JP3216013B2 - Plasma chamber - Google Patents

Plasma chamber

Info

Publication number
JP3216013B2
JP3216013B2 JP32236897A JP32236897A JP3216013B2 JP 3216013 B2 JP3216013 B2 JP 3216013B2 JP 32236897 A JP32236897 A JP 32236897A JP 32236897 A JP32236897 A JP 32236897A JP 3216013 B2 JP3216013 B2 JP 3216013B2
Authority
JP
Japan
Prior art keywords
plasma chamber
plasma
chamber
ozone
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32236897A
Other languages
Japanese (ja)
Other versions
JPH11145064A (en
Inventor
国彦 小池
吾一 井上
達生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18142873&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3216013(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP32236897A priority Critical patent/JP3216013B2/en
Publication of JPH11145064A publication Critical patent/JPH11145064A/en
Application granted granted Critical
Publication of JP3216013B2 publication Critical patent/JP3216013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は、半導体製造工程で薄膜
形成等に使用されるプラズマチャンバーに関する。
The present invention relates to a plasma chamber used for forming a thin film in a semiconductor manufacturing process.

【0002】[0002]

【従来の技術】半導体製造工程での薄膜形成等に使用さ
れるプラズマチャンバーでは、その製造過程でチャンバ
ー内表面にポリシリコンやアモルファスシリコンが付着
する。チャンバー内面に付着したポリシリコンやアモル
ファスシリコンは製品精度に影響を及ぼすため、三フッ
化窒素等のクリーニングガスで付着物を除去するように
している。
2. Description of the Related Art In a plasma chamber used for forming a thin film in a semiconductor manufacturing process, polysilicon or amorphous silicon adheres to the inner surface of the chamber during the manufacturing process. Polysilicon and amorphous silicon adhering to the inner surface of the chamber affect the accuracy of the product, so that the adhering matter is removed by a cleaning gas such as nitrogen trifluoride.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来のプラ
ズマチャンバーは、ステンレス鋼を鏡面仕上げしただけ
であることから、クリーニング時のクリーニングガスで
アタックされ、特に、三フッ化窒素を使用してプラズマ
を立ててのクリーニング時には、プラズマチャンバー内
面がフッ素によって腐食され、その表面が激しく荒れる
という問題があった。
However, since the conventional plasma chamber has only a mirror-finished stainless steel, it is attacked with a cleaning gas at the time of cleaning. In particular, the plasma is formed using nitrogen trifluoride. At the time of vertical cleaning, there is a problem that the inner surface of the plasma chamber is corroded by fluorine and the surface is severely roughened.

【0004】本発明は、このような点に着目し、腐食性
ガスに対して耐プラズマ性のあるプラズマチャンバーを
提供することを目的とする。
The present invention has been made in view of such a point, and an object of the present invention is to provide a plasma chamber having plasma resistance to corrosive gas.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
め本発明は、プラズマチャンバーに60VOL%以上の高
濃度オゾンガスを封入することにより、不動態化処理を
施したことを特徴としている。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a plasma chamber having a high pressure of 60 VOL% or more.
It is characterized in that a passivation treatment is performed by enclosing a concentration ozone gas .

【0006】[0006]

【発明の作用】本発明では、プラズマチャンバーの内表
面を不動態化処理しているので、クリーニングガスに三
フッ化窒素を使用してプラズマクリーニングしても、チ
ャンバー内面が荒らされることがない。
According to the present invention, since the inner surface of the plasma chamber is passivated, the inner surface of the chamber is not roughened even if plasma cleaning is performed using nitrogen trifluoride as a cleaning gas.

【0007】[0007]

【発明の実施の形態】半導体製造装置に配置されている
SUS316L製のプラズマチャンバーに高濃度のオゾ
ンガス(60 VOL%)を室温で封入し、48時間放置する
ことにより、プラズマチャンバーの内壁面に不動態膜を
厚さ100Å程度に形成する。
BEST MODE FOR CARRYING OUT THE INVENTION A high concentration ozone gas (60 VOL%) is sealed at room temperature in a SUS316L plasma chamber arranged in a semiconductor manufacturing apparatus and left for 48 hours, so that the inner wall surface of the plasma chamber becomes improper. A dynamic film is formed to a thickness of about 100 °.

【0008】プラズマチャンバーに供給する高濃度オゾ
ンガスは、図1に示すように、液化酸素ガス等の酸素供
給源(1)から導出した酸素ガスをオゾン発生器(2)に通
して、5〜10 VOL%残り酸素程度のオゾンガスを発生
させ、シリカゲル等の吸着剤使用してなるオゾン濃縮器
(3)に前記発生オゾンガスを供給することにより、オゾ
ンガスを60〜100 VOL%程度の濃度に濃縮したもの
を使用する。
As shown in FIG. 1, the high-concentration ozone gas supplied to the plasma chamber is supplied with an oxygen gas derived from an oxygen supply source (1) such as liquefied oxygen gas through an ozone generator (2). Ozone concentrator that generates ozone gas of about VOL% remaining oxygen and uses an adsorbent such as silica gel
By supplying the generated ozone gas to (3), the ozone gas used is concentrated to a concentration of about 60 to 100 VOL%.

【0009】図2はオゾン処理前後でのSUS316L
表面のGDSプロフアイルであり、図2Aはオゾン処理
前のGDSプロフアイル、図2Bはオゾン処理後のGD
Sプロフアイルであり、この両者を見ると、オゾンガス
で処理することにより、チャンバー表面に不動態膜が形
成されていることがわかる。
FIG. 2 shows SUS316L before and after ozone treatment.
FIG. 2A shows a GDS profile before ozone treatment, and FIG. 2B shows a GD after ozone treatment.
It is an S profile, and it can be seen from the both that a passivation film was formed on the chamber surface by the treatment with the ozone gas.

【0010】このようにしてオゾンガスにより内面を不
動態化処理したものと、不動態化処理を施さなかったプ
ラズマチャンバーに、それぞれアルゴンで37.5%に
希釈した三フッ化窒素ガスを導 入し、280℃、0.5
Torr、0.42w/cm2の条件で5分間プラズマを発生さ
せた後のプラズマチャンバー内面を目視及びSEM観察
したところ、次のようになった。
[0010] Nitrogen trifluoride gas diluted to 37.5% with argon was introduced into the plasma chamber whose inner surface was passivated by the ozone gas and the plasma chamber not subjected to the passivation process. 280 ° C, 0.5
The inner surface of the plasma chamber after generating plasma for 5 minutes under the conditions of Torr and 0.42 w / cm 2 was visually and SEM-observed.

【0011】オゾン不動態化処理を施していないチャン
バーでは、プラズマ照射により、全体的に黄茶色に変色
し、部分的に紫色を帯びていたのに対し、オゾン不動態
化処理を施したものでは、プラズマ照射の前後で目視に
より確認できる変化は見られなかった。
In the chamber not subjected to the ozone passivation treatment, the whole was changed to yellow-brown and partially purple by plasma irradiation, whereas the chamber not subjected to the ozone passivation treatment did not. There was no visible change before and after the plasma irradiation.

【0012】また、図3の電子顕微鏡写真によると、不
動態化処理を施していないチャンバーの内表面(3A)は
三フッ化窒素プラズマによって激しく荒れていることが
確認できるが、不動態化処理を施したもの(3B)では、
三フッ化窒素プラズマ照射後ももとの内表面(3C)とほ
とんど変わらないことが確認できる。
According to the electron micrograph of FIG. 3, it can be confirmed that the inner surface (3A) of the chamber not subjected to the passivation treatment is severely roughened by the nitrogen trifluoride plasma. (3B)
It can be confirmed that there is almost no difference from the original inner surface (3C) even after irradiation with the nitrogen trifluoride plasma.

【0013】さらに、チャンバー内表面での数百オング
ストロームの深さについてX線光電子分光分析でフッ素
濃度を分析したところ、不動態化処理をしていない表面
からは不動態化処理をした表面に比べて約5倍の多量の
フッ素が検出された。
Further, when the fluorine concentration was analyzed by X-ray photoelectron spectroscopy at a depth of several hundred angstroms on the inner surface of the chamber, the surface not subjected to the passivation treatment was compared with the surface subjected to the passivation treatment. About 5 times as much fluorine was detected.

【0014】[0014]

【発明の効果】本発明は、プラズマチャンバーの内表面
を不動態化処理しているので、クリーニングガスとして
三フッ化窒素を使用してプラズマクリーニングしても、
チャンバー内面が荒らされることがなく、腐食性ガスに
対して耐プラズマ性のあるプラズマチャンバーを提供す
ることができる。
According to the present invention, since the inner surface of the plasma chamber is passivated, plasma cleaning using nitrogen trifluoride as a cleaning gas can be performed.
A plasma chamber having plasma resistance to corrosive gas without roughening the inner surface of the chamber can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高濃度オゾン発生装置の一例を示す概略構成図
である。
FIG. 1 is a schematic configuration diagram showing an example of a high-concentration ozone generator.

【図2】オゾン処理前後でのGDSプロフアイルであ
り、図2Aはオゾン処理前のプロフアイル、図2Bはオ
ゾン処理後のプロフアイルである。
2A and 2B show GDS profiles before and after ozone treatment, FIG. 2A shows a profile before ozone treatment, and FIG. 2B shows a profile after ozone treatment.

【図3】三フッ化窒素を使用してプラズマ照射した場合
の電子顕微鏡写真であり、図3Aは不動態化処理をして
いない場合の電子顕微鏡写真、図3Bは不動態化処理し
た場合電子顕微鏡写真、図3Cはプラズマ照射前の電子
顕微鏡写真である。
3 is an electron micrograph when plasma irradiation is performed using nitrogen trifluoride. FIG. 3A is an electron micrograph without passivation, and FIG. 3B is an electron when passivation. A micrograph, FIG. 3C is an electron micrograph before plasma irradiation.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/31 H01L 21/31 C (56)参考文献 特開 平7−273095(JP,A) 特開 平5−315098(JP,A) 特開 平9−195031(JP,A) 特開 平5−287496(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C01B 13/10 C23C 14/00 C23C 14/56 C23C 16/50 H01L 21/31 ────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI H01L 21/31 H01L 21/31 C (56) References JP-A-7-273095 (JP, A) JP-A-5-315098 ( JP, A) JP-A 9-195031 (JP, A) JP-A 5-287496 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/205 C01B 13/10 C23C 14/00 C23C 14/56 C23C 16/50 H01L 21/31

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体製造に使用されているプラズマチ
ャンバーにおいて、プラズマチャンバー内に60VOL%
以上の高濃度オゾンガスを封入することにより、プラズ
マチャンバー内面に不動態化処理を施したことを特徴と
するプラズマチャンバー。
1. In a plasma chamber used for semiconductor manufacturing , 60 VOL% is contained in the plasma chamber.
A plasma chamber characterized in that a passivation treatment is performed on the inner surface of the plasma chamber by enclosing the above high-concentration ozone gas .
JP32236897A 1997-11-07 1997-11-07 Plasma chamber Expired - Lifetime JP3216013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32236897A JP3216013B2 (en) 1997-11-07 1997-11-07 Plasma chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32236897A JP3216013B2 (en) 1997-11-07 1997-11-07 Plasma chamber

Publications (2)

Publication Number Publication Date
JPH11145064A JPH11145064A (en) 1999-05-28
JP3216013B2 true JP3216013B2 (en) 2001-10-09

Family

ID=18142873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32236897A Expired - Lifetime JP3216013B2 (en) 1997-11-07 1997-11-07 Plasma chamber

Country Status (1)

Country Link
JP (1) JP3216013B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432255B1 (en) * 2000-01-31 2002-08-13 Applied Materials, Inc. Method and apparatus for enhancing chamber cleaning
JP2002025910A (en) * 2000-07-03 2002-01-25 Tokyo Electron Ltd Heat treatment device and surface treatment method
KR20020040702A (en) * 2002-03-05 2002-05-30 김경수 Jig Material for Hot-dip Galranized Metal Plate
JP2009079667A (en) * 2007-09-26 2009-04-16 Tokyo Electron Ltd Gas feeding device and semiconductor manufacturing device
CN103352205B (en) * 2013-05-31 2015-11-25 上海华力微电子有限公司 The cleaning method of CVD (Chemical Vapor Deposition) chamber
CN108588667B (en) * 2017-12-27 2020-10-02 深圳市华星光电技术有限公司 Air charging device and air charging method for vacuum atmosphere conversion cavity and vacuum sputtering equipment
TW202124749A (en) * 2019-10-25 2021-07-01 美商應用材料股份有限公司 Extreme ultraviolet mask blank defect reduction methods

Also Published As

Publication number Publication date
JPH11145064A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
US6537461B1 (en) Process for treating solid surface and substrate surface
JP2553513B2 (en) Methods for conditioning organic masks
JP3175924B2 (en) Thermal cleaning method with nitrogen trifluoride and oxygen
EP1722403A3 (en) Fabrication method for a thin film smiconductor device
JP3216013B2 (en) Plasma chamber
TW371775B (en) Method for the selective removal of silicon dioxide
JP6749090B2 (en) Processing method in processing apparatus using halogen-based gas
JP2853211B2 (en) Method for manufacturing semiconductor device
JPH09263944A (en) Film forming device
JPH08337867A (en) Surface treatment of stainless steel member
JP3030351B2 (en) Stainless steel on which fluorinated passivation film is formed, method for producing the same, and apparatus using the stainless steel
JP3153162B2 (en) Method of forming silicon oxide film
Sugiyama et al. Low outgassing and anticorrosive metal surface treatment for ultrahigh vacuum equipment
JP2006249508A (en) Method for nitriding titanium and titanium alloy
JP3208820B2 (en) Cleaning method for dry etching equipment
JP3134116B2 (en) Corrosion reduction method in corrosive gas supply system
JPS59218732A (en) Formation of semiconductor protective film
JPH08190994A (en) Electrode of plasma processing device
MAEKAWA et al. RF Plasma nitriding of titanium
JPH03133125A (en) Resist ashing
US6396215B1 (en) Ion-implantation apparatus and method of ion-implantation by use of this apparatus
JPS5887276A (en) Treatment after dry etching
JP3354947B2 (en) Semiconductor substrate manufacturing method
JP3084306B2 (en) Method of forming fluorinated passivation film
JPS61264730A (en) Etching method of aluminum