between the leeward side and the leeward side, it is possible to uniformly exchange heat with the refrigerant, and there is no restriction on the design of the number of refrigerant tubes of the heat exchanger. The size can be reduced.

【0010】また、並列型熱交換器にあっては、風上側
と風下側との冷媒通路の熱交換効率の違いに応じて、冷
媒管接続端部の軸線と導入管の軸線とが形成する角度を
所定の角度に設定するだけで、各冷媒通路に流す冷媒流
量を調節することによって、冷媒を均一に熱交換をする
ことができ、設計上の制約をうけることがないので装置
の小型化を図ることができる。
In the parallel type heat exchanger, the axis of the refrigerant pipe connection end and the axis of the introduction pipe are formed in accordance with the difference in heat exchange efficiency between the refrigerant passages on the upstream and downstream sides. By simply setting the angle to a predetermined angle, by adjusting the flow rate of the refrigerant flowing through each refrigerant passage, the heat can be uniformly exchanged with the refrigerant, and there is no design restriction, so the apparatus can be downsized. Can be achieved.

【0011】[0011]

【実施例】以下に、添付図面を参照して本発明の一実施
例を詳細に説明する。
An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0012】図2に本発明の実施例にかかるヒートポン
プ型の空気調和機全体の冷媒回路を示し、図1には室外
ユニットの構成を概略的に示している。空気調和機1
は、室外ユニット5と室内ユニット3とから構成されて
おり、室内ユニット3には送風機(図示せず)と室内熱
交換器7とが配置されており、冷媒により熱交換された
風を室内に送風するようになっている。
FIG. 2 shows a refrigerant circuit of an entire heat pump type air conditioner according to an embodiment of the present invention, and FIG. 1 schematically shows a configuration of an outdoor unit. Air conditioner 1
Is composed of an outdoor unit 5 and an indoor unit 3, and a blower (not shown) and an indoor heat exchanger 7 are arranged in the indoor unit 3, and the air that has been heat-exchanged by the refrigerant is indoors. It is designed to blow air.

【0013】室外ユニット5には、室外熱交換器(熱交
換器)11と、該室外熱交換器11に風を送風するファ
ン13とが配置されており、室外ユニット5の背面側か
ら風を室外熱交換器11へ送り、前面側から吹き出すよ
うになっている。更に、室外ユニット5には、冷媒回路
を形成するコンプレッサ15、アキュムレータ17、四
方弁19、マフラ21、膨脹弁23とが配置されてい
る。
The outdoor unit 5 is provided with an outdoor heat exchanger (heat exchanger) 11 and a fan 13 for blowing air to the outdoor heat exchanger 11. It is sent to the outdoor heat exchanger 11 and blows out from the front side. Further, the outdoor unit 5 is provided with a compressor 15, an accumulator 17, a four-way valve 19, a muffler 21, and an expansion valve 23 which form a refrigerant circuit.

【0014】ここで、冷媒回路について説明する。冷房
運転の場合には、図2中に実線矢印で示すように、冷媒
がコンプレッサ15からマフラ21、四方弁19を通っ
て室外熱交換器11に導入され、ここで熱交換されて液
化を図り、膨脹弁23を介して室内ユニットの室内熱交
換器7に導入されて、室内熱交換器7が冷媒の気化熱に
より冷却される。室内熱交換器にて熱交換後の冷媒は、
四方弁19、アキュムレータ17を経てコンプレッサ1
5に戻される。
Here, the refrigerant circuit will be described. In the case of the cooling operation, the refrigerant is introduced from the compressor 15 into the outdoor heat exchanger 11 through the muffler 21 and the four-way valve 19 as shown by a solid line arrow in FIG. 2, where heat is exchanged to liquefy. Is introduced into the indoor heat exchanger 7 of the indoor unit via the expansion valve 23, and the indoor heat exchanger 7 is cooled by the heat of vaporization of the refrigerant. The refrigerant after heat exchange in the indoor heat exchanger is
Compressor 1 via four-way valve 19 and accumulator 17
Returned to 5.

【0015】一方、暖房運転の場合には、破断線矢印で
示すように、冷媒がコンプレッサ15からマフラ21、
四方弁19を通って室内ユニット3内の室内熱交換器7
に導入されて熱交換器7により熱交換された後、膨脹弁
23を介して室外ユニット5の熱交換器11、四方弁1
9、アキュムレータ17を経てコンプレッサ15に戻さ
れる。
On the other hand, in the heating operation, the refrigerant flows from the compressor 15 to the muffler 21,
Through the four-way valve 19, the indoor heat exchanger 7 in the indoor unit 3
And the heat is exchanged by the heat exchanger 7, and then the heat exchanger 11 of the outdoor unit 5, the four-way valve 1
9. Returned to the compressor 15 via the accumulator 17.

【0016】室外熱交換器11は、本実施例では図2及
び図3に示すように、冷媒管が上下方向に22段設けら
れており、風上と風下及び上段と下段とにそれぞれ冷媒
通路21a、21b,21c,21dが、合計4つ形成
されている。
As shown in FIGS. 2 and 3, in the present embodiment, the outdoor heat exchanger 11 is provided with 22 stages of refrigerant pipes in the up-down direction. A total of four 21a, 21b, 21c, 21d are formed.

【0017】そして、各冷媒通路21a、21b、21
c、21dはそれぞれ途中で風上A(風下B)から風下
B(風上A)に通路の位置がクロス管23a(23b)
により交換されて、風上と風下とに流して各冷媒通路で
均一な熱交換をおこなうようになっている。
The respective refrigerant passages 21a, 21b, 21
The positions of the passages c and 21d are from the leeward A (leeward B) to the leeward B (leeward A) on the way, respectively, and the position of the passage is the cross pipe 23a (23b).
, And flows upstream and downstream to perform uniform heat exchange in each refrigerant passage.

【0018】各冷媒通路21a、21b、21c、21
dはそれぞれ冷媒導入管22a、22bに分配管25
a、25bを介して接続されており、風上A側の冷媒通
路21a、21cと、風下B側の冷媒通路21b、21
dとに冷媒が分配されるようになっている。
Each refrigerant passage 21a, 21b, 21c, 21
d is a distribution pipe 25 connected to the refrigerant introduction pipes 22a and 22b, respectively.
a, 25b, and the refrigerant passages 21a, 21c on the leeward A side and the refrigerant passages 21b, 21 on the leeward B side.
and d.

【0019】分配管25aは、図6に示すように、一端
に前記冷媒通路に冷媒を導入する冷媒導入管22aと接
続される導入管接続端部27を有し、他端に風上側と風
下側とのそれぞれの冷媒通路21c、21dに接続され
る風上側接続部29cと風下側接続部29dとが二股に
分かれて形成された冷媒通路接続端部41とを有してい
る。そして、冷媒通路接続端部41と風上側接続部29
cと風下側接続部29dとにより略T字形状を形成し、
更に、導入管接続端部27と前記冷媒通路接続端部31
とが略U字形状を形成するように曲げて形成されてい
る。そして、導入管接続端部27は冷媒導入管40の先
端に連結されているが,組み立て時には、導入管接続端
部27が冷媒導入管40に対して回転可能であり、所定
角度の位置で固定できるようになっている。
As shown in FIG. 6, the distribution pipe 25a has an introduction pipe connection end 27 connected to a refrigerant introduction pipe 22a for introducing refrigerant into the refrigerant passage at one end, and an upwind side and a downwind side at the other end. A leeward connection portion 29c and a leeward connection portion 29d that are connected to the respective refrigerant passages 21c and 21d have a refrigerant passage connection end portion 41 that is formed in two forks. The refrigerant passage connection end 41 and the windward connection 29
c and a leeward connection portion 29d to form a substantially T-shape,
Further, the introduction pipe connection end 27 and the refrigerant passage connection end 31
Are bent to form a substantially U-shape. The introduction pipe connection end 27 is connected to the tip of the refrigerant introduction pipe 40. However, during assembly, the introduction pipe connection end 27 is rotatable with respect to the refrigerant introduction pipe 40, and is fixed at a predetermined angle. I can do it.

【0020】即ち、図7に示すように、冷媒通路接続端
部41の軸線42と冷媒導入管43の軸線44との成す
角度Rが自由に設定できるようになっているのである。
このように角度Rを形成することにより冷媒を風上側接
続部21cと風下側接続部21dとに所定の割合で分配
することができる。この角度Rは分配する量の割合によ
って自由に設定される。
That is, as shown in FIG. 7, the angle R between the axis 42 of the refrigerant passage connecting end 41 and the axis 44 of the refrigerant introduction pipe 43 can be freely set.
By forming the angle R in this manner, the refrigerant can be distributed to the leeward connection portion 21c and the leeward connection portion 21d at a predetermined ratio. This angle R is freely set according to the ratio of the amount to be distributed.

【0021】一方、分配管25bは図4及び図5に示す
ような形状となっており、この分配管においても前述の
分配管25aと同様な形状を有しており、この分配管2
5aと同様な作用をおこなうものには同一符号を記して
その説明を省略した。
On the other hand, the distribution pipe 25b has a shape as shown in FIGS. 4 and 5, and this distribution pipe has the same shape as that of the above-mentioned distribution pipe 25a.
Those having the same functions as those of 5a are denoted by the same reference numerals and description thereof is omitted.

【0022】次に、本実施例の作用について説明する。Next, the operation of this embodiment will be described.

【0023】本発明は特に暖房運転における熱交換器の
冷媒の流れを問題としているので、暖房運転の場合につ
いて説明する。
Since the present invention particularly concerns the flow of the refrigerant in the heat exchanger in the heating operation, the case of the heating operation will be described.

【0024】暖房運転では、膨脹弁23より流出された
液ガス混合状態の低圧冷媒(約4Kg/cm2 g)は、破
線矢印で示すようにチーズ60によって略均一に冷媒導
入管22a、22bに分配される。冷媒導入管22aに
より導入された冷媒は室外ユニットの熱交換器11の下
段において、分配管25aにより風上の冷媒通路21c
と、風下の冷媒通路21dに分配され、上段において
は、分配管25bにより風上の冷媒通路21aと、風下
の冷媒通路21bに分配される。そして、各通路に導入
された冷媒は風上(風下)の通路を通過した後クロス管
23bにより風下(風上)側の通路を通過して通路34
を通り、室外ユニットの熱交換器11から導出される。
In the heating operation, the low-pressure refrigerant (approximately 4 kg / cm 2 g) in a liquid-gas mixed state, which has flowed out of the expansion valve 23, is distributed almost uniformly to the refrigerant introduction pipes 22a and 22b by the cheese 60 as indicated by the dashed arrow. Is done. The refrigerant introduced by the refrigerant introduction pipe 22a is supplied to the upstream of the heat exchanger 11 of the outdoor unit by the distribution pipe 25a, and the upstream refrigerant passage 21c.
In the upper stage, the distribution pipe 25b distributes the refrigerant to the leeward refrigerant passage 21a and the leeward refrigerant passage 21b. Then, the refrigerant introduced into each passage passes through the leeward (leeward) passage, and then passes through the leeward (leeward) side passage by the cross pipe 23b to pass through the passage 34.
Through the heat exchanger 11 of the outdoor unit.

【0025】更に具体的には、冷媒通路21dでは、合
計6段の風上側の冷媒管37を通過した後、クロス管2
3bで風下側冷媒通路に移動し、合計4段の風下側冷媒
管39を通過した後、通路34により熱交換器から導出
される。
More specifically, in the refrigerant passage 21d, after passing through the refrigerant pipes 37 on the windward side in a total of six stages, the cross pipes 2
After moving to the leeward side refrigerant passage at 3b and passing through a total of four stages of leeward side refrigerant pipes 39, it is led out of the heat exchanger through the passage.

【0026】一方、冷媒通路21cでは、合計6段の風
下側冷媒管39を通過した後、クロスポイント23bで
風上側冷媒通路37に移動し、合計4段の風上側冷媒管
37を通過した後、通路34により熱交換器から導出さ
れる。
On the other hand, in the refrigerant passage 21c, after passing through the leeward side refrigerant pipes 39 of a total of six stages, it moves to the leeward side refrigerant passage 37 at the cross point 23b, and passes through the leeward side refrigerant pipes 37 of a total of four stages. , Through a heat exchanger.

【0027】この場合、一般に、風上側の熱交換率の方
が風下側の熱交換率より高いので、風上側の通路を多く
通過する冷媒通路21dの方が、冷媒通路21cより熱
交換率が高いことになる。従って、冷媒を冷媒通路21
c、21dに等しく流したのでは均一に冷媒を熱交換す
ることができないことになるが、本実施例では、比較的
熱交換効率の低い冷媒通路21cの冷媒量を冷媒通路2
1dに流す冷媒量より少なくしているので冷媒を均一に
熱交換するようにしている。
In this case, since the heat exchange rate on the leeward side is generally higher than the heat exchange rate on the leeward side, the refrigerant passage 21d passing through the leeward side passage has a higher heat exchange rate than the refrigerant passage 21c. Will be expensive. Therefore, the refrigerant is transferred to the refrigerant passage 21.
When the refrigerant flows equally to the refrigerant passages 21 and 21d, the heat cannot be exchanged uniformly. However, in this embodiment, the refrigerant amount of the refrigerant passage 21c having a relatively low heat exchange efficiency is reduced by the refrigerant passage 2c.
Since the amount of the refrigerant flowing through 1d is smaller than that of the refrigerant, heat is uniformly exchanged between the refrigerants.

【0028】このような冷媒通路21d、21cへの冷
媒流量の分配は、冷媒通路接続端部43の軸線42と冷
媒導入管41の軸線44との成す角度Rを適当に設定す
ることにより自由に設定されるのである。
The distribution of the refrigerant flow rate to the refrigerant passages 21d and 21c can be freely performed by appropriately setting the angle R between the axis 42 of the refrigerant passage connection end 43 and the axis 44 of the refrigerant introduction pipe 41. It is set.

【0029】ここで、分配管25aにおける冷媒の流れ
について説明する。
Here, the flow of the refrigerant in the distribution pipe 25a will be described.

【0030】一般に、この分配管25aの付近を流れる
冷媒は、気体ー液体の平衡状態にあり、一定量の液冷媒
を含んでいる。そして、このような気液混合の冷媒を、
図7に示すように所定の角度Rを形成した分配管に流す
と、導入管接続端部40に対してL字状に形成された冷
媒通路接続端部41を湾曲して流れるが、このときに冷
媒に遠心力が作用し、重量の重い液体が外側に、重量の
軽い気体が内側に押しやられる状態になり、冷媒の流れ
の外側方向に位置する風上接続端部29cへ多量の液体
が流れ、風下接続端部29dへ少量の液体が流れる。従
って、風上側接続端部29cに冷媒通路21dを接続
し、風下側接続端部29dに冷媒通路21cを接続する
ことによって、冷媒の均一な熱交換をおこなうことがで
きる。
Generally, the refrigerant flowing near the distribution pipe 25a is in a gas-liquid equilibrium state and contains a certain amount of liquid refrigerant. And such a refrigerant of gas-liquid mixture,
As shown in FIG. 7, when flowing through the distribution pipe having a predetermined angle R, the refrigerant pipe connection end 41 formed in an L shape with respect to the introduction pipe connection end 40 flows in a curved manner. A centrifugal force acts on the refrigerant, so that a heavy liquid is pushed outward and a light gas is pushed inside, and a large amount of liquid flows to the windward connection end 29c located in the outward direction of the flow of the refrigerant. A small amount of liquid flows to the leeward connection end 29d. Therefore, by connecting the refrigerant passage 21d to the leeward connection end 29c and connecting the refrigerant passage 21c to the leeward connection end 29d, uniform heat exchange of the refrigerant can be performed.

【0031】分配器25aにおける冷媒の分配比は、R
を適当な値に設定することによって種々の比に分配する
ことができる。例えば、本実施例ではRを30乃至40
度の角度に設定し、分配比を2/5としている。尚、図
7において、Rが0の場合は分配比は1/2と各接続端
部29d、29cに平等に分配され、Rが90度のとき
は接続端部29aのみに液体冷媒が分配される。
The distribution ratio of the refrigerant in the distributor 25a is R
Can be distributed to various ratios by setting to an appropriate value. For example, in this embodiment, R is 30 to 40.
The angle is set in degrees, and the distribution ratio is 2/5. In FIG. 7, when R is 0, the distribution ratio is 1/2, and the distribution ratio is evenly distributed to the connection ends 29d and 29c. When R is 90 degrees, the liquid refrigerant is distributed only to the connection end 29a. You.

【0032】本発明は上述した実施例に限定されず、本
発明の要旨を逸脱しない範囲で種々変形可能である。
The present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0033】例えば、冷媒導入管34は、図4及び図5
に示すように、略L字状に湾曲したものであっても同様
な効果を得ることができる。
For example, the refrigerant introduction pipe 34 is provided in each of FIGS.
As shown in FIG. 5, the same effect can be obtained even if the shape is curved substantially in an L-shape.

【0034】[0034]

【発明の効果】本発明によれば、分配管を略U字形状に
形成し、冷媒通路接続端部と導入管接続端部とをつなぐ
ようにしているから、そのつなぎ部分の角度を変えるこ
とによって、各冷媒通路に流れる冷媒流量を容易に調節
できる。従って、各冷媒通路の熱交換効率が異なる場合
でも、均一な熱交換をすることができ、設計上の制約を
うけることがないので装置の小型化を図ることができ
る。
According to the present invention, since the distribution pipe is formed in a substantially U-shape to connect the refrigerant path connection end and the introduction pipe connection end, the angle of the connection can be changed. Thereby, the flow rate of the refrigerant flowing through each refrigerant passage can be easily adjusted. Therefore, even when the heat exchange efficiencies of the refrigerant passages are different, uniform heat exchange can be performed, and there is no design restriction, so that the size of the apparatus can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例にかかる室外ユニットの前面ケ
ースを取り外した状態の平面図である。
FIG. 1 is a plan view of an outdoor unit according to an embodiment of the present invention with a front case removed.

【図2】本発明の実施例にかかる空気調和機の冷媒回路
図である。
FIG. 2 is a refrigerant circuit diagram of the air conditioner according to the embodiment of the present invention.

【図3】図2に示す熱交換器の側面図である。FIG. 3 is a side view of the heat exchanger shown in FIG.

【図4】図3に示す分配管25bを示す平面図である。FIG. 4 is a plan view showing a distribution pipe 25b shown in FIG.

【図5】図4に示す分配管25bの側面図である。FIG. 5 is a side view of the distribution pipe 25b shown in FIG.

【図6】図3に示す分配管25aを示す平面図である。FIG. 6 is a plan view showing a distribution pipe 25a shown in FIG.

【図7】図6に示す分配管25aの側面図である。FIG. 7 is a side view of the distribution pipe 25a shown in FIG.

【符号の説明】[Explanation of symbols]

1 空気調和機 11 室外熱交換器(熱交換器) 22a,22b 冷媒導入管 25a、25b 分配管 27 導入管接続端部 29c 風上側接続端部 29d 風下側接続端部 41 冷媒通路接続端部 DESCRIPTION OF SYMBOLS 1 Air conditioner 11 Outdoor heat exchanger (heat exchanger) 22a, 22b Refrigerant introduction pipe 25a, 25b Distribution pipe 27 Introduction pipe connection end 29c Upwind connection end 29d Downwind connection end 41 Refrigerant passage connection end

───────────────────────────────────────────────────── フロントページの続き (72)発明者 家村 暁 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 斉藤 貞治 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 小林 淳 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平3−84395(JP,A) 実開 昭57−5683(JP,U) 実開 昭58−192359(JP,U) (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 F25B 41/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Akira Iemura 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Sadaharu Saito 2-18-18 Keihanhondori, Moriguchi-shi, Osaka (72) Inventor Jun Kobayashi 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-3-84395 (JP, A) 5683 (JP, U) Actually open 1983-192359 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F24F 5/00 F25B 41/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 送風空気の風上側と風下側とに冷媒通路
が夫々配置される熱交換器において、 一端に冷媒の導入管が接続される導入管接続端部を有
し、他端に前記風上側と風下側とのそれぞれの冷媒通路
に接続される風上側接続部と風下側接続部とが二股に分
かれて形成された冷媒通路接続端部を有する略U字形状
に形成された分配管を備え、 この分配管は組み立て時には前記導入管接続端部が前記
冷媒通路接続端部に対し回転可能であり、前記風上側接
続部及び前記風下側接続部に対する冷媒の分配比に応じ
て、前記冷媒通路接続端部の軸線と前記冷媒導入管の軸
線との成す角度を設定し、この設定位置で前記導入管接
続端部と前記冷媒通路接続端部とを固定可能に構成した
ことを特徴とする熱交換器。
1. A heat exchanger in which refrigerant passages are respectively arranged on the leeward and leeward sides of blast air, the heat exchanger having an introduction pipe connection end to which a refrigerant introduction pipe is connected at one end and the other end having the introduction pipe connection end. A distribution pipe formed in a substantially U-shape having a refrigerant passage connection end portion in which a leeward connection portion and a leeward connection portion connected to the respective refrigerant passages on the leeward side and the leeward side are bifurcated. In the distribution pipe, the assembling pipe connection end is rotatable with respect to the refrigerant passage connection end at the time of assembly, and according to a distribution ratio of refrigerant to the leeward connection part and the leeward connection part, An angle between the axis of the refrigerant passage connection end and the axis of the refrigerant introduction pipe is set, and the introduction pipe connection end and the refrigerant passage connection end can be fixed at this set position. Heat exchanger.
JP33244092A 1992-11-18 1992-11-18 Heat exchanger Expired - Fee Related JP3219506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33244092A JP3219506B2 (en) 1992-11-18 1992-11-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33244092A JP3219506B2 (en) 1992-11-18 1992-11-18 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH06159735A JPH06159735A (en) 1994-06-07
JP3219506B2 true JP3219506B2 (en) 2001-10-15

Family

ID=18255005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33244092A Expired - Fee Related JP3219506B2 (en) 1992-11-18 1992-11-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3219506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376889B1 (en) 1997-05-13 2002-04-23 Mitsubishi Denki Kabushiki Kaisha Dielectric thin film element and process for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188386A1 (en) * 2022-03-31 2023-10-05 三菱電機株式会社 Heat exchanger and air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575683U (en) * 1980-06-11 1982-01-12
JPS58192359U (en) * 1982-06-16 1983-12-21 株式会社東芝 Structure of bent part of refrigerant transfer pipe connecting pressure reducer and evaporator
JP3030036B2 (en) * 1989-08-23 2000-04-10 昭和アルミニウム株式会社 Double heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376889B1 (en) 1997-05-13 2002-04-23 Mitsubishi Denki Kabushiki Kaisha Dielectric thin film element and process for manufacturing the same

Also Published As

Publication number Publication date
JPH06159735A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
CN101086352B (en) Air conditioner
JPH07208821A (en) Air conditioner
US5964099A (en) Air conditioner coolant circulation route changing apparatus
JP3219506B2 (en) Heat exchanger
JP2875507B2 (en) Air conditioner
JP2002228187A (en) Outdoor-air treating air-conditioner of air-cooled heat- pump type
JPH02103352A (en) Air conditioner
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JPH07208831A (en) Distributor for refrigerator
JP3065290B2 (en) Air conditioner heat exchanger
JPH08128760A (en) Air conditioner
JPH10196984A (en) Air conditioner
US20240151425A1 (en) Air-conditioner
JPH08338668A (en) Multi-room type air conditioner
JPH0791685A (en) Multi-chamber type cooling or heating device
JPH0942743A (en) Air conditioner refrigerant branch unit used therefor
JPH09152216A (en) Air-conditioner
WO2021255917A1 (en) Air conditioner indoor unit
KR100248762B1 (en) heat exchanger of air conditioner
JPH0541300Y2 (en)
JPH09303899A (en) Air conditioner
JPH109718A (en) Air conditioner
JPH0282035A (en) Air conditioner
JP3349265B2 (en) Heat exchanger
KR100239560B1 (en) Capacity compensating apparatus of airconditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees