JP3219028B2 - Pure water heating apparatus and control method thereof - Google Patents

Pure water heating apparatus and control method thereof

Info

Publication number
JP3219028B2
JP3219028B2 JP24997097A JP24997097A JP3219028B2 JP 3219028 B2 JP3219028 B2 JP 3219028B2 JP 24997097 A JP24997097 A JP 24997097A JP 24997097 A JP24997097 A JP 24997097A JP 3219028 B2 JP3219028 B2 JP 3219028B2
Authority
JP
Japan
Prior art keywords
heating
pure water
heating tank
heating means
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24997097A
Other languages
Japanese (ja)
Other versions
JPH1183175A (en
Inventor
仁士 白石
孝文 井伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP24997097A priority Critical patent/JP3219028B2/en
Publication of JPH1183175A publication Critical patent/JPH1183175A/en
Application granted granted Critical
Publication of JP3219028B2 publication Critical patent/JP3219028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、半導体製造工程
等に用いる純水加温装置およびその制御方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pure water heating apparatus used in a semiconductor manufacturing process or the like and a control method thereof.

【0002】[0002]

【従来の技術】従来、半導体製造工程等に用いる純水加
温装置は、図7に示すように、純水供給源21と負荷2
2との間を純水供給路23で接続し、加熱手段(図示省
略)を備えた複数の加温槽24,24,…前記純水供
給路23に直列に設けている。前記加熱手段は、複数
のヒーター挿入パイプ内に、たとえばハロゲンランプ等
を挿入した構成となっている。ところで、前記負荷22
が一時的に純水の要求を中断した場合においても、純水
の特性(管内での純水の滞留により不純物が発生し、純
水の純度が劣化する場合がある。)から前記加熱手段
オフ(OFFとし、純水を少量通水して排水する,
いわゆる節水運転を行っている。しかしながら、前記節
水運転中は、前記加熱手段をオフとしているため、つ
ぎの純水供給時には、純水を加温(たとえば、80℃)
するための時間を必要とし、またこの間の加温純水は、
排水するので省エネ運転にはなっていない。また、立ち
上がり特性をよくするために、節水中も加温を行う
合、節水流量(3リットル/分)はほぼ最大通水量(1
8リットル/分)に対して約15%(ターンダウン率)
程度が最低通水量であった。これは、通水量を下げすぎ
ると、純水が過熱されて、前記加温槽24内で突沸現象
が発生するためである。
2. Description of the Related Art Conventionally, a pure water heating apparatus used in a semiconductor manufacturing process or the like is, as shown in FIG.
Between 2 connected with the pure water supply path 23, pressurized thermal means (not Ministry
) With a plurality of heating tanks 24 , 24 ,.
It is provided in series with the supply path 23 . Wherein each heating means, a plurality of heater insertion pipes, for example of the included configuration halogen lamp or the like. By the way, the load 22
There even when the interrupted temporarily request pure water, (impurities generated by stagnation of pure water in the tube, there are cases where the purity of the pure water is degraded.) Characteristics of the pure water from the respective heating means Is turned off ( OFF ) , drain a small amount of pure water
The so-called water saving operation is performed . However, during the water saving operation, since the respective heating means are turned off , the pure water is heated (for example, 80 ° C.) at the next pure water supply.
Need time to heat, and during this time the heated pure water
Energy saving operation is not performed because the water is drained. In addition, when heating is performed during water saving in order to improve the rising characteristics, the water saving flow rate (3 liters / minute) is almost equal to the maximum water flow rate (1).
Approx. 15% (8 liter / min) (turndown rate)
The degree was the lowest flow rate. This is because if the flow rate is too low, the pure water is overheated and a bumping phenomenon occurs in the heating tank 24.

【0003】[0003]

【発明が解決しようとする課題】この発明が解決しよう
とする課題、節水運転において、流量を極力最小に設
定する省エネ運転を実現するとともに、再起動時の応答
性を改善することである。
SUMMARY OF THE INVENTION This invention is to be solved
The problem to be, in the section water operation, while realizing energy saving operation for setting a flow rate as much as possible minimum, it is a child improve responsiveness during restart.

【0004】[0004]

【課題を解決するための手段】この発明は、前記課題を
解決するためになされたもので、請求項1に記載の発明
は、純水供給源と負荷との間を流量切換弁を備えた純水
供給ラインで接続し、加熱手段をそれぞれ備えた複数の
加温槽を前記純水供給ラインに直列に設け、この各加温
槽の出口側に流路温度センサをそれぞれ設けるととも
に、前記流量切換弁,前記各加熱手段および前記各流路
温度センサを制御器にそれぞれ接続し、前記加熱手段を
デルタ結線した三相継電器を前記制御器に接続したこと
を特徴としている。
SUMMARY OF THE INVENTION The present invention, the problem has been made in order to solve the present invention recited in Motomeko 1 includes a flow switching valve between the load and the deionized water source was connected with a pure water supply line, a plurality of the heating tank having respectively a pressurized heat means in series with said pure water supply line, provided with respective passage temperature sensor to the outlet side of the heating tank, The flow rate switching valve, the respective heating means and the respective flow path temperature sensors are connected to a controller, respectively, and the heating means is connected to the controller.
Connecting a delta-connected three-phase relay to the controller
It is characterized by.

【0005】求項2に記載の発明は、純水供給源と負
荷との間を流量切換弁を備えた純水供給ラインで接続
、加熱手段をそれぞれ備えた複数の加温槽を前記純水
供給ラインに直列に設け、この各加温槽の出口側に流路
温度センサをそれぞれ設けるとともに、前記各加温槽の
いずれか1個の加温槽の外周面または内部に加温槽温度
センサを設け、前記流量切換弁,前記各加熱手段,前記
各流路温度センサおよび前記加温槽温度センサを制御器
それぞれ接続し、前記加熱手段をデルタ結線した三相
継電器を前記制御器に接続したことを特徴としている。
[0005] Motomeko 2 to the described invention, a plurality of heating vessel while connected with the pure water supply line having a flow rate changeover valve, equipped with a pressurized heat means each of the load and the deionized water source The pure water
A flow path temperature sensor is provided in series with the supply line, and a flow path temperature sensor is provided at the outlet side of each of the heating tanks, and a heating tank temperature sensor is provided on the outer peripheral surface or inside of any one of the heating tanks. A three-phase system in which the flow rate switching valve, the respective heating means, the respective flow path temperature sensors and the heating tank temperature sensor are respectively connected to a controller, and the heating means is delta-connected.
A relay is connected to the controller.

【0006】求項3に記載の発明は、請求項1に記載
の純水加温装置の制御方法であって、前記各流路温度セ
ンサの検出値に基づいて、前記各加温槽における前記各
加熱手段をそれぞれPID制御し、節水運転時、前記加
熱手段の制御を前記三相継電器のうちの一相をオフとす
ることにより行うことを特徴としている。
[0006] The invention described in Motomeko 3, claim 1
The method for controlling a pure water heating apparatus according to
Based on the detected values of the sensors,
The heating means are individually PID controlled, and during water saving operation,
Control of the heating means by turning off one of the three-phase relays
It is characterized by performing by doing.

【0007】求項4に記載の発明は、請求項2に記載
の純水加温装置の制御方法であって 、前記加温槽温度セ
ンサの検出値に基づいて、前記各加温槽における前記各
加熱手段をそれぞれPID制御し、節水運転時、前記加
熱手段の制御を前記三相継電器のうちの一相をオフとす
ることにより行うことを特徴としている。
[0007] The invention described in Motomeko 4, Claim 2
A control method for pure water heating apparatus, the heating bath temperature Se
Based on the detected values of the sensors,
The heating means are individually PID controlled, and during water saving operation,
Control of the heating means by turning off one of the three-phase relays
It is characterized by performing by doing.

【0008】求項5に記載の発明は、請求項1に記載
の純水加温装置の制御方法であって、前記流路温度セ
ンサの検出値に基づいて、前記各加温槽における前記各
加熱手段をそれぞれPID制御し、このPID制御のパ
ラメーターを通常運転時と節水運転時とで切り換えるこ
とを特徴としている。
[0008] The invention described in Motomeko 5 is a control method for pure water warming device of claim 1, wherein based on the detected value of the flow path temperature sensors, in each heating tank Each of the heating means is PID controlled, and the PID control is performed.
The parameter can be switched between normal operation and water saving operation.
It is characterized by.

【0009】さらに、請求項6に記載の発明は、請求項
2に記載の純水加温装置の制御方法であって、前記加温
槽温度センサの検出値に基づいて前記各加温槽におけ
る前記各加熱手段をそれぞれPID制御し、このPID
制御のパラメーターを通常運転時と節水運転時とで切り
換えることを特徴としている。
[0009] Further, the invention according to claim 6 provides
3. The method for controlling a pure water heating apparatus according to claim 2 , wherein each of the heating tanks is controlled based on a detection value of the heating tank temperature sensor.
Wherein each heating means respectively PID control that, the PID
Switch control parameters between normal operation and water saving operation.
It is characterized by changing.

【0010】[0010]

【発明の実施の形態】つぎに、この発明の実施の形態に
ついて説明するこの発明は、純水供給源と負荷との間
を流量切換弁を備えた純水供給ラインで接続し、加熱手
段をそれぞれ備えた複数(たとえば、3個)の加温槽を
前記純水供給ラインに直列に設けこの各加温槽の出口
側に流路温度センサをそれぞれ設けるとともに、前記純
水供給ラインの最上流側に配置された加温槽の外周面ま
たは内部に加温槽温度センサを設けた純水加温装置にお
いて実現される。この純水加温装置は、さらに前記流量
切換弁,前記各加熱手段,前記各流路温度センサおよび
加温槽温度センサを信号線を介して制御器にそれぞれ
続した構成としている。
Next, an embodiment of the present invention will be described . The present invention, between the load and the pure water supply source connected with the pure water supply line having a flow rate changeover valve, a plurality with a pressurized heat means respectively (e.g., three) of the heating tank of
Provided in series with the pure water supply line, while providing a flow path temperature sensor at the outlet side of each heating tank, respectively , and on the outer circumferential surface or inside the heating tank arranged at the most upstream side of the pure water supply line This is realized in a pure water heating apparatus provided with a heating tank temperature sensor. Pure water warming device of this further the flow switching valve, wherein the heating means, wherein the contact <br/> connection to the control unit via a respective flow path temperature sensors and heating tank temperature sensor signal line configuration And

【0011】前記加温槽は、透明の石英ガラスで円筒
状のボディを形成し、両端部は、端面部材でそれぞれ
封着している。そして、このボディの上流側外周面に
純水入口を開口し、また下流側外周面に純水出口を開口
し、それぞれ前記純水供給ラインに接続している。そし
て、前記両端面部材を介して複数(たとえば、6本)の
ヒーター挿入パイプを前記ボディ内に設けた構成とな
っている。また、前記加熱手段は、前記各ヒーター挿
入パイプ内に、たとえばハロゲンランプ(1本当り4k
w)を挿入したものである。
[0011] The respective heating tank forms a cylindrical body over a transparent quartz glass, both end portions are respectively <br/> sealed at the end face member. Then, opening the pure water inlet upstream outer peripheral surface of the body over, also pure water outlet open to the downstream side outer circumferential surface, is connected to each of the pure water supply line. Then, the plurality over the both end faces member (e.g., six) has a structure in which a heater insertion pipe into the body over. Further, each of the heating means is provided in each of the heater insertion pipes with, for example, a halogen lamp (4 k per lamp).
w ) is inserted.

【0012】前記純水加温装置の通常運転時において、
前記負荷供給する純水温度を,たとえば80℃に設定
し、前記純水供給ラインの最上流側に配置された加温槽
の出口温度40℃になるように,またつぎの加温槽の
出口温度60℃になるように,さらに最下流側の加温
槽の出口温度設定純水温度の80℃になるように、
記各流路温度センサからの検出値に基づいて前記各加熱
手段をそれぞれPID制御している。前記加温槽の加
熱制御は、各出口温度を検出して所定の設定温度になる
ように前記各加熱手段供給する電力をそれぞれ調節す
る。この各電力調節は、それぞれの検出温度に対し、P
ID値(比例・積分・微分値),すなわちPIDパラメ
ーターを個々に設定し、迅速かつ変動の少ない温度制御
行う。また、前記各加熱手段の加熱量の最大値におけ
る純水の最大流量は予め設定されており、この設定値に
基づいて前記流量切換弁で純水の流量を調節するように
している。
[0012] In normal operation of the previous KiJun water heating equipment,
Pure water temperature supplied to the load, for example, set to 80 ° C., the as outlet temperature of the heating tank disposed on the most upstream side of the pure water supply line is 40 ° C., The heating tank of the following as the outlet temperature of the is 60 ° C., as the outlet temperature of the heating tank of the most downstream side is 80 ° C. set pure water temperature further, before
Serial are respectively PID controlling the respective heating means based on a detected value from the flow path temperature sensors. Heating of each heating tank
Thermal control adjusts each power supply by detecting the outlet temperature to the respective heating means to a predetermined set temperature. Each of these power adjustments is based on P
An ID value (proportional / integral / differential value), that is, a PID parameter is individually set to perform temperature control quickly and with little fluctuation. The front Symbol maximum flow rate of the pure water at the maximum value of the heat quantity of the heating means is set in advance, so that adjusting the flow rate of pure water at the flow rate switching valve on the basis of the set value.

【0013】つぎに、この発明に係る節水運転時におけ
る前記純水加温装置の制御方法について説明する。この
発明の制御方法は、まず前記通常運転時におけるPID
制御のパラメーターを節水運転時のパラメーター切り
換える。すなわち、前記最上流側に配置された加温槽の
出口温度を設定純水温度の80℃になるように設定し、
他の加温槽の加熱手段はすべてオフ(OFFとする。
したがって、最上流側に配置した加温槽だけの運転とな
って運転台数が1/3となり、節水運転時における流量
を1/3にしても突沸が生じない。そして、最上流側の
加温槽以降の加温槽は、加熱した温水が流れるので、つ
ぎの通常運転時の立ち上りが早い。さらに、通常運転時
のPIDパラメーターの定数がたとえば「8・15・
2」であったものを、節水時にはたとえば「18・16
0・26」変更し、応答性をさらに改善する。これ
は、節水流量が極端に下がると、温度変化速度が小さく
なるので、その特性にあわせるためには、PID値も大
幅に変更することで応答特性が改善でき、それによっ
て、過熱部分などができずに一定の水温の制御が可能と
なる。また、節水流量の調節は、前記流量切換弁で調節
する。以上の制御方法を実施することにより、ターンダ
ウン比率を従来の15%から1%程度まで下げることが
でき、節水流量を下げることができる。
Next, a method for controlling the pure water heating apparatus during the water saving operation according to the present invention will be described. According to the control method of the present invention, first, the PID during the normal operation is used.
The parameters of the control to the water-saving operation when the parameter changing cut <br/>. That is, the outlet temperature of the heating tank arranged on the uppermost stream side is set to be 80 ° C. of the set pure water temperature,
All other heating means of the heating tank are turned off ( OFF ) .
Therefore, it and the operation of only heating tank disposed on the most upstream side
Therefore, even if the flow rate during the water saving operation is reduced to 1/3, bumping does not occur . Then, in the heating tanks after the heating tank on the most upstream side, heated warm water flows, so that the rising in the next normal operation is quick. Further, the constant of the PID parameter during normal operation is, for example, “8.15.
What was "2."
0.26 " to further improve responsiveness. This is because, when the water saving flow rate drops extremely, the temperature change rate decreases, and in order to meet the characteristics, the response characteristics can be improved by greatly changing the PID value, thereby making it possible to generate overheated parts. A constant control of the water temperature is possible without the need. The water saving flow rate is adjusted by the flow rate switching valve. By implementing the above control method, the turndown ratio can be reduced from 15% of the conventional to about 1%.
Can, it is possible to lower the water-saving flow rate.

【0014】また、前記加熱手段(ハロゲンランプ)を
デルタ結線した三相継電器を信号線を介して前記制御器
に接続する構成とし、前記加熱手段の制御を前記三相継
電器のうちの一相をオフとし、前記加熱手段の加熱量
軽減して制御する。
A three-phase relay in which the heating means (halogen lamp) is delta-connected is connected to the controller via a signal line, and the heating means is controlled by controlling one phase of the three-phase relay. Turn off and control by reducing the heating amount of the heating means.

【0015】さらに、前記構成においては、前記最上流
側に配置した加温槽に前記加温槽温度センサを設けた構
成で説明したが、前記加温槽温度センサのわりに、前
加温槽の出口側に設けた前記各流路温度センサで代
行させることも実施に応じて好適である。
Furthermore, in the above configuration, the have been described in the configuration in which the heating tank temperature sensor in heating tank disposed on the most upstream side, the die of the heating tank temperature sensor Warini, wherein each warming It is also preferable to substitute each of the flow path temperature sensors provided on the outlet side of the tank depending on the implementation.

【0016】以上説明したように、この発明の純水加温
装置および制御方法によれば、節水運転時における純水
温度コントロールすることができるとともに、前記
熱手段の加熱量も最値とすることができるので、つぎ
の起動時における純水温度の応答性と省エネ運転に効果
をあげることができる。
[0016] As described above, according to the pure water heating apparatus and a control method of the present invention, it is possible to control the pure water temperature during water-saving operation, the heating amount of said pressurized <br/> thermal means also can be the minimum value, it is possible to increase the effect on the next responsiveness of pure water temperature and the energy saving operation at startup.

【0017】[0017]

【実施例】以下、この発明の具体的実施例を図面に基づ
いて詳細に説明する。図1は、この発明を実施した純水
加温装置の構成を概略的に示す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view schematically showing a configuration of a pure water heating apparatus embodying the present invention.

【0018】図1において、純水供給源1と負荷2との
間を流量切換弁3を備えた純水供給ライン4で接続し
熱手段6(図2参照)を備えた複数(この実施例では
No.1,No.2およびNo.3の3個)の加温槽
5,5,…を前記純水供給ライン4に直列に設けている
(以下、No.1の加温槽5を「第一加温槽5」と云
い、No.2の加温槽5を「第二加温槽5」と云い、N
o.3の加温槽5を「第三加温槽5」と云う。)。そし
、この各加温槽5の出口側に流路温度センサ7,7,
…をそれぞれ設けるとともに、前記純水供給ライン4の
最上流側に配置された前記第一加温槽5の外周面に加温
槽温度センサ8を設け、前記流量切換弁3,前記各加熱
手段6,前記各流路温度センサ7おび前記加温槽温度セ
ンサ8を信号線9,9,…を介して制御器10にそれぞ
接続した構成としている。
In FIG. 1, a pure water supply source 1 and a load 2 are connected by a pure water supply line 4 provided with a flow rate switching valve 3 .
Pressurized thermal means 6 more having a (see FIG. 2) (in this example No.1, No.2 and 3 No.3) of heating tank 5,5, ... the pure water supply line 4 a It is provided in series
(Hereinafter, the heating tank 5 of No. 1 is referred to as “first heating tank 5”.
No. The second heating tank 5 is referred to as “second heating tank 5”, and N
o. The third heating tank 5 is referred to as “third heating tank 5”. ). Soshi
The flow path temperature sensors 7, 7, and
... with the respectively provided, the pure water supply line heating tank temperature sensor 8 on the outer peripheral surface of the first heating tank 5 disposed on the most upstream side of the 4 provided, the flow control valve (3), wherein each heating means 6, the flow path temperature sensor 7 and the heating tank temperature sensor 8 are sent to the controller 10 via signal lines 9 , 9 ,.
And connected.

【0019】つぎに、前記加温槽5の構成について説
明する。図2は、前記加温槽5の縦断面図であり、ま
た図3は左側面図であり、さらに図4は右側面図であ
る。前記加温槽5は、図2に示すように、長手方向に
所定の長さを有する円筒状のボディー11により構成さ
れている。このボディー11の両端部は、前記ボディー
11の母線に対して、垂直となるようにそれぞれ形成さ
れている。このように形成された両端部において、まず
その上流側端部(図2の左側)は、上流側端面部材12
で封着されており、またその下流側端部(図2の右側)
は、下流側端面部材13で封着されている。
Next, the configuration of each heating tank 5 will be described. FIG. 2 is a longitudinal sectional view of each heating tank 5, FIG. 3 is a left side view, and FIG. 4 is a right side view. As shown in FIG. 2, each of the heating tanks 5 includes a cylindrical body 11 having a predetermined length in a longitudinal direction. Both ends of the body 11 are formed so as to be perpendicular to the generatrix of the body 11. First, the upstream end (left side in FIG. 2) of the both end portions formed in this manner is connected to the upstream end surface member 12.
And the downstream end (right side in FIG. 2)
Are sealed by the downstream end face member 13.

【0020】そして、前記両端面部材12,13によ
り、その両端部を封着された前記ボディー11内には、
複数本のヒータ挿入パイプ14,14,…が挿入され
ている(この実施例においては、6本のヒータ挿入パ
イプ14が挿入されている。図3および図4参照)。こ
の各ヒータ挿入パイプ14は、前記両端面部材12,
13と直交するように挿入されており、それぞれの両端
部は、前記両端面部材12,13に固着された状態でそ
れぞれ装着されている。この点において、前記各ヒータ
挿入パイプ14は、前記ボディー11の母線と平行状
態でそれぞれ装着されていることになる。
[0020] Then, by the end surfaces members 12 and 13, inside the body 11 which is sealed both ends thereof,
A plurality of heaters insertion pipe 14, 14, ... are inserted (in this example, reference is. FIGS. 3 and 4 with six heaters insertion pipe 14 is inserted). Each heaters inserted pipe 14, the end faces member 12,
13 are inserted orthogonally to each other, and both ends thereof are attached to the both end face members 12 and 13 in a state of being fixed thereto. In this regard, each of the heaters
-The insertion pipes 14 are mounted in parallel with the generatrix of the body 11, respectively.

【0021】前記ボディー11の上流側端部の下部外周
面近傍に純水入口管15を設けている。また、前記ボデ
ィー11の下流側端部の上部外周面近傍に純水出口管1
6を設けている。そして、前記純水入口管15および前
記純水出口管16は、前記純水供給ライン4にそれぞれ
接続されている。ここで、前記ボディー11,前記両端
面部材12,13,前記各ヒーター挿入パイプ14,前
記純水入口管15および前記純水出口管16を一体成形
することも実施に応じて好適である。
A pure water inlet pipe 15 is provided in the vicinity of a lower outer peripheral surface of the upstream end of the body 11. Further, a pure water outlet pipe 1 is provided near the upper outer peripheral surface of the downstream end of the body 11.
6 are provided. The pure water inlet pipe 15 and the pure water outlet pipe 16 are connected to the pure water supply line 4 respectively. Here, it is preferable to integrally mold the body 11, the end face members 12, 13, the respective heater insertion pipes 14, the pure water inlet pipe 15, and the pure water outlet pipe 16 according to the embodiment.

【0022】前記加熱手段6は、前記各ヒーター挿入
パイプ14内に、たとえばハロゲンランプ(たとえば、
1本当り4kw)が挿入されている。この各ハロゲンラン
プの制御手段として、この実施例においては、図5に示
すように、前記ハロゲンランプを3本単位でデルタ結線
した三相継電器17を信号線9を介して前記制御器10
に接続している。ここにおいて、電源としては、3本の
電線R,S,Tを有する三相電源が用いられている。
Each of the heating means 6 is provided in each of the heater insertion pipes 14 with, for example, a halogen lamp (for example,
4 kW per one) is inserted . As a control means for each of the halogen lamps, in this embodiment, as shown in FIG. 5, a three-phase relay 17 in which the halogen lamps are delta-connected in units of three is connected to the controller 10 via a signal line 9.
Connected to Here, three power supplies are used.
A three-phase power supply having wires R, S, and T is used.

【0023】つぎに、前記構成の純水加温装置における
通常運転時の制御方法を簡単に説明すると、まず前記
荷2供給する純水温度を,たとえば80℃に設定
る。また、前記第一加温槽5の出口温度を40℃に設定
、つぎの前記第二加温槽5の出口温度を60℃に設定
、さらに前記第三加温槽5の出口温度を設定純水温度
の80℃に設定する。そして、前記各流路温度センサ7
からの検出値に基づいて前記各加熱手段6をそれぞれP
ID制御し、所定温度の純水を供給する。一方、前記
水供給源1からの純水供給流量は、その最大流量が、前
加熱手段6の加熱量が最大値(6本×4kw=24k
w前記加温槽5が3個で24kw×3=72kw)のと
き、18リットル/分としている。
Next, <br/> the normal briefly illustrating a method of controlling the time of operation in the pure water heating device of the above construction, the first pure water temperature supplied the to negative <br/> load 2, for example 80 Set to ° C
You. Also, the outlet temperature of the first heating tank 5 is set to 40 ° C.
Then , the outlet temperature of the second heating tank 5 is set to 60 ° C.
Then , the outlet temperature of the third heating tank 5 is set to the set pure water temperature of 80 ° C. Then, each of the flow path temperature sensors 7
P each said respective heating means 6 based on the detected value from the
And ID control, provided feeding pure water at a predetermined temperature. Meanwhile, the pure water supply flow rate from the pure water supply source 1, the maximum flow rate, the maximum value (six × 4 kw = 24 k heating amount of the respective heating means 6
w , when the number of the heating tanks 5 is 24 kw × 3 = 72 kw ), the rate is 18 liter / min.

【0024】つぎに、この発明に係る節水運転時の制御
方法について説明する。この制御方法は、節水運転中に
おける省エネルギーと再起動時の応答性の改善を目的と
したものであって、前記第一加温槽5の出口側温度を
定純水温度の80℃に設定し、前記加温槽温度センサ8
の検出値に基づいて、前記加熱手段6を前記制御器10
を介してPID制御するものである。したがって、前記
第一加温槽5以外の前記第二加温槽5および前記第三
温槽5の各加熱手段6はオフ(OFFとしているが、
前記第三加温槽5の出口温度はほぼ設定温度の80℃と
なり、再起動時の純水供給に対応することができる。
Next, a control method during the water saving operation according to the present invention will be described. This control method is a improved responsiveness of energy conservation and restart during saving operation is intended, set the outlet temperature of the first heating tank 5
Set to 80 ° C. of TeiJun water temperature, the heating bath temperature sensor 8
Based on the detected values, the controller 10 of the heating means 6
The PID control is performed via the. Therefore, the
Although the heating means 6 of the second heating tank 5 and the third heating tank 5 other than the first heating tank 5 are off ( OFF ) ,
The outlet temperature of the third heating tank 5 becomes approximately the set temperature of 80 ° C., which can correspond to pure water supply at the time of restart.

【0025】前記PID制御は、まずPID制御のパラ
メーターを前記通常運転時のパラメーターから節水運転
時のパラメーター切り換える。すなわち、前記第一
温槽5の出口温度を80℃に設定し、前記第二加温槽5
および前記第三加温槽5の各加熱手段6をオフとする。
したがって、前記第一加温槽5の加熱手段6の最小加熱
量は、4kw×3本=12kwとなり、節水流量は3リット
ル/分となる。そして、この発明の制御方法では、さら
に前記加熱手段6の最小加熱量を低下させる手段とし
て、前記三相継電器17のうちの一相(SW2)を、図
6に示すように、オフとする電圧制御を行う。この電圧
制御により、3本のハロゲンランプのうち2本のハロゲ
ンランプについては、1本にかかる電圧および電流が半
減されるので、3本のハロゲンランプの加熱量は12kw
から6kwへ低減されて過熱が起こりにくくなり、したが
って突沸現象を防止することができる。さらに、この発
明では、前記通常運転時のPIDパラメーターの定数が
たとえば「8・15・2」であったものを節水時はたと
ば「18・160・26」変更し、応答性をさらに
改善することもできる。そして、前記加温槽温度センサ
8の検出値に基づいて前記加熱手段6の加熱量をPID
制御し、最小流量(前記流量切換弁3を節水流量に切換
える。)と最小加熱量で所定の純水温度となるように節
水運転を行うものである。
[0025] The PID control, first switch the parameters of the PID control to the parameters during the saving operation from parameters during the normal operation. That is, setting the outlet temperature of the first heating tank 5 to 80 ° C., the second heating tank 5
Further, each heating means 6 of the third heating tank 5 is turned off .
Therefore, the minimum heating amount of the heating means 6 of the first heating tank 5 is 4 kw × 3 = 12 kw , and the water saving flow rate is 3 liter / min. In the control method of the present invention, as a means for further reducing the minimum heating amount of the heating means 6, a voltage for turning off one phase (SW2) of the three-phase relay 17 as shown in FIG. Perform control. With this voltage control, the voltage and current applied to one of the two halogen lamps among the three halogen lamps are reduced by half, so that the heating amount of the three halogen lamps is 12 kW.
To 6 kw, so that overheating is less likely to occur, and thus bumping can be prevented. Further, in this invention, the usual constant of the PID parameter is changed to For example, Hatato <br/> example when "8, 15, 2" a which was what the section water "18-160, 26" during operation In addition, the responsiveness can be further improved. Then, PID pressurized heat of the heating means 6 on the basis of the detected value of the heating tank temperature sensor 8
Controlled, (switching the flow switching valve 3 to the water-saving rate.) The minimum flow rate and performs a saving driving to a predetermined pure water temperature in a minimum amount of heating.

【0026】前記実施例では、前記第一加温槽5の外周
面に前記加温槽温度センサ8を設けた構成としたが、前
記加温槽温度センサ8のわりに、前記第一加温槽5の
出口側に設けた流路温度センサ7で代行させることも実
施に応じて好適である。
[0026] In the above embodiment, although the above provided heating tank temperature sensor 8 configured on the outer peripheral surface of the first heating tank 5, instead, the first heating of the heating tank temperature sensor 8 It is also preferable to substitute the flow path temperature sensor 7 provided on the outlet side of the tank 5 according to the embodiment.

【0027】[0027]

【発明の効果】の発明によれば、再起動時に供給する
純水温度の応答性を向上させることができるとともに、
省エネ運転に効果をあげることができる。
According to this invention, according to the present invention, it is possible to improve the response of the pure water temperature supplied during restarting,
This can be effective for energy saving driving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を実施した純水加温装置の構成を概略
的に示す説明図である。
FIG. 1 is an explanatory view schematically showing a configuration of a pure water heating apparatus embodying the present invention.

【図2】図1の加温槽を拡大して示す縦断面図である。FIG. 2 is an enlarged longitudinal sectional view showing a heating tank of FIG. 1;

【図3】図2の左側面図である。FIG. 3 is a left side view of FIG. 2;

【図4】図2の右側面図である。FIG. 4 is a right side view of FIG. 2;

【図5】この発明の通常運転時における三相継電器の説
明図である。
FIG. 5 is an explanatory diagram of a three-phase relay during normal operation of the present invention .

【図6】この発明の節水運転時における三相継電器の説
明図である。
FIG. 6 is an explanatory diagram of a three-phase relay during a water saving operation according to the present invention .

【図7】従来の純水加温装置の構成を概略的に示す説明
図である。
FIG. 7 is an explanatory view schematically showing a configuration of a conventional pure water heating apparatus.

【符号の説明】 1 純水供給源 2 負荷 3 流量切換弁 4 純水供給ライン 5 加温槽 6 加熱手段 7 流路温度センサ 8 加温槽温度センサ 9 信号線 10 制御器 17 三相継電器[Description of Signs] 1 Pure water supply source 2 Load 3 Flow rate switching valve 4 Pure water supply line 5 Heating tank 6 Heating means 7 Flow path temperature sensor 8 Heating tank temperature sensor 9 Signal line 10 Controller 17 Three-phase relay

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 純水供給源1と負荷2との間を流量切換
弁3を備えた純水供給ライン4で接続し、加熱手段6を
それぞれ備えた複数の加温槽5,5,…を前記純水供給
ライン4に直列に設け、この各加温槽5の出口側に流路
温度センサ7,7,…をそれぞれ設けるとともに、前記
流量切換弁3,前記各加熱手段6および前記各流路温度
センサ7を制御器10にそれぞれ接続し、前記加熱手段
6をデルタ結線した三相継電器17を前記制御器10に
接続したことを特徴とする純水加温装置。
1. A pure water supply source 1 and the load 2 and between the connecting pure water feed line 4 equipped with a flow control valve (3), a plurality of heating tank having a pressurized heat means 6, respectively 5,5, ... the pure water supply
Are provided in series with the line 4 and flow path temperature sensors 7, 7,... Are respectively provided on the outlet side of the respective heating tanks 5, and the flow rate switching valve 3, the respective heating means 6, and the respective flow path temperature sensors 7 are provided. Are connected to the controller 10, respectively, and the heating means
6 is connected to the controller 10 with a three-phase relay 17
Pure water heating device characterized by being connected .
【請求項2】 純水供給源1と負荷2との間を流量切換
弁3を備えた純水供給ライン4で接続し、加熱手段6を
それぞれ備えた複数の加温槽5,5,…を前記純水供給
ライン4に直列に設け、この各加温槽5の出口側に流路
温度センサ7,7,…をそれぞれ設けるとともに、前記
各加温槽5のいずれか1個の加温槽の外周面または内部
に加温槽温度センサ8を設け、前記流量切換弁3,前記
各加熱手段6,前記各流路温度センサ7および前記加温
槽温度センサ8を制御器10にそれぞれ接続し、前記加
熱手段6をデルタ結線した三相継電器17を前記制御器
10に接続したことを特徴とする純水加温装置。
2. A pure water supply source 1 and the load 2 and between the connecting pure water feed line 4 equipped with a flow control valve (3), a plurality of heating tank having a pressurized heat means 6, respectively 5,5, ... the pure water supply
Are provided in series with the line 4, and flow path temperature sensors 7, 7,... Are respectively provided on the outlet side of the respective heating tanks 5, and the outer peripheral surface of any one of the heating tanks 5 or A heating tank temperature sensor 8 is provided inside, and the flow rate switching valve 3, the respective heating means 6, the respective flow path temperature sensors 7 and the heating tank temperature sensor 8 are connected to a controller 10, respectively.
The three-phase relay 17 in which the heating means 6 is delta-connected is connected to the controller
10. A pure water heating apparatus, wherein the apparatus is connected to 10 .
【請求項3】 請求項1に記載の純水加温装置の制御方
法であって、前記各流路温度センサ7の検出値に基づい
て、前記各加温槽5における前記各加熱手段6をそれぞ
れPID制御し、節水運転時、前記加熱手段6の制御を
前記三相継電器17のうちの一相をオフとすることによ
り行うことを特徴とする純水加温装置の制御方法。
3. A method for controlling a pure water heating apparatus according to claim 1.
Based on the detection values of the flow path temperature sensors 7
And each heating means 6 in each heating tank 5
PID control and control of the heating means 6 during water saving operation.
By turning off one phase of the three-phase relay 17,
A method of controlling a pure water heating apparatus.
【請求項4】 請求項2に記載の純水加温装置の制御方
法であって、前記加温槽温度センサ8の検出値に基づい
て、前記各加温槽5における前記各加熱手段6をそれぞ
れPID制御し、節水運転時、前記加熱手段6の制御を
前記三相継電器17のうちの一相をオフとすることによ
り行うことを特徴とする純水加温装置の制御方法。
4. A method for controlling a pure water heating apparatus according to claim 2.
A method based on a detection value of the heating tank temperature sensor 8.
And each heating means 6 in each heating tank 5
PID control and control of the heating means 6 during water saving operation.
By turning off one phase of the three-phase relay 17,
A method of controlling a pure water heating apparatus.
【請求項5】 請求項1に記載の純水加温装置の制御方
法であって、前記流路温度センサ7の検出値に基づい
て、前記各加温槽5における前記各加熱手段6をそれぞ
れPID制御し、このPID制御のパラメーターを通常
運転時と節水運転時とで切り換えることを特徴とする純
水加温装置の制御方法。
5. The method of controlling a pure water heating apparatus according to claim 1, wherein each heating means in each heating tank is controlled based on a value detected by each flow path temperature sensor. PID control is performed, and the parameters of this PID control are
A method for controlling a pure water heating apparatus, wherein the method switches between operation and water saving operation .
【請求項6】 請求項2に記載の純水加温装置の制御方
法であって、前記加温槽温度センサ8の検出値に基づい
前記各加温槽5における前記各加熱手段6をそれぞ
れPID制御し、このPID制御のパラメーターを通常
運転時と節水運転時とで切り換えることを特徴とする純
水加温装置の制御方法。
6. A control method for pure water warming device according to claim 2, wherein based on a detection value of the heating tank temperature sensor 8, the respective heating means 6 in each of the heating bath 5 PID control is performed, and the parameters of this PID control are
A method for controlling a pure water heating apparatus, wherein the method switches between operation and water saving operation .
JP24997097A 1997-08-29 1997-08-29 Pure water heating apparatus and control method thereof Expired - Fee Related JP3219028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24997097A JP3219028B2 (en) 1997-08-29 1997-08-29 Pure water heating apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24997097A JP3219028B2 (en) 1997-08-29 1997-08-29 Pure water heating apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JPH1183175A JPH1183175A (en) 1999-03-26
JP3219028B2 true JP3219028B2 (en) 2001-10-15

Family

ID=17200906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24997097A Expired - Fee Related JP3219028B2 (en) 1997-08-29 1997-08-29 Pure water heating apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP3219028B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986559B2 (en) 2006-09-25 2012-07-25 株式会社Kelk Fluid temperature control apparatus and method
JP6638543B2 (en) * 2016-04-26 2020-01-29 三浦工業株式会社 Heated water production system
US11060764B2 (en) * 2018-11-13 2021-07-13 White Knight Fluid Handling Inc. On-demand heater and temperature control system and related process

Also Published As

Publication number Publication date
JPH1183175A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
KR20040087520A (en) moment heating device for hot-water supply and refrigerator having the same
JP3219028B2 (en) Pure water heating apparatus and control method thereof
JP2007040588A (en) Water heater
JP3219029B2 (en) Pure water heater
JPH1079294A (en) Hot water supply device
GB1582268A (en) Hot water installations
JP3963610B2 (en) Liquid heating device
JP2000120136A (en) Controller for hot water cleaning stool seat
JPH09115647A (en) Heater for generating hot air
JP3919962B2 (en) Fluid temperature control device
JPS59153057A (en) Hot water feeder
JPH11337163A (en) Connector device for auxiliary hot water feeding device
JPS6196355A (en) Instantaneous electric water heter
CN214333044U (en) Water heating mechanism and instant heating type tea bar machine adopting same
JP2002140119A (en) Work temperature controller
KR0179938B1 (en) Exposure device for wafer
CN115211726B (en) Instant drinking water outlet control method and instant drinking water machine
JP2007103051A (en) Fuel cell co-generation system
JP2018053535A (en) Sanitary washing device
JPS58124151A (en) Controlling apparatus of hot water storage type electric water heater
JPH0345294B2 (en)
JP3760694B2 (en) Sanitary washing device
JP2000018624A (en) Instantaneous water heater
JPH0394287A (en) Fixing device
JPH05324101A (en) Heater element and heater control device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees