JP3215489B2 - Fuel cell waste heat utilization system and control method thereof - Google Patents

Fuel cell waste heat utilization system and control method thereof

Info

Publication number
JP3215489B2
JP3215489B2 JP10412792A JP10412792A JP3215489B2 JP 3215489 B2 JP3215489 B2 JP 3215489B2 JP 10412792 A JP10412792 A JP 10412792A JP 10412792 A JP10412792 A JP 10412792A JP 3215489 B2 JP3215489 B2 JP 3215489B2
Authority
JP
Japan
Prior art keywords
heat
fuel cell
temperature
refrigerant
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10412792A
Other languages
Japanese (ja)
Other versions
JPH05299107A (en
Inventor
至誠 藁谷
正喜 中尾
一夫 大島
常雄 植草
健司 町沢
公治 山本
恭二 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP10412792A priority Critical patent/JP3215489B2/en
Publication of JPH05299107A publication Critical patent/JPH05299107A/en
Application granted granted Critical
Publication of JP3215489B2 publication Critical patent/JP3215489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池から放出され
る排熱を回収することにより、吸収式冷凍機を駆動して
冷熱を得る、燃料電池排熱利用システムとその制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell exhaust heat utilization system for recovering exhaust heat released from a fuel cell and driving an absorption refrigerator to obtain cold heat, and a control method therefor. is there.

【0002】[0002]

【従来の技術】一般に、燃料電池から放出される排熱を
利用して冷熱を得るためには、燃料電池の電池本体を冷
却している冷却水系より回収された熱(高温側排熱)に
より二重効用吸収式冷凍機を駆動している。図4は、こ
のような二重効用吸収式冷凍機を用いた燃料電池排熱利
用システムを示す第一の従来例の構成図である。
2. Description of the Related Art Generally, in order to obtain cold heat by using exhaust heat released from a fuel cell, heat (high-temperature side exhaust heat) recovered from a cooling water system that cools a cell body of the fuel cell is used. It drives a double-effect absorption refrigerator. FIG. 4 is a configuration diagram of a first conventional example showing a fuel cell exhaust heat utilization system using such a double effect absorption refrigerator.

【0003】燃料電池100′は、燃料電池本体1,水
蒸気分離器2,燃料改質装置3を有し、都市ガス等を燃
料改質装置3で改質して燃料電池本体1に供給される水
素と空気中の酸素とを電気化学的に反応させ、発電を行
っている。この発電は熱を発生するので、燃料電池冷却
水系が設けられ、これに排熱を水蒸気として取り出すた
め水蒸気分離器2が接続されている。この水蒸気は、吸
収式冷凍機101′へ供給されるとともに、都市ガス等
の改質用として燃料改質装置3へ供給されている。ま
た、燃料電池100′の排ガス系には凝縮水回収用熱交
換器5が設けられ、排ガスから凝縮水を回収して凝縮水
タンク4を介し水蒸気分離器2へ補給している。この凝
縮水回収用熱交換器5に冷却水を通すために、室外熱交
換器26が設けられている。
A fuel cell 100 ′ has a fuel cell body 1, a steam separator 2, and a fuel reformer 3. City gas and the like are reformed by the fuel reformer 3 and supplied to the fuel cell body 1. Hydrogen and oxygen in the air are electrochemically reacted to generate power. Since this power generation generates heat, a fuel cell cooling water system is provided, and a steam separator 2 is connected to the system to extract exhaust heat as steam. This water vapor is supplied to the absorption refrigerator 101 ′ and also supplied to the fuel reformer 3 for reforming city gas and the like. A condensed water recovery heat exchanger 5 is provided in the exhaust gas system of the fuel cell 100 ′, and condensed water is recovered from the exhaust gas and supplied to the steam separator 2 via the condensed water tank 4. An outdoor heat exchanger 26 is provided for passing cooling water through the condensed water recovery heat exchanger 5.

【0004】吸収式冷凍機101′は、高温再生器7,
低温再生器8,凝縮器9,吸収器10,蒸発器11,溶
液熱交換器12,13を有し、室外熱交換器20により
冷却された冷却水が凝縮器9,吸収器10に循環されて
熱交換を行う吸収冷凍サイクルにより、蒸発器11を通
して冷熱を得るものである。この冷熱は図略の室内機な
どへ冷水として搬送される。上記燃料電池の水蒸気分離
器2から水蒸気として回収された燃料電池100′から
の高温側排熱は、吸収式冷凍機101′の高温再生器7
に供給されている。
[0004] The absorption refrigerator 101 'comprises a high-temperature regenerator 7,
It has a low-temperature regenerator 8, a condenser 9, an absorber 10, an evaporator 11, and solution heat exchangers 12 and 13. Cooling water cooled by the outdoor heat exchanger 20 is circulated to the condenser 9 and the absorber 10. In this case, cold heat is obtained through the evaporator 11 by an absorption refrigeration cycle that performs heat exchange. This cold heat is conveyed as cold water to an unillustrated indoor unit or the like. The high-temperature side exhaust heat from the fuel cell 100 'recovered as steam from the steam separator 2 of the fuel cell is supplied to the high-temperature regenerator 7 of the absorption refrigerator 101'.
Is supplied to

【0005】図5は、図4の従来システムに比べ、燃料
電池100′の排ガス系より回収される低温側排熱も低
温側排熱回収回路を用いて吸収式冷凍機101′に供給
し、一重二重効用併用運転を行なう燃料電池排熱利用シ
ステムを示す第二の従来例である。この従来例では、上
記第一の従来例の構成に加えて燃料電池排ガス系におい
ては、低温側排熱回収回路を構成する低温側排熱回収用
熱交換器6が設けられ、排ガス中に含まれる水蒸気を冷
却し、凝縮させ、燃料電池冷却水系の水蒸気分離器2に
供給することにより、燃料改質装置3で必要とされる水
蒸気の補給を行い、この際に回収される排ガス系の排熱
を吸収式冷凍機101′の低温再生器8に供給してい
る。この構成により、単効用吸収式サイクルを同時に駆
動するものである。
FIG. 5 shows that the low-temperature side exhaust heat recovered from the exhaust gas system of the fuel cell 100 ′ is supplied to the absorption refrigerator 101 ′ using the low-temperature side exhaust heat recovery circuit as compared with the conventional system of FIG. It is the 2nd prior art example which shows the fuel cell waste heat utilization system which performs single double effect combined operation. In this conventional example, in addition to the configuration of the first conventional example, in a fuel cell exhaust gas system, a low-temperature side exhaust heat recovery heat exchanger 6 constituting a low-temperature side exhaust heat recovery circuit is provided and included in the exhaust gas. The steam is cooled and condensed, and supplied to the steam separator 2 of the fuel cell cooling water system, thereby replenishing the steam required in the fuel reformer 3 and discharging the exhaust gas system collected at this time. Heat is supplied to the low-temperature regenerator 8 of the absorption refrigerator 101 '. With this configuration, the single-effect absorption cycle is simultaneously driven.

【0006】図4,図5のいずれの従来システムでも、
吸収式冷凍機101′の負荷が変動した場合における冷
凍能力制御は、高温再生器7に供給される水蒸気を流量
調節三方弁24で分流し、排熱回収熱交換器21を介し
て室外熱交換器23から放熱する熱量を、駆動用蒸気制
御装置36が温度センサー33で検出した蒸発器11へ
の冷水の戻り温度をもとに流量調節三方弁24を制御し
て、燃料電池100′から回収され吸収式冷凍機10
1′に供給される熱量を制御すること(入熱制御)によ
り行っている。
In either of the conventional systems shown in FIGS. 4 and 5,
The refrigerating capacity control when the load of the absorption chiller 101 'fluctuates is performed by dividing the steam supplied to the high-temperature regenerator 7 by the three-way valve 24 for flow control, and exchanging outdoor heat via the exhaust heat recovery heat exchanger 21. The amount of heat radiated from the heater 23 is recovered from the fuel cell 100 'by controlling the three-way valve 24 based on the return temperature of the cold water to the evaporator 11 detected by the temperature sensor 33 by the driving steam controller 36. Absorption chiller 10
This is performed by controlling the amount of heat supplied to 1 '(heat input control).

【0007】[0007]

【発明が解決しようとする課題】上述したように、従来
の技術による燃料電池排熱利用システムにおいては、冷
熱が供給される室内機の負荷状態、すなわち吸収式冷凍
機101′の負荷状態に応じた吸収式冷凍機101′の
能力制御を、高温再生器7での蒸気消費量あるいは、低
温再生器8への投入熱量を調節する入熱制御で行い、吸
収式冷凍機101′の運転を部分負荷運転とすることに
より行っている。
As described above, in the fuel cell exhaust heat utilization system according to the prior art, the load condition of the indoor unit to which the cold heat is supplied, that is, the load condition of the absorption chiller 101 ', is determined. The capacity of the absorption chiller 101 'is controlled by controlling the steam consumption in the high-temperature regenerator 7 or the heat input to adjust the heat input to the low-temperature regenerator 8, thereby partially controlling the operation of the absorption chiller 101'. This is done by using load operation.

【0008】一方、燃料電池100′の運転は、吸収式
冷凍機101′の運転とは関係なく、電力需要により制
御されるため、吸収式冷凍機101′の駆動用熱源とし
ての消費熱量とは関係なく、燃料電池100′の運転状
態に応じて燃料電池100′から発生する排熱を外部に
放出する必要がある。このため、燃料電池本体1から放
出される排熱の全てを吸収式冷凍機101′で消費しき
れない場合に、回収不可能な余剰排熱を処理するため、
吸収式冷凍機101′の再生器へ導かれる排熱回収回路
とは別に外部に排熱を放出する冷却回路が必要となる。
燃料電池冷却水系から排熱を回収する高温側排熱回収回
路においては、燃料電池本体1の冷却水が純水であり、
不純物混入を避けるため閉循環回路を構成しており、外
部に放熱するために排熱回収熱交換器21を介した室外
熱交換器23による放熱回路を設置する必要があった。
[0008] On the other hand, the operation of the fuel cell 100 'is controlled by the power demand regardless of the operation of the absorption chiller 101'. Regardless, it is necessary to discharge the exhaust heat generated from the fuel cell 100 'to the outside according to the operation state of the fuel cell 100'. For this reason, when all of the exhaust heat released from the fuel cell main body 1 cannot be consumed by the absorption refrigerator 101 ′, the excess exhaust heat that cannot be recovered is processed.
In addition to the exhaust heat recovery circuit guided to the regenerator of the absorption chiller 101 ', a cooling circuit for discharging exhaust heat to the outside is required.
In the high-temperature side exhaust heat recovery circuit that recovers exhaust heat from the fuel cell cooling water system, the cooling water of the fuel cell body 1 is pure water,
A closed circulation circuit was configured to avoid contamination with impurities, and it was necessary to provide a heat radiation circuit by the outdoor heat exchanger 23 via the exhaust heat recovery heat exchanger 21 to radiate heat to the outside.

【0009】また、燃料電池排ガス系から排熱を回収す
る低温側排熱回収回路において、排ガス中に含まれる水
蒸気を冷却し、凝縮させて回収した後、燃料電池冷却水
として用い、燃料電池本体1を冷却した後、再び水蒸気
として燃料改質装置3に供給するため、必要十分な量の
凝縮水が回収できるように凝縮水回収用熱交換器5を設
けて冷却水を通し、室外熱交換器26より外部に放熱す
る必要があった。このように、従来システムでは、室外
熱交換器等の冷却設備が冗長設置となる問題があった。
In a low temperature side exhaust heat recovery circuit for recovering exhaust heat from a fuel cell exhaust gas system, water vapor contained in the exhaust gas is cooled, condensed and recovered, and then used as fuel cell cooling water. After cooling the fuel cell 1, the condensed water recovery heat exchanger 5 is provided so that a necessary and sufficient amount of the condensed water can be recovered so as to be supplied again to the fuel reformer 3 as steam. It was necessary to radiate heat from the vessel 26 to the outside. As described above, in the conventional system, there is a problem that the cooling equipment such as the outdoor heat exchanger is redundantly installed.

【0010】また、負荷変動に応じた吸収式冷凍機の能
力制御を、高温再生器7,低温再生器8に投入する駆動
用熱量を調節して熱容量の大きな高温再生器7,低温再
生器8における冷媒再生能力を制御することにより行っ
ているため、冷熱発生側である蒸発器11の能力制御は
非常に緩慢となる問題があった。
In addition, the capacity control of the absorption refrigerator according to the load fluctuation is performed by adjusting the amount of driving heat to be supplied to the high-temperature regenerator 7 and the low-temperature regenerator 8 to thereby increase the heat capacity of the high-temperature regenerator 7 and the low-temperature regenerator 8. Therefore, there is a problem that the control of the capacity of the evaporator 11 on the side of generating the cold heat becomes very slow.

【0011】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、吸収式冷凍機の運転状
態に関係なく燃料電池の冷却水系で放出される排熱を全
て回収し、得られた回収熱量に対応する冷凍能力より負
荷が小さいときには、駆動用排熱の入熱制限を行なうこ
となく冷凍能力の制御を行なうシステムにすること、お
よび、燃料電池排ガス系については吸収式冷凍機で利用
できる排熱を回収した後、必要に応じて凝縮水回収用熱
交換器を作用させ、吸収式冷凍機の室外熱交換器との共
用を図ることにより、室外熱交換器等の冗長設置を避け
ることができ、かつ吸収式冷凍機の能力制御性の向上が
期待できる燃料電池排熱利用システムとその制御方法を
提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to recover all exhaust heat released from a cooling water system of a fuel cell regardless of an operation state of an absorption refrigerator. When the load is smaller than the refrigeration capacity corresponding to the obtained recovered heat, a system that controls the refrigeration capacity without restricting the heat input of the drive exhaust heat is provided, and the fuel cell exhaust system is an absorption type. After collecting the exhaust heat available in the refrigerator, the heat exchanger for condensed water recovery is activated as necessary, and by sharing with the outdoor heat exchanger of the absorption refrigerator, the outdoor heat exchanger etc. It is an object of the present invention to provide a fuel cell exhaust heat utilization system which can avoid redundant installation and can be expected to improve the capability controllability of an absorption refrigerator, and a control method therefor.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明の燃料電池排熱利用システムにおいては、燃
料電池本体の冷却水系に設けた水蒸気分離器から該燃料
電池本体で発生した高温側排熱を水蒸気として回収して
吸収式冷凍機の高温再生器に供給し、さらに燃料電池の
排ガス系に設けた低温側排熱回収用熱交換器により排ガ
スから低温側排熱を回収して該吸収式冷凍機の低温再生
器に供給し、該高温側排熱により該高温再生器で冷媒吸
収溶液から蒸発させた冷媒と該低温側排熱により該低温
再生器で該冷媒吸収溶液から蒸発させた冷媒とを凝縮器
で吸収式冷凍機冷却回路により冷却して凝縮させ、該凝
縮した冷媒を蒸発器で蒸発させて該冷媒の蒸発熱により
熱搬送媒体を冷却して冷熱を得、該蒸発器で蒸発した冷
媒を吸収器で該吸収式冷凍機冷却回路により冷却して前
記冷媒吸収溶液に吸収させる吸収式冷凍機の吸収冷凍サ
イクルを駆動する燃料電池排熱利用システムにおいて、
前記凝縮器で凝縮し前記蒸発器に送られる冷媒の一部を
前記吸収器または前記高温再生器または前記低温再生器
のいずれかにバイパスする冷媒バイパス回路と、この冷
媒バイパス回路へ分流される該冷媒流量を調節する冷媒
流量調節手段と、前記蒸発器へ導かれる熱搬送媒体の入
口温度を測定する温度センサーと、この温度センサーで
検出した温度が低下した場合には前記冷媒流量調節手段
より該冷媒バイパス回路に冷媒の一部を分流させて
凍能力を低下させるように制御するための操作信号を送
信する制御装置とを具備するとともに、前記水蒸気分離
器から前記吸収式冷凍機の高温再生器へ供給する排蒸気
量を調節する水蒸気流量調節手段と、該水蒸気分離器内
の水蒸気圧力を検知する圧力センサーと、該圧力センサ
ーから所定の水蒸気圧力から変化した検知信号を受けた
場合には該水蒸気流量調節手段に対し該燃料電池の温度
を発電反応に適した値に維持するために冷却水の温度を
一定にする該水蒸気分離器内の水蒸気圧力を維持するよ
うに該排蒸気量を変化させる操作信号を送る制御装置と
を具備し、前記燃料電池の排ガス中に含まれる水蒸気を
凝縮させる凝縮水回収用熱交換器と、この凝縮水回収用
熱交換器への冷却媒体を前記吸収式冷凍機冷却回路より
分岐しその冷却媒体量を調節する冷却媒体流量調節手段
と、前記低温側排熱回収用熱交換器の凝縮水および前記
凝縮水回収用熱交換器の凝縮水を溜め必要な箇所へ供給
する凝縮水タンクと、該凝縮水タンク内の液面高さを検
出する液面センサーと、この液面センサーから液面が所
定の高さから低下した検出信号を受けた場合には該冷却
媒体流量調節手段に対し該凝縮水量を所定量に保つため
に該液面が所定の高さに達するように該冷却媒体量を分
岐させる操作信号を送信する制御装置とを具備すること
を特徴としている。
In order to achieve the above object, in a fuel cell exhaust heat utilization system according to the present invention, a high temperature side generated in a fuel cell main body from a steam separator provided in a cooling water system of the fuel cell main body is provided. The exhaust heat is recovered as steam and supplied to the high-temperature regenerator of the absorption refrigerator, and the low-temperature exhaust heat is recovered from the exhaust gas by the low-temperature exhaust heat recovery heat exchanger provided in the exhaust gas system of the fuel cell. It is supplied to the low-temperature regenerator of the absorption refrigerator, and the high-temperature side exhaust heat absorbs the refrigerant in the high-temperature regenerator.
The refrigerant evaporated from the collected solution and the low-
The refrigerant evaporated from the refrigerant absorption solution by the regenerator and the condenser
And cooled by an absorption refrigerator cooling circuit to condense it.
The compressed refrigerant is evaporated by an evaporator and the heat of evaporation of the refrigerant
The heat carrier is cooled to obtain cold heat, and the cold evaporated by the evaporator.
The medium is cooled by the absorption refrigerator cooling circuit with an absorber, and
In fuel cell waste heat utilization system that drives the absorption refrigerating cycle of an absorption refrigerator is taken up in serial refrigerant absorbent solution,
A refrigerant bypass circuit that bypasses a part of the refrigerant condensed in the condenser and sent to the evaporator to the absorber or the high-temperature regenerator or the low-temperature regenerator; Refrigerant flow rate adjusting means for adjusting the flow rate of the refrigerant, a temperature sensor for measuring the inlet temperature of the heat transfer medium guided to the evaporator, and the refrigerant flow rate adjusting means when the temperature detected by the temperature sensor decreases. /> with and a control unit that transmits an operation signal for controlling so as to more the refrigerant bypass circuit to divert part of the refrigerant to lower the cold <br/> freezing capacity, the water vapor separation
Steam supplied from the heat exchanger to the high-temperature regenerator of the absorption refrigerator
Steam flow rate adjusting means for adjusting the flow rate;
Pressure sensor for detecting the water vapor pressure of the fuel cell, and the pressure sensor
Received a detection signal that has changed from the specified water vapor pressure
In such a case, the temperature of the fuel cell is
Temperature of the cooling water to maintain the temperature suitable for the power generation reaction.
Maintain a constant steam pressure in the steam separator
A control device for transmitting an operation signal for changing the amount of exhaust steam.
Anda condensed water recovery heat exchanger for condensing water vapor contained in the exhaust gas of the fuel cell, the branches of the cooling medium to the condensed water recovery heat exchanger than the absorption chiller cooling circuit A cooling medium flow rate adjusting means for adjusting an amount of the cooling medium; a condensed water tank for storing condensed water of the low-temperature side exhaust heat recovery heat exchanger and condensed water of the condensed water recovery heat exchanger and supplying the condensed water to a necessary portion. A liquid level sensor for detecting a liquid level in the condensed water tank, and a liquid level from the liquid level sensor.
When receiving a detection signal decreases from a constant height for keeping a predetermined amount the amount of condensed water against the said coolant flow rate control means
The amount of the cooling medium is divided so that the liquid level reaches a predetermined height.
A control device for transmitting an operation signal for branching .

【0013】また、同じく本発明の燃料電池排熱利用シ
ステムの制御方法においては、燃料電池本体の冷却水系
に設けた水蒸気分離器から該燃料電池本体で発生した高
温側排熱を水蒸気として回収して吸収式冷凍機の高温再
生器に供給し、さらに燃料電池の排ガス系に設けた低温
側排熱回収用熱交換器により排ガスから低温側排熱を回
収して該吸収式冷凍機の低温再生器に供給し、該高温側
排熱により該高温再生器で冷媒吸収溶液から蒸発させた
冷媒と該低温側排熱により該低温再生器で該冷媒吸収溶
液から蒸発させた冷媒とを凝縮器で吸収式冷凍機冷却回
路により冷却して凝縮させ、該凝縮した冷媒を蒸発器で
蒸発させて該冷媒の蒸発熱により熱搬送媒体を冷却して
冷熱を得、該蒸発器で蒸発した冷媒を吸収器で該吸収式
冷凍機冷却回路により冷却して前記冷媒吸収溶液に吸収
させる吸収式冷凍機の吸収冷凍サイクルを駆動する燃
電池排熱利用システムの制御方法において、前記吸収式
冷凍機の冷凍能力制御については、まず負荷と前記蒸発
器の間の熱搬送媒体についての該負荷に応じて変化する
戻り温度を検出し、次に該戻り温度と設定値とを比較す
ることにより該負荷に対して該吸収式冷凍機の冷凍能力
が過剰になったかを判断し、次に該吸収式冷凍機の冷凍
能力が過剰になった場合に前記凝縮器から該蒸発器に送
られる冷媒の一部を前記吸収器または前記高温再生器ま
たは前記低温再生器のいずれかにバイパスさせて行い、
前記燃料電池の冷却水系から回収される高温側排熱量の
制御については、まず該燃料電池を冷却した冷却水の前
記水蒸気分離器内での飽和水蒸気圧力を検知し、次に前
記吸収式冷凍機の冷凍能力制御とは独立して該燃料電池
の温度を発電反応に適した値に維持するために該冷却水
の温度が一定となるように該水蒸気分離器内の飽和水蒸
気圧力を維持するよう該吸収式冷凍機へ供給される前記
水蒸気の排蒸気量を制御して行い、前記燃料電池の排ガ
ス系の排熱処理制御については、まず、前記低温側排熱
回収用熱交換器からの凝縮水および該燃料電池の排ガス
系に設けた凝縮水回収用熱交換器からの凝縮水を溜め必
要な箇所へ供給する凝縮水タンクの液面が所定の高さに
達しているかを検出し、次に該液面が所定の高さに達し
ていない場合に該凝縮水量が足りないと判断し、次にこ
の凝縮水量が足りない場合のみ該凝縮水回収用熱交換器
が作用するように前記吸収式冷凍機冷却回路より分岐し
て流す冷却媒体量を制御し該凝縮水タンク内の凝縮水量
を一定値以上に保つように行うことを特徴としている。
Also, in the control method of the fuel cell exhaust heat utilization system of the present invention, the high-temperature side exhaust heat generated in the fuel cell main body is recovered as steam from a steam separator provided in a cooling water system of the fuel cell main body. The heat is supplied to the high-temperature regenerator of the absorption refrigerator, and the low-temperature exhaust heat is recovered from the exhaust gas by the low-temperature exhaust heat recovery heat exchanger provided in the exhaust gas system of the fuel cell, and the low-temperature regeneration of the absorption refrigerator is performed. And the high-temperature side exhaust heat evaporates the refrigerant-absorbing solution in the high-temperature regenerator.
The refrigerant and the low-temperature side exhaust heat cause the low-temperature regenerator to
The refrigerant evaporating from the liquid is cooled by the condenser in the absorption refrigerator
Cooling by the passage and condensing, the condensed refrigerant in the evaporator
Evaporate and cool the heat transfer medium by the heat of evaporation of the refrigerant
Cold heat is obtained, and the refrigerant evaporated in the evaporator is absorbed in the absorber by the absorption type.
Cooled by the refrigerator cooling circuit and absorbed in the refrigerant absorbing solution
A method of controlling a fuel cell waste heat utilization system that drives the absorption refrigerating cycle of an absorption refrigerating machine which causes, refrigerating capacity control of the absorption refrigerating machine, for heat-carrying medium between the first load and the evaporator Detecting the return temperature that changes according to the load, and then comparing the return temperature with a set value to determine whether the refrigeration capacity of the absorption refrigerator with respect to the load has become excessive, Next, when the refrigerating capacity of the absorption refrigerator becomes excessive, a part of the refrigerant sent from the condenser to the evaporator is bypassed to either the absorber or the high-temperature regenerator or the low-temperature regenerator. Let me do it,
Regarding the control of the high-temperature side exhaust heat recovered from the cooling water system of the fuel cell, first, the saturated steam pressure in the steam separator of the cooling water that has cooled the fuel cell is detected. In order to maintain the temperature of the fuel cell at a value suitable for the power generation reaction independently of the refrigerating capacity control, the saturated steam pressure in the steam separator is maintained so that the temperature of the cooling water becomes constant. The exhaust heat control of the exhaust gas system of the fuel cell is performed by controlling the amount of the exhaust steam of the steam supplied to the absorption refrigerator. First, the condensed water from the low-temperature side exhaust heat recovery heat exchanger is used. And detecting whether the liquid level of a condensed water tank that stores condensed water from a condensed water recovery heat exchanger provided in an exhaust gas system of the fuel cell and supplies the condensed water to a required portion has reached a predetermined height, If the liquid level has not reached the predetermined height, It is determined that the amount of condensed water is insufficient, and then the amount of cooling medium branched and flown from the absorption refrigerator cooling circuit is controlled so that the condensed water recovery heat exchanger operates only when the amount of condensed water is insufficient. The method is characterized in that the amount of condensed water in the condensed water tank is maintained at a certain value or more.

【0014】[0014]

【作用】本発明の燃料電池排熱利用システムとその制御
方法では、吸収式冷凍機の能力制御を冷媒のバイパス制
御により行なうことにより、負荷が吸収式冷凍機の冷凍
能力より小さい場合に、駆動熱源としての蒸気消費量を
絞る入熱制御を行なうことなく冷凍能力を低下させるこ
とを可能にし、蒸発器内の冷媒の凍結を防止している。
According to the fuel cell exhaust heat utilization system and the control method of the present invention, by controlling the capacity of the absorption chiller by the bypass control of the refrigerant, the drive is performed when the load is smaller than the refrigeration capacity of the absorption chiller. This makes it possible to reduce the refrigerating capacity without performing heat input control for reducing the amount of steam consumed as a heat source, thereby preventing the refrigerant in the evaporator from freezing.

【0015】また、燃料電池の冷却水系の高温側排熱量
については、燃料電池本体の冷却を行なう冷却水温度を
一定にし、電池セルにおける発電反応に適した温度を維
持するため、吸収式冷凍機の運転に関係なく燃料電池冷
却水系の水蒸気分離器における水蒸気圧力を常に一定に
保つように制御される。従って、本発明の燃料電池排熱
利用システムにおける排熱利用形態としては、電力需要
に応じた燃料電池の運転制御が最優先され、そこで放出
される排熱を吸収式冷凍機に取り込み、回収された熱量
で駆動できる範囲内で吸収式冷凍機の能力制御を行うこ
とが可能となる。
As for the amount of heat discharged from the high-temperature side of the cooling water system of the fuel cell, the absorption chiller is used to keep the temperature of the cooling water for cooling the fuel cell body constant and to maintain a temperature suitable for the power generation reaction in the battery cells. Is controlled so that the steam pressure in the steam separator of the fuel cell cooling water system is always kept constant regardless of the operation of. Therefore, as the waste heat utilization form in the fuel cell waste heat utilization system of the present invention, the operation control of the fuel cell according to the power demand is given top priority, and the waste heat released there is taken into the absorption refrigerator and collected. It is possible to control the capacity of the absorption refrigerator within the range that can be driven by the heat quantity.

【0016】また、燃料電池排ガス系からの低温側排熱
回収する場合、吸収式冷凍機の一重二重効用併用運転が
行える範囲内で排ガスより排熱を回収している。それと
同時に、燃料電池冷却水系の冷却水や燃料改質装置の水
蒸気生成などに必要な凝縮水を回収している。この凝縮
水量の変動に備え排ガス中から必要十分な凝縮水量が得
られるよう、排ガス系には凝縮水回収用熱交換器が設け
られるが、それに通す冷却媒体を吸収式冷凍機冷却水回
路より分流する。これらにより、本発明では、燃料電池
の排熱を処理するために従来のシステムでは冗長設置が
必要とされていた高温側排熱回収回路における排熱回収
用熱交換器、室外熱交換器を含む放熱回路、および凝縮
水回収用熱交換器に冷却水を供給する室外熱交換器等の
冷却設備を省くことを可能にしている。
In the case of recovering the low-temperature side exhaust heat from the fuel cell exhaust gas system, the exhaust heat is recovered from the exhaust gas within a range in which a single-double effect combined operation of the absorption refrigerator can be performed. At the same time, it collects cooling water for the fuel cell cooling water system and condensed water necessary for generating steam in the fuel reformer. In order to obtain a necessary and sufficient amount of condensed water from the exhaust gas in preparation for this fluctuation in the amount of condensed water, a heat exchanger for condensed water recovery is provided in the exhaust gas system, and the cooling medium passing therethrough is diverted from the absorption chiller cooling water circuit. I do. Accordingly, the present invention includes a heat exchanger for exhaust heat recovery and an outdoor heat exchanger in the high-temperature side exhaust heat recovery circuit, which had to be redundantly installed in the conventional system for processing the exhaust heat of the fuel cell. This makes it possible to omit cooling equipment such as a heat radiation circuit and an outdoor heat exchanger that supplies cooling water to the condensed water recovery heat exchanger.

【0017】また、吸収式冷凍機においては、その能力
制御を冷媒のバイパス制御によって行うことにより、従
来の駆動用投入熱量を調節する入熱制御法に比べ、蒸発
器における冷凍能力制御の応答性を良くし、制御性の向
上を図っている。
In addition, in the absorption type refrigerator, the responsiveness of the refrigeration capacity control in the evaporator is improved by performing the capacity control by the bypass control of the refrigerant, as compared with the conventional heat input control method of adjusting the input heat quantity for driving. To improve the controllability.

【0018】[0018]

【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図1に、本発明における第一の実施例を示
す。図において、1は燃料電池本体、2は燃料電池冷却
水系の水蒸気分離器、3は燃料改質装置、4は凝縮水タ
ンク、5は凝縮水回収用熱交換器、6は排ガス系からの
低温側排熱回収用熱交換器、27は圧力センサー、28
は流量調節二方弁、29は排蒸気流量制御装置、30は
液面センサー、37は燃料電池冷却水循環用ポンプであ
り、以上の機器は燃料電池100を構成する主な要素で
ある。また、7は高温再生器、8は低温再生器、9は凝
縮器、10は吸収器、11は蒸発器、12は高温側溶液
熱交換器、13は低温側溶液熱交換器、14は溶液ポン
プ、15は冷媒ポンプ、33は温度センサー、34は冷
媒流量調節三方弁、35は冷媒流量制御装置であり、以
上の機器は吸収式冷凍機101を構成する。さらに、1
6は高温側排熱回収ポンプ、17は気水分離器、18は
低温側排熱回収ポンプ、19は冷却水ポンプ、20は室
外熱交換器、31は冷却水流量調節三方弁、32は冷却
水流量制御装置を示す。この図に従って本実施例を説明
する。
FIG. 1 shows a first embodiment of the present invention. In the figure, 1 is a fuel cell main body, 2 is a fuel cell cooling water system steam separator, 3 is a fuel reformer, 4 is a condensed water tank, 5 is a condensed water recovery heat exchanger, and 6 is a low temperature from an exhaust gas system. Side heat recovery heat exchanger, 27 is a pressure sensor, 28
Is a flow control two-way valve, 29 is an exhaust steam flow control device, 30 is a liquid level sensor, 37 is a fuel cell cooling water circulation pump, and the above-mentioned devices are main elements constituting the fuel cell 100. Reference numeral 7 denotes a high-temperature regenerator, 8 denotes a low-temperature regenerator, 9 denotes a condenser, 10 denotes an absorber, 11 denotes an evaporator, 12 denotes a high-temperature solution heat exchanger, 13 denotes a low-temperature solution heat exchanger, and 14 denotes a solution. A pump, 15 is a refrigerant pump, 33 is a temperature sensor, 34 is a refrigerant flow control three-way valve, 35 is a refrigerant flow control device, and the above devices constitute the absorption refrigerator 101. In addition, 1
6 is a high-temperature side exhaust heat recovery pump, 17 is a steam separator, 18 is a low-temperature side exhaust heat recovery pump, 19 is a cooling water pump, 20 is an outdoor heat exchanger, 31 is a three-way valve for cooling water flow control, and 32 is cooling. 3 shows a water flow control device. This embodiment will be described with reference to FIG.

【0020】まず、燃料電池100側の構成において、
燃料電池本体1は、水素と酸素を燃料として入力するこ
とにより発電を行い、それとともに熱を発生する。燃料
改質装置3は、水素を都市ガスの改質により製造し、燃
料電池本体1に供給する。燃料電池本体1には発生熱を
冷却する冷却水系配管が設けられ、その配管の途中に、
燃料電池冷却水循環用ポンプ37と、燃料電池冷却水循
環用ポンプ37に液を供給するために設けた水蒸気分離
器2とを配置する。この水蒸気分離器2には、燃料電池
本体で発生した熱を水蒸気として回収し吸収式冷凍機1
01の高温再生器7に供給するための高温側排熱回収回
路が接続される。この高温側排熱回収回路には、水蒸気
分離器2から燃料改質装置3に送られる水蒸気圧力を制
御するため流量調節二方弁28が設けられ、排蒸気流量
制御装置29が制御水蒸気分離器2内の圧力を計測する
圧力センサー27からの信号を受けて、流量調節二方弁
28に操作信号を送信し、その水蒸気圧力を一定に制御
する。燃料電池本体1および燃料改質装置3からの排ガ
ス系には、それらの排ガスより排熱を回収し吸収式冷凍
機101の低温再生器8に供給するための低温側排熱回
収回路を構成する低温側排熱回収用熱交換器6と、凝縮
水回収用熱交換器5が設けられる。これらの熱交換器
5,6で回収される凝縮水は、凝縮水タンク4を経由し
て水蒸気分離器2に補給される。
First, in the configuration of the fuel cell 100 side,
The fuel cell main body 1 generates power by inputting hydrogen and oxygen as fuel, and generates heat at the same time. The fuel reformer 3 produces hydrogen by reforming city gas and supplies it to the fuel cell body 1. The fuel cell body 1 is provided with a cooling water system pipe for cooling generated heat, and in the middle of the pipe,
The fuel cell cooling water circulation pump 37 and the steam separator 2 provided for supplying the liquid to the fuel cell cooling water circulation pump 37 are arranged. The steam separator 2 collects heat generated in the fuel cell main body as steam and stores the heat in the absorption refrigerator 1.
The high-temperature side exhaust heat recovery circuit for supplying the high-temperature regenerator 7 is connected. This high-temperature side exhaust heat recovery circuit is provided with a flow rate control two-way valve 28 for controlling the steam pressure sent from the steam separator 2 to the fuel reformer 3. In response to a signal from the pressure sensor 27 that measures the pressure in the pump 2, an operation signal is transmitted to the two-way flow control valve 28, and the steam pressure is controlled to be constant. The exhaust gas system from the fuel cell body 1 and the fuel reformer 3 constitutes a low-temperature side exhaust heat recovery circuit for recovering exhaust heat from the exhaust gas and supplying the exhaust heat to the low-temperature regenerator 8 of the absorption refrigerator 101. A low temperature side heat recovery heat exchanger 6 and a condensed water recovery heat exchanger 5 are provided. The condensed water recovered by these heat exchangers 5 and 6 is supplied to the steam separator 2 via the condensed water tank 4.

【0021】吸収式冷凍機101は、燃料電池100に
接続された高温側排熱回収回路,低温側排熱回収回路か
ら供給される熱により一重二重効用併用の吸収冷凍サイ
クルを駆動して冷水をつくる。この吸収式冷凍機101
の構成において、凝縮器9および吸収器10を冷却する
ために吸収式冷凍機冷却回路が設けられ、その冷却で受
け取った熱を大気に放出するために、吸収式冷凍機冷却
回路には室外熱交換器20が冷却水ポンプ19を介して
接続される。本実施例の吸収式冷凍機101自体の構成
は、基本的には図5の従来例と同様であるが、本実施例
では、凝縮器9内で凝縮した冷媒を蒸発器11に送る回
路の途中に、その冷媒の一部を吸収器10にバイパスす
る冷媒バイパス回路を設けている点が異なる。この冷媒
バイパス回路の接続には冷媒バイパス回路へ分流される
冷媒流量を調節する冷媒流量調節三方弁34を用い、冷
媒流量制御装置35を用いて、蒸発器11へ図略の室内
機から導かれる冷水の入口温度を測定する温度センサー
33により検出した温度をもとに、冷媒流量調節三方弁
34に冷凍能力を制御するための操作信号を送信し、負
荷状態による蒸発器11の凍結を防止する。
The absorption chiller 101 drives an absorption refrigeration cycle combined with a single double effect by the heat supplied from the high-temperature side exhaust heat recovery circuit and the low-temperature side exhaust heat recovery circuit connected to the fuel cell 100 to drive chilled water. Create This absorption refrigerator 101
Is provided with an absorption-type refrigerator cooling circuit for cooling the condenser 9 and the absorber 10, and in order to release the heat received by the cooling to the atmosphere, the absorption-type refrigerator cooling circuit includes an outdoor heat source. An exchanger 20 is connected via a cooling water pump 19. The configuration of the absorption refrigerator 101 of the present embodiment is basically the same as that of the conventional example of FIG. 5, but in the present embodiment, a circuit for sending the refrigerant condensed in the condenser 9 to the evaporator 11 is provided. The difference is that a refrigerant bypass circuit that bypasses a part of the refrigerant to the absorber 10 is provided on the way. This refrigerant bypass circuit is connected to a refrigerant flow control three-way valve 34 that regulates the flow rate of the refrigerant diverted to the refrigerant bypass circuit, and is guided from the unillustrated indoor unit to the evaporator 11 using the refrigerant flow control device 35. Based on the temperature detected by the temperature sensor 33 that measures the inlet temperature of the chilled water, an operation signal for controlling the refrigeration capacity is transmitted to the refrigerant flow rate control three-way valve 34 to prevent the evaporator 11 from freezing due to the load state. .

【0022】高温側排熱回収回路においては、吸収式冷
凍機101の高温再生器7からの駆動蒸気ドレンを燃料
電池冷却水系の水蒸気分離器2に戻す高温側排熱回収ポ
ンプ16と、このポンプ16の手前に気水分離器17と
が設けられる。低温側排熱回収回路においては、燃料電
池排ガス系から排熱を回収するために設けられた低温側
排熱回収熱交換器6で回収された低温側排熱を吸収式冷
凍機101の低温再生器8に温水として供給する温水循
環用の低温側排熱回収ポンプ18が設けられる。燃料電
池排ガス中に含まれる水を凝縮させる凝縮水回収熱交換
器5への冷却水の通水は、吸収式冷凍機冷却回路に冷却
水流量三方弁31を設けて冷却水量を調節して分流す
る。冷却水調節三方弁31の調節は、冷却水流量制御装
置32が、凝縮水を貯蔵する凝縮水タンク4内の液面高
さを検出する液面センサー30からの検出信号を受け
て、凝縮水量を所定量に保つための操作信号を冷却水流
量調節三方弁31に送信して行う。
In the high-temperature side exhaust heat recovery circuit, a high-temperature side exhaust heat recovery pump 16 for returning the drive steam drain from the high-temperature regenerator 7 of the absorption refrigerator 101 to the steam separator 2 of the fuel cell cooling water system, and this pump A steam separator 17 is provided in front of the steam generator 16. In the low-temperature side exhaust heat recovery circuit, the low-temperature side exhaust heat recovered by the low-temperature side exhaust heat recovery heat exchanger 6 provided for recovering the exhaust heat from the fuel cell exhaust gas system is regenerated at a low temperature by the absorption refrigerator 101. A low-temperature-side exhaust heat recovery pump 18 for circulating hot water to be supplied to the vessel 8 as hot water is provided. The flow of the cooling water to the condensed water recovery heat exchanger 5 for condensing the water contained in the fuel cell exhaust gas is divided by adjusting the amount of the cooling water by providing a cooling water flow three-way valve 31 in the absorption refrigerator cooling circuit. I do. The cooling water adjustment three-way valve 31 is adjusted by the cooling water flow control device 32 receiving a detection signal from the liquid level sensor 30 for detecting the liquid level in the condensed water tank 4 for storing the condensed water, Is transmitted to the cooling water flow rate adjusting three-way valve 31 to maintain the predetermined value.

【0023】以上の構成において、本実施例における燃
料電池100から回収される排熱の利用方法について説
明する。燃料電池冷却水系より回収された高温側排熱は
水蒸気分離器2を通って吸収式冷凍機101の駆動用熱
源として高温再生器7に蒸気の状態で送られる。高温再
生器7には、吸収器10において冷媒を吸収して濃度の
低くなったLiBr希溶液が溶液ポンプ14により送ら
れ、前記の燃料電池100から回収された蒸気により加
熱され、冷媒が蒸発する。発生した冷媒蒸気は低温再生
器8内において、高温再生器7と同様に吸収器10より
送られたLiBr希溶液に熱を与え、凝縮した後、凝縮
器9へと導かれる。また、低温再生器8には、高温再生
器7より送られる冷媒蒸気とともに、燃料電池排ガス系
からの低温側排熱回収用熱交換器6により回収される低
温側排熱としての温水が導かれ、これらと吸収器10か
ら送られるLiBr希溶液とが熱交換することで冷媒が
蒸発する。蒸発した冷媒は、凝縮器9に送られ、吸収式
冷凍機冷却回路の冷却水により冷却され、凝縮する。凝
縮器9において凝縮した冷媒は蒸発器11に送られ、こ
こで伝熱管表面に散布され、管内を流れる水より熱を奪
って再び蒸発する。熱を奪われ、冷却された水は冷水と
して蒸発器11より室内機などへ搬送される。
In the above configuration, a method of utilizing exhaust heat recovered from the fuel cell 100 in this embodiment will be described. The high-temperature side exhaust heat recovered from the fuel cell cooling water system passes through the steam separator 2 and is sent as a heat source for driving the absorption refrigerator 101 to the high-temperature regenerator 7 in a vapor state. To the high-temperature regenerator 7, a LiBr dilute solution whose concentration has been reduced by absorbing the refrigerant in the absorber 10 is sent by the solution pump 14, and is heated by the vapor recovered from the fuel cell 100 to evaporate the refrigerant. . The generated refrigerant vapor gives heat to the LiBr dilute solution sent from the absorber 10 in the low-temperature regenerator 8 as in the high-temperature regenerator 7, condenses, and is then guided to the condenser 9. Further, to the low-temperature regenerator 8, together with the refrigerant vapor sent from the high-temperature regenerator 7, the hot water as the low-temperature side exhaust heat recovered by the low-temperature-side exhaust heat recovery heat exchanger 6 from the fuel cell exhaust gas system is led. The refrigerant and the LiBr diluted solution sent from the absorber 10 undergo heat exchange to evaporate the refrigerant. The evaporated refrigerant is sent to the condenser 9 and cooled and condensed by the cooling water in the absorption refrigerator cooling circuit. The refrigerant condensed in the condenser 9 is sent to the evaporator 11, where it is sprayed on the surface of the heat transfer tube, takes heat from water flowing in the tube, and evaporates again. The water that has been deprived of heat and cooled is transported as cold water from the evaporator 11 to an indoor unit or the like.

【0024】一方、高温再生器7,低温再生器8におい
て加熱され、濃縮したLiBr濃溶液は、吸収器10よ
り送り出されるLiBr希溶液と溶液熱交換器12,1
3において熱交換した後、吸収器10に導かれ、ここで
蒸発器11において再度蒸発した冷媒を吸収し、吸収熱
を吸収式冷凍機冷却水回路に放出する。冷媒を吸収して
濃度の低くなったLiBr希溶液は、溶液熱交換器1
2,13でLiBr濃溶液と熱交換した後、再び、高温
再生器7,低温再生器8にそれぞれ分配されて送られ
る。
On the other hand, the concentrated LiBr solution heated and concentrated in the high-temperature regenerator 7 and the low-temperature regenerator 8 is combined with the dilute LiBr solution sent out from the absorber 10 and the solution heat exchangers 12,1.
After the heat exchange in 3, the refrigerant is led to the absorber 10, where the evaporator 11 absorbs the re-evaporated refrigerant and discharges the absorbed heat to the absorption refrigerator cooling water circuit. The LiBr dilute solution whose concentration has been reduced by absorbing the refrigerant is supplied to the solution heat exchanger 1
After heat exchange with the LiBr concentrated solution in 2 and 13, they are distributed again to the high-temperature regenerator 7 and the low-temperature regenerator 8 and sent again.

【0025】以上のサイクルを繰り返すことにより、燃
料電池100の排熱を、冷却水系からは高温側排熱であ
る蒸気として、排ガス系からは低温側排熱である温水と
して回収し、これらを熱源として吸収冷凍サイクルを駆
動し、冷熱の供給を行なう。
By repeating the above cycle, the exhaust heat of the fuel cell 100 is recovered from the cooling water system as steam, which is high-temperature side exhaust heat, and from the exhaust gas system, as hot water which is low-temperature side exhaust heat. To drive the absorption refrigeration cycle to supply cold heat.

【0026】次に、吸収式冷凍機101の能力制御につ
いて説明する。吸収式冷凍機101にかかる負荷が、吸
収式冷凍機101の冷凍能力より小さくなった場合に
は、室内機より蒸発器11にもどる冷水の温度が低くな
る。これにともなって、蒸発器11内での冷媒蒸発温度
も次第に低下してくるため、下限値を設けて蒸発器11
の能力を制御し、蒸発器11内での冷媒の凍結を防止す
る必要がある。この下限値を、冷水の戻り温度を温度セ
ンサー33により検出し、冷媒流量調節三方弁34を操
作して凝縮器9より蒸発器11に供給される冷媒の一部
を、例えば吸収器10にバイパスする。これにより、蒸
発器11には、外部負荷に応じて冷媒量のみが供給さ
れ、その結果、冷却能力が制御され、蒸発温度を異常に
低下させることなく運転を継続させることが可能とな
る。一方、冷媒流量調節三方弁34によりバイパスされ
た冷媒は、吸収器10においてLiBr溶液と混合した
後、溶液ポンプ14により溶液熱交換器12,13を経
て高温再生器7,低温再生器8に分配される。従って、
高温再生器7,低温再生器8におけるLiBr希溶液の
濃度,冷媒循環量等については、定格運転時の場合とな
んら変わるところがなく、冷媒再生に必要とされる蒸気
消費量,温水消費量については、定格値を維持したまま
である。
Next, the capacity control of the absorption refrigerator 101 will be described. When the load on the absorption refrigerator 101 becomes smaller than the refrigerating capacity of the absorption refrigerator 101, the temperature of the cold water returning to the evaporator 11 from the indoor unit becomes lower. Accordingly, the refrigerant evaporation temperature in the evaporator 11 also gradually decreases.
Of the refrigerant in the evaporator 11 to prevent the refrigerant from freezing. This lower limit is detected by detecting the return temperature of the cold water by the temperature sensor 33, and operating the three-way valve 34 for controlling the flow rate of the refrigerant to bypass a part of the refrigerant supplied from the condenser 9 to the evaporator 11, for example, to the absorber 10. I do. As a result, only the refrigerant amount is supplied to the evaporator 11 according to the external load. As a result, the cooling capacity is controlled, and the operation can be continued without abnormally lowering the evaporation temperature. On the other hand, the refrigerant bypassed by the refrigerant flow control three-way valve 34 is mixed with the LiBr solution in the absorber 10 and distributed to the high temperature regenerator 7 and the low temperature regenerator 8 via the solution heat exchangers 12 and 13 by the solution pump 14. Is done. Therefore,
The concentration of the LiBr dilute solution in the high-temperature regenerator 7 and the low-temperature regenerator 8 and the amount of circulated refrigerant are the same as those in the rated operation, and the steam consumption and hot water consumption required for refrigerant regeneration are not changed. , While maintaining the rated value.

【0027】燃料電池冷却水系においては、燃料電池1
00の運転が部分負荷運転となった場合には燃料電池本
体1からの発熱量が変動するが、電池セルを発電反応に
適した温度に維持するよう冷却水温度を一定にするた
め、部分負荷運転時にも水蒸気分離器2での圧力を一定
に保つよう、流量調節二方弁28により燃料電池外部に
放出される蒸気量を制御する。
In the fuel cell cooling water system, the fuel cell 1
When the operation of 00 is a partial load operation, the calorific value from the fuel cell body 1 fluctuates. However, in order to keep the cooling water temperature constant so as to maintain the battery cell at a temperature suitable for the power generation reaction, the partial load During operation, the amount of steam discharged to the outside of the fuel cell is controlled by the two-way flow control valve 28 so that the pressure in the steam separator 2 is kept constant.

【0028】燃料電池排ガス系においても、燃料電池1
00の運転状態にともない、必要凝縮水量確保のための
必要放熱量は変動する。また、吸収式冷凍機101の低
温再生器8で、単効用サイクルでの再生器として機能さ
せるための排熱取り込み温度は、吸収式冷凍機101の
吸収器10,凝縮器9を冷却している冷却水の温度、即
ち外気温度の影響を受けて変化する。このため、燃料電
池排ガス系より排熱を回収し、吸収式冷凍機101に温
水として回収熱を供給する低温側排熱回収用熱交換器6
において、吸収式冷凍機101の冷却水温度が上昇し、
低温再生器8への供給温水温度が上昇した場合には必要
十分な冷却水が確保できなくなる。この場合には、凝縮
水タンク4に設置された液面センサー30により、凝縮
水量を検知して、冷却水量調節三方弁31を調節して凝
縮水回収用熱交換器5で不足分の凝縮水量を確保する制
御を行なう。
In the fuel cell exhaust system, the fuel cell 1
In accordance with the operating state of 00, the required heat release amount for securing the required condensed water amount varies. Further, the exhaust heat taking-in temperature at which the low-temperature regenerator 8 of the absorption refrigerator 101 functions as a regenerator in a single-effect cycle cools the absorber 10 and the condenser 9 of the absorption refrigerator 101. It changes under the influence of the temperature of the cooling water, that is, the outside air temperature. For this reason, the low-temperature side exhaust heat recovery heat exchanger 6 that recovers exhaust heat from the fuel cell exhaust gas system and supplies the recovered heat as hot water to the absorption chiller 101.
In, the cooling water temperature of the absorption refrigerator 101 rises,
When the temperature of the hot water supplied to the low-temperature regenerator 8 rises, it becomes impossible to secure necessary and sufficient cooling water. In this case, the condensed water amount is detected by the liquid level sensor 30 installed in the condensed water tank 4 and the three-way valve 31 for adjusting the amount of condensed water is adjusted so that the condensed water amount is insufficient in the condensed water recovery heat exchanger 5. Control to ensure

【0029】以上の、冷媒バイパスによる吸収式冷凍機
能力制御、燃料電池冷却水系放熱蒸気量制御、凝縮水回
収用の冷却水量制御を実施することにより、燃料電池の
運転を最優先したうえで発電と同時に発生し、放熱する
必要のある排熱を全て吸収式冷凍機に取り込み、その得
られた熱量で駆動できる吸収式冷凍機の能力の範囲内で
能力制御を行なうとともに燃料電池から回収された余剰
排熱については、吸収式冷凍機冷却回路を利用して大気
に放出することが可能となり、外部放熱用の室外熱交換
器、排熱回収熱交換器の冗長設置が不要となる。
By performing the above-described absorption refrigeration function control by refrigerant bypass, control of the amount of radiated steam in the fuel cell cooling water system, and control of the amount of cooling water for collecting condensed water, power generation is performed while giving priority to fuel cell operation. Simultaneously, all the exhaust heat that needs to be dissipated is taken into the absorption refrigerator, the capacity is controlled within the range of the absorption refrigerator that can be driven by the obtained heat, and recovered from the fuel cell. Excess waste heat can be released to the atmosphere using an absorption refrigerator cooling circuit, and redundant installation of an outdoor heat exchanger for external heat radiation and a waste heat recovery heat exchanger becomes unnecessary.

【0030】また、吸収式冷凍機の冷凍能力制御を、冷
媒バイパス制御により行うことで、これまでの再生器へ
の入熱量制御に比べ、負荷変動に対する蒸発器能力の応
答性が良く、従来の吸収式冷凍機により構成される場合
よりも制御性の高いシステムを構築することが可能とな
る。
Further, by controlling the refrigerating capacity of the absorption refrigerator by the refrigerant bypass control, the responsiveness of the evaporator capacity with respect to the load fluctuation is improved as compared with the conventional control of the heat input to the regenerator. It becomes possible to construct a system with higher controllability than the case where it is constituted by an absorption refrigerator.

【0031】図2に本発明の第二の実施例を示す。本実
施例では、第一の実施例における冷媒バイパス回路に代
えて、高温再生器7において蒸発し、さらに低温再生器
8において熱をLiBr希溶液に与えて凝縮した後、凝
縮器9に戻る冷媒の一部をバイパスし、高温再生器7に
再び戻す冷媒バイパス回路を設けることで、蒸発器11
に送られる冷媒量を制御し、吸収式冷凍機101の能力
制御を行っている。冷媒をバイパスするのが吸収器10
ではなく、高温再生器7であることが第一の実施例と異
なる点であり、その他の構成およびシステムの作用は第
一の実施例と共通である。
FIG. 2 shows a second embodiment of the present invention. In the present embodiment, instead of the refrigerant bypass circuit in the first embodiment, the refrigerant evaporated in the high-temperature regenerator 7, further given heat to the LiBr dilute solution in the low-temperature regenerator 8 and condensed, and then returned to the condenser 9 Of the evaporator 11 by providing a refrigerant bypass circuit that bypasses a part of the evaporator 11 and returns the refrigerant to the high-temperature regenerator 7 again.
To control the capacity of the absorption chiller 101. It is the absorber 10 that bypasses the refrigerant.
However, the present embodiment is different from the first embodiment in that it is a high-temperature regenerator 7, and other configurations and operations of the system are common to those of the first embodiment.

【0032】図3に本発明の第三の実施例を示す。本実
施例では、第一の実施例における冷媒バイパス回路に代
えて、凝縮器9から蒸発器11に導かれる冷媒の一部を
低温再生器8にバイパスする冷媒バイパス回路を設ける
ことで、蒸発器11に送られる冷媒量を制御し、吸収式
冷凍機101の能力制御を行っている。冷媒をバイパス
するのが吸収器10ではなく、低温再生器8であること
が第一の実施例と異なる点であり、その他の構成および
システムの作用は第一の実施例と共通である。
FIG. 3 shows a third embodiment of the present invention. In the present embodiment, instead of the refrigerant bypass circuit in the first embodiment, a refrigerant bypass circuit for bypassing a part of the refrigerant guided from the condenser 9 to the evaporator 11 to the low-temperature regenerator 8 is provided. The capacity of the absorption chiller 101 is controlled by controlling the amount of refrigerant sent to the chiller 11. The difference from the first embodiment is that the refrigerant bypasses the low-temperature regenerator 8 instead of the absorber 10, and other configurations and operations of the system are common to the first embodiment.

【0033】[0033]

【発明の効果】以上の説明で明らかなように、本発明の
燃料電池排熱利用システムとその制御方法によれば、電
力需要に応じた燃料電池の運転を最優先したうえで、発
電とともに発生する排熱のうち、冷却水系での蒸気量に
おいては必要放出熱量総量を吸収式冷凍機に取り込むよ
う吸収式冷凍機を制御し、排ガス系においては吸収式冷
凍機で回収できる分以外に排ガス中より凝縮水を回収す
る必要がある場合のみ専用の凝縮水回収用熱交換器を使
用するよう制御することで、燃料電池の冷却水系および
排ガス系での放熱用熱交換器が不要となり、システム全
体の排熱を外部に放出する室外熱交換器の冗長設置を避
け、吸収式冷凍機の室外熱交換器を兼用することが可能
となる。
As is clear from the above description, according to the fuel cell exhaust heat utilization system and the control method thereof of the present invention, the operation of the fuel cell according to the power demand is given the highest priority, and the operation is performed together with the power generation. Of the exhaust heat that is generated, the absorption chiller is controlled so that the total amount of required heat release is taken into the absorption chiller for the amount of steam in the cooling water system. By controlling the use of a dedicated heat exchanger for condensed water recovery only when it is necessary to recover more condensed water, the heat exchanger for heat dissipation in the cooling water system and exhaust gas system of the fuel cell becomes unnecessary, and the entire system It is possible to avoid redundant installation of an outdoor heat exchanger that discharges waste heat to the outside, and also to use the outdoor heat exchanger of the absorption refrigerator.

【0034】また、吸収式冷凍機の冷凍能力制御を冷媒
バイパス制御により行うことで、これまでの再生器への
駆動用熱量投入量を制御する入熱制御に比べ、負荷に対
する応答性がよく、制御性の高いシステムを構築するこ
とが可能となる。
Further, by controlling the refrigerating capacity of the absorption refrigerator by the refrigerant bypass control, the responsiveness to the load is improved compared to the conventional heat input control for controlling the amount of driving heat input to the regenerator. A highly controllable system can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例を示す構成図FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第二の実施例を示す構成図FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】本発明の第三の実施例を示す構成図FIG. 3 is a configuration diagram showing a third embodiment of the present invention.

【図4】第一の従来例を示す構成図FIG. 4 is a configuration diagram showing a first conventional example.

【図5】第二の従来例を示す構成図FIG. 5 is a configuration diagram showing a second conventional example.

【符号の説明】[Explanation of symbols]

1…燃料電池本体、2…水蒸気分離器、3…燃料改質装
置、4…凝縮水タンク、5…凝縮水回収用熱交換器、6
…低温側排熱回収用熱交換器、7…高温再生器、8…低
温再生器、9…凝縮器、10…吸収器、11…蒸発器、
12…高温側溶液熱交換器、13…低温側溶液熱交換
器、14…溶液ポンプ、15…冷媒ポンプ、16…高温
側排熱回収ポンプ、17…気水分離器、18…低温側排
熱回収ポンプ、19…冷却水ポンプ、20…室外熱交換
器、27…圧力センサー、28…流量調節二方弁、29
…排蒸気流量制御装置、30…液面センサー、31…冷
却水流量調節三方弁、32…冷却水流量制御装置、33
…温度センサー、34…冷媒流量調節三方弁、35…冷
媒流量制御装置、37…燃料電池冷却水循環用ポンプ。
DESCRIPTION OF SYMBOLS 1 ... Fuel cell main body, 2 ... Steam separator, 3 ... Fuel reformer, 4 ... Condensed water tank, 5 ... Heat exchanger for condensed water recovery, 6
... heat exchanger for exhaust heat recovery at low temperature side, 7 ... high temperature regenerator, 8 ... low temperature regenerator, 9 ... condenser, 10 ... absorber, 11 ... evaporator,
12: High-temperature side solution heat exchanger, 13: Low-temperature side solution heat exchanger, 14: Solution pump, 15: Refrigerant pump, 16: High-temperature side exhaust heat recovery pump, 17: Gas-water separator, 18: Low-temperature side exhaust heat Recovery pump, 19: Cooling water pump, 20: Outdoor heat exchanger, 27: Pressure sensor, 28: Flow control two-way valve, 29
... Exhaust steam flow control device, 30 ... Liquid level sensor, 31 ... Cooling water flow control three-way valve, 32 ... Cooling water flow control device, 33
... temperature sensor, 34 ... three-way valve for adjusting refrigerant flow rate, 35 ... refrigerant flow control device, 37 ... pump for circulating cooling water for fuel cell.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大島 一夫 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (72)発明者 植草 常雄 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (72)発明者 町沢 健司 茨城県土浦市神立町603番地 株式会社 日立製作所 土浦工場内 (72)発明者 山本 公治 茨城県土浦市神立町603番地 株式会社 日立製作所 土浦工場内 (72)発明者 河野 恭二 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 (58)調査した分野(Int.Cl.7,DB名) H01M 8/04 H01M 8/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuo Oshima 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Tsuneo Uekusa 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Japan Inside Telegraph and Telephone Co., Ltd. (72) Inventor Kenji Machizawa 603, Kandamachi, Tsuchiura-shi, Ibaraki Pref.Hitachi, Ltd., Tsuchiura Plant Hitachi, Ltd. (72) Inventor Kyoji Kono 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd. (58) Field surveyed (Int.Cl. 7 , DB name) H01M 8/04 H01M 8/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃料電池本体の冷却水系に設けた水蒸気
分離器から該燃料電池本体で発生した高温側排熱を水蒸
気として回収して吸収式冷凍機の高温再生器に供給し、
さらに燃料電池の排ガス系に設けた低温側排熱回収用熱
交換器により排ガスから低温側排熱を回収して該吸収式
冷凍機の低温再生器に供給し、該高温側排熱により該高
温再生器で冷媒吸収溶液から蒸発させた冷媒と該低温側
排熱により該低温再生器で該冷媒吸収溶液から蒸発させ
た冷媒とを凝縮器で吸収式冷凍機冷却回路により冷却し
て凝縮させ、該凝縮した冷媒を蒸発器で蒸発させて該冷
媒の蒸発熱により熱搬送媒体を冷却して冷熱を得、該蒸
発器で蒸発した冷媒を吸収器で該吸収式冷凍機冷却回路
により冷却して前記冷媒吸収溶液に吸収させる吸収式冷
凍機の吸収冷凍サイクルを駆動する燃料電池排熱利用シ
ステムにおいて、 前記凝縮器で凝縮し前記蒸発器に送られる冷媒の一部を
前記吸収器または前記高温再生器または前記低温再生器
のいずれかにバイパスする冷媒バイパス回路と、この冷
媒バイパス回路へ分流される該冷媒流量を調節する冷媒
流量調節手段と、前記蒸発器へ導かれる熱搬送媒体の入
口温度を測定する温度センサーと、この温度センサーで
検出した温度が低下した場合には前記冷媒流量調節手段
より該冷媒バイパス回路に冷媒の一部を分流させて
凍能力を低下させるように制御するための操作信号を送
信する制御装置とを具備するとともに、前記水蒸気分離器から前記吸収式冷凍機の高温再生器へ
供給する排蒸気量を調節する水蒸気流量調節手段と、該
水蒸気分離器内の水蒸気圧力を検知する圧力センサー
と、該圧力センサーから所定の水蒸気圧力から変化した
検知信号を受けた場合には該水蒸気流量調節手段に対し
該燃料電池の温度を発電反応に適した値に維持するため
に冷却水の温度を一定にする該水蒸気分離器内の水蒸気
圧力を維持するように該排蒸気量を変化させる操作信号
を送る制御装置とを具備し、 前記燃料電池の排ガス中に含まれる水蒸気を凝縮させる
凝縮水回収用熱交換器と、この凝縮水回収用熱交換器へ
の冷却媒体を前記吸収式冷凍機冷却回路より分岐しその
冷却媒体量を調節する冷却媒体流量調節手段と、前記低
温側排熱回収用熱交換器の凝縮水および前記凝縮水回収
用熱交換器の凝縮水を溜め必要な箇所へ供給する凝縮水
タンクと、該凝縮水タンク内の液面高さを検出する液面
センサーと、この液面センサーから液面が所定の高さか
ら低下した検出信号を受けた場合には該冷却媒体流量調
節手段に対し該凝縮水量を所定量に保つために該液面が
所定の高さに達するように該冷却媒体量を分岐させる
作信号を送信する制御装置とを具備することを特徴とす
る燃料電池排熱利用システム。
1. A high temperature side exhaust heat generated in a fuel cell main body is recovered as steam from a water vapor separator provided in a cooling water system of a fuel cell main body, and supplied to a high temperature regenerator of an absorption refrigerator.
Further to recover the low-temperature side heat from the exhaust gas supplied to the low-temperature regenerator of the absorption chiller by cold side exhaust heat recovery heat exchanger provided in the exhaust system of the fuel cell, the high by the high-temperature side heat
The refrigerant evaporated from the refrigerant absorbing solution in the warm regenerator and the low-temperature side
The waste heat evaporates from the refrigerant absorbing solution in the low-temperature regenerator.
The cooled refrigerant is cooled by an absorption refrigerator cooling circuit with a condenser.
And condensed, and the condensed refrigerant is evaporated in an evaporator to
The heat transfer medium is cooled by the heat of evaporation of the medium to obtain cold heat,
The refrigerant evaporated in the generator is absorbed by the absorber and the absorption refrigerator cooling circuit is used.
Wherein a portion of the refrigerant sent in fuel cell waste heat utilization system that drives the absorption refrigerating cycle of an absorption refrigerator is taken up in the refrigerant absorbing solution was cooled, the evaporator and condensed in the condenser by A refrigerant bypass circuit for bypassing either the absorber or the high-temperature regenerator or the low-temperature regenerator, refrigerant flow adjusting means for adjusting the flow rate of the refrigerant diverted to the refrigerant bypass circuit, and heat guided to the evaporator a temperature sensor for measuring the inlet temperature of the carrier medium, in this case the temperature sensor temperature detected by the drops will divert part of the refrigerant more the refrigerant bypass circuit to the coolant flow rate adjusting means <br/> cold a control device for transmitting an operation signal for controlling the refrigeration capacity to decrease , and from the steam separator to the high-temperature regenerator of the absorption chiller.
Steam flow rate adjusting means for adjusting the amount of exhaust steam to be supplied;
Pressure sensor that detects the steam pressure in the steam separator
And the pressure sensor changed from a predetermined steam pressure.
If a detection signal is received,
To maintain the temperature of the fuel cell at a value suitable for the power generation reaction
Steam in the steam separator to keep the temperature of the cooling water constant
An operation signal for changing the amount of the discharged steam so as to maintain the pressure
Comprising a letter controller, wherein the condensed water recovery heat exchanger for condensing water vapor contained in the exhaust gas of the fuel cell, the condensed water recovery cooling medium the absorption refrigerator cooling to the heat exchanger A cooling medium flow rate adjusting means for branching from the circuit and adjusting the amount of the cooling medium, and collecting condensed water of the low-temperature side exhaust heat recovery heat exchanger and condensed water of the condensed water recovery heat exchanger and supplying them to necessary places. A condensed water tank, a liquid level sensor for detecting the liquid level in the condensed water tank, and whether the liquid level is at a predetermined level from the liquid level sensor .
Liquid level in order to maintain a predetermined amount the amount of condensed water against the said coolant flow rate regulating means when receiving a detection signal decreases Luo
A control device for transmitting an operation signal for branching the amount of the cooling medium so as to reach a predetermined height .
【請求項2】 燃料電池本体の冷却水系に設けた水蒸気
分離器から該燃料電池本体で発生した高温側排熱を水蒸
気として回収して吸収式冷凍機の高温再生器に供給し、
さらに燃料電池の排ガス系に設けた低温側排熱回収用熱
交換器により排ガスから低温側排熱を回収して該吸収式
冷凍機の低温再生器に供給し、該高温側排熱により該高
温再生器で冷媒吸収溶液から蒸発させた冷媒と該低温側
排熱により該低温再生器で該冷媒吸収溶液から蒸発させ
た冷媒とを凝縮器で吸収式冷凍機冷却回路により冷却し
て凝縮させ、該凝縮した冷媒を蒸発器で蒸発させて該冷
媒の蒸発熱により熱搬送媒体を冷却して冷熱を得、該蒸
発器で蒸発した冷媒を吸収器で該吸収式冷凍機冷却回路
により冷却して前記冷媒吸収溶液に吸収させる吸収式冷
凍機の吸収冷凍サイクルを駆動する燃料電池排熱利用シ
ステムの制御方法において、 前記吸収式冷凍機の冷凍能力制御については、まず負荷
と前記蒸発器の間の熱搬送媒体についての該負荷に応じ
て変化する戻り温度を検出し、次に該戻り温度と設定値
とを比較することにより該負荷に対して該吸収式冷凍機
の冷凍能力が過剰になったかを判断し、次に該吸収式冷
凍機の冷凍能力が過剰になった場合に前記凝縮器から該
蒸発器に送られる冷媒の一部を前記吸収器または前記高
温再生器または前記低温再生器のいずれかにバイパスさ
せて行い、 前記燃料電池の冷却水系から回収される高温側排熱量の
制御については、まず該燃料電池を冷却した冷却水の前
記水蒸気分離器内での飽和水蒸気圧力を検知し、次に前
記吸収式冷凍機の冷凍能力制御とは独立して該燃料電池
の温度を発電反応に適した値に維持するために該冷却水
の温度が一定となるように該水蒸気分離器内の飽和水蒸
気圧力を維持するよう該吸収式冷凍機へ供給される前記
水蒸気の排蒸気量を制御して行い、 前記燃料電池の排ガス系の排熱処理制御については、ま
ず、前記低温側排熱回収用熱交換器からの凝縮水および
該燃料電池の排ガス系に設けた凝縮水回収用熱交換器か
らの凝縮水を溜め必要な箇所へ供給する凝縮水タンクの
液面が所定の高さに達しているかを検出し、次に該液面
が所定の高さに達していない場合に該凝縮水量が足りな
いと判断し、次にこの凝縮水量が足りない場合のみ該凝
縮水回収用熱交換器が作用するように前記吸収式冷凍機
冷却回路より分岐して流す冷却媒体量を制御し該凝縮水
タンク内の凝縮水量を一定値以上に保つように行うこと
を特徴とする燃料電池排熱利用システムの制御方法。
2. A high temperature side exhaust heat generated in the fuel cell main body is recovered as steam from a water vapor separator provided in a cooling water system of the fuel cell main body, and supplied to a high temperature regenerator of the absorption refrigerator.
Further to recover the low-temperature side heat from the exhaust gas supplied to the low-temperature regenerator of the absorption chiller by cold side exhaust heat recovery heat exchanger provided in the exhaust system of the fuel cell, the high by the high-temperature side heat
The refrigerant evaporated from the refrigerant absorbing solution in the warm regenerator and the low-temperature side
The waste heat evaporates from the refrigerant absorbing solution in the low-temperature regenerator.
The cooled refrigerant is cooled by an absorption refrigerator cooling circuit with a condenser.
And condensed, and the condensed refrigerant is evaporated in an evaporator to
The heat transfer medium is cooled by the heat of evaporation of the medium to obtain cold heat,
The refrigerant evaporated in the generator is absorbed by the absorber and the absorption refrigerator cooling circuit is used.
A method of controlling a fuel cell waste heat utilization system that drives the absorption refrigerating cycle of an absorption refrigerator is taken up in the refrigerant absorbing solution is cooled by, for cooling capacity control of the absorption refrigerating machine, first load and The return temperature of the heat transfer medium between the evaporators, which varies according to the load, is detected, and then the return temperature is compared with a set value to apply the refrigeration of the absorption refrigerator to the load. Determine whether the capacity has become excessive, and then, when the refrigeration capacity of the absorption refrigerator becomes excessive, a part of the refrigerant sent from the condenser to the evaporator is transferred to the absorber or the high-temperature regenerator. Or, it is performed by bypassing any one of the low-temperature regenerators, and the control of the high-temperature side exhaust heat recovered from the cooling water system of the fuel cell is performed by first cooling water cooled in the fuel cell in the steam separator. Saturated steaming The pressure is detected, and then, independently of the refrigeration capacity control of the absorption refrigerator, the temperature of the cooling water is kept constant so as to maintain the temperature of the fuel cell at a value suitable for the power generation reaction. The exhaust steam amount of the steam supplied to the absorption refrigerator is controlled by controlling the saturated steam pressure in the steam separator, and the exhaust heat treatment of the exhaust gas system of the fuel cell is first controlled by the low temperature. The condensed water from the heat exchanger for exhaust heat recovery on the side and the condensed water from the heat exchanger for condensed water recovery provided in the exhaust gas system of the fuel cell are stored, and the liquid level of the condensed water tank to be supplied to a required portion is a predetermined level. It is determined whether the liquid level has reached a predetermined level. If the liquid level has not reached a predetermined level, it is determined that the amount of condensed water is insufficient. From the absorption refrigerator cooling circuit so that the heat exchanger for Toki control method of controlling the cooling medium quantity fuel cell exhaust heat utilization system and performs so as to keep the amount of condensed water in the condensed water tank above a predetermined value to flow.
JP10412792A 1992-04-23 1992-04-23 Fuel cell waste heat utilization system and control method thereof Expired - Fee Related JP3215489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10412792A JP3215489B2 (en) 1992-04-23 1992-04-23 Fuel cell waste heat utilization system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10412792A JP3215489B2 (en) 1992-04-23 1992-04-23 Fuel cell waste heat utilization system and control method thereof

Publications (2)

Publication Number Publication Date
JPH05299107A JPH05299107A (en) 1993-11-12
JP3215489B2 true JP3215489B2 (en) 2001-10-09

Family

ID=14372457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10412792A Expired - Fee Related JP3215489B2 (en) 1992-04-23 1992-04-23 Fuel cell waste heat utilization system and control method thereof

Country Status (1)

Country Link
JP (1) JP3215489B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109037C (en) * 1996-09-13 2003-05-21 三菱制药株式会社 Thienotriazolodiazepine compounds and medical uses thereof
KR101699905B1 (en) * 2016-05-31 2017-01-25 주식회사 성지테크 Absorption chiller system having fuel cell

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054229A (en) * 1996-07-19 2000-04-25 Ztek Corporation System for electric generation, heating, cooling, and ventilation
JP2002147890A (en) * 2000-11-14 2002-05-22 Ishikawajima Harima Heavy Ind Co Ltd Air-conditioning method and air conditioner
JP5083195B2 (en) * 2008-12-19 2012-11-28 富士電機株式会社 Waste heat utilization method and apparatus for fuel cell power generator
JP5316126B2 (en) * 2009-03-17 2013-10-16 富士電機株式会社 Fuel cell power generator
JP5625368B2 (en) * 2010-01-27 2014-11-19 株式会社デンソー Refrigerator combined fuel cell system
JP6015132B2 (en) * 2012-05-29 2016-10-26 アイシン精機株式会社 Combined absorption heat pump device
CN105423616B (en) * 2015-12-22 2023-10-17 上海汉钟精机股份有限公司 Electric heating cold steam-water-material-sewage combined supply system capable of being driven by waste heat in networking management
JP2017161200A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cold water manufacturing system
JP2017161201A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cooling water manufacturing system
JP2017161199A (en) * 2016-03-11 2017-09-14 三浦工業株式会社 Cold water manufacturing system
CN109301285A (en) * 2018-10-26 2019-02-01 中国华能集团清洁能源技术研究院有限公司 A kind of multipotency stream comprehensive energy rerouting station based on fuel cell
CN113720040B (en) * 2021-09-14 2022-12-13 哈尔滨工程大学 Combined cooling, heating and power system with waste heat grading recovery and absorption type refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109037C (en) * 1996-09-13 2003-05-21 三菱制药株式会社 Thienotriazolodiazepine compounds and medical uses thereof
KR101699905B1 (en) * 2016-05-31 2017-01-25 주식회사 성지테크 Absorption chiller system having fuel cell

Also Published As

Publication number Publication date
JPH05299107A (en) 1993-11-12

Similar Documents

Publication Publication Date Title
JP3215489B2 (en) Fuel cell waste heat utilization system and control method thereof
US4178989A (en) Solar heating and cooling system
US9068740B2 (en) Sunlight heat utilized steam absorption chiller and sunlight heat utilization system
US6523357B1 (en) Absorption refrigerator
CA2225335A1 (en) Compression absorption heat pump
JP2004211979A (en) Absorption refrigerating system
US6581405B2 (en) Airconditioning system utilizing absorption chiller cell
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP2002061983A (en) Absorption refrigerating machine
JP2007333342A (en) Multi-effect absorption refrigerating machine
JPH05223389A (en) Fuel cell-refrigerator integral system and controlling method therefor
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP3426620B2 (en) Fuel cell waste heat utilization system
JPH11337214A (en) Absorption cold/hot water device and operation thereof
JPH062981A (en) Fuel cell refrigerator integral system
KR102396955B1 (en) Hybrid absorption chiller system for gas engine generator and method for driving the same
JPH0989407A (en) Absorption refrigerator
JP3281228B2 (en) Absorption type cold / hot water unit
JP2892519B2 (en) Absorption heat pump equipment
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP3744689B2 (en) Co-generation system
JPH01234761A (en) Double-effect multi-stage pressure type absorption type refrigerator and system therefor
JP4201418B2 (en) Control method of absorption chiller / heater
JP2858921B2 (en) Control device for absorption refrigerator
JP3400699B2 (en) Absorption chiller / heater using engine exhaust heat

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees