JP3215269B2 - Manufacturing method of structural steel plate with excellent strength and toughness - Google Patents

Manufacturing method of structural steel plate with excellent strength and toughness

Info

Publication number
JP3215269B2
JP3215269B2 JP19068294A JP19068294A JP3215269B2 JP 3215269 B2 JP3215269 B2 JP 3215269B2 JP 19068294 A JP19068294 A JP 19068294A JP 19068294 A JP19068294 A JP 19068294A JP 3215269 B2 JP3215269 B2 JP 3215269B2
Authority
JP
Japan
Prior art keywords
rolling
toughness
less
structural steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19068294A
Other languages
Japanese (ja)
Other versions
JPH0860241A (en
Inventor
裕治 野見山
忠 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19068294A priority Critical patent/JP3215269B2/en
Publication of JPH0860241A publication Critical patent/JPH0860241A/en
Application granted granted Critical
Publication of JP3215269B2 publication Critical patent/JP3215269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延を比較的低温
である未再結晶域で行う制御圧延を必要とせず、オース
テナイト域で適正な圧延を施し、フェライト域での加工
前の組織を微細化させ、フェライト域での加工を行うこ
とにより、靭性を大きく劣化させることなく、強度を向
上させて、合金省略等を図ることにより、所望の強度、
靭性を有する構造用厚鋼板を経済的にかつ生産性よく製
造する方法に関するものである。
The present invention does not require controlled rolling in which hot rolling is performed in an unrecrystallized region at a relatively low temperature, performs appropriate rolling in an austenite region, and forms a structure before processing in a ferrite region. By miniaturizing and processing in the ferrite region, the strength is improved without significantly deteriorating the toughness, and by omitting the alloy, the desired strength,
The present invention relates to a method for manufacturing a structural steel plate having toughness economically and with high productivity.

【0002】[0002]

【従来の技術】近年、厚鋼板の使用環境の厳格化に伴
い、要求される靭性も厳しくなっている。これらの要求
に対応するために制御圧延やその後の制御冷却との組合
せ技術が開発されてきた。例えば、従来の水冷型高張力
鋼の製造方法の一つに、特開昭54−71714号公報
に記載のように、鋳片を加熱後圧延し、未再結晶域で3
0%以上の圧延を行った後、Ar3 以上の温度から3℃
/秒以上の冷却速度で500℃以上650℃以下の温度
まで冷却し、優れた強度、靭性を得る方法がある。かか
る製造方法では、優れた靭性を得るために熱間圧延を比
較的低温である未再結晶域で行う、いわゆる制御圧延が
必須条件となっており、鋼板の温度が適正な800℃程
度の温度範囲まで低下するのを待って圧延を終了せしめ
るので、通常の圧延に比べ著しく圧延能率を低下させる
という欠点を有している。
2. Description of the Related Art In recent years, the required toughness has become severer with the stricter use environment of thick steel plates. In order to respond to these demands, a technology of combination with controlled rolling and subsequent controlled cooling has been developed. For example, as one of the conventional methods for producing a water-cooled high-strength steel, as described in JP-A-54-71714, a slab is rolled after being heated, and the slab is rolled in an unrecrystallized region.
After rolling 0% or more, 3 ° C from the temperature of Ar 3 or more
There is a method of cooling to a temperature of 500 ° C. or more and 650 ° C. or less at a cooling rate of at least / sec to obtain excellent strength and toughness. In such a manufacturing method, so-called controlled rolling, in which hot rolling is performed in a relatively low temperature unrecrystallized region to obtain excellent toughness, is an essential condition. Since the rolling is terminated after being reduced to the range, there is a disadvantage that the rolling efficiency is remarkably reduced as compared with the ordinary rolling.

【0003】これに対し、特開昭55−28318号公
報に示されているように、Cの上限範囲を重量%で0.09
%とした鋼を、通常の熱間圧延後30℃/秒以上の冷却
速度で500℃以下まで冷却する溶接性の優れた50キ
ロ級の高張力鋼の製造方法がある。この方法では、圧延
能率の低下は避けられるものの、靭性を向上させるため
にCの上限を重量%で0.09%に制限している。かかる低
C成分では、強度を確保するためには30℃/秒以上の
冷却速度で500℃以下まで冷却することを必須条件と
している。
On the other hand, as disclosed in JP-A-55-28318, the upper limit range of C is 0.09% by weight.
%, There is a method of producing a 50 kg class high tensile steel excellent in weldability, in which the steel is cooled to 500 ° C. or less at a cooling rate of 30 ° C./sec or more after normal hot rolling. In this method, although a decrease in rolling efficiency can be avoided, the upper limit of C is limited to 0.09% by weight in order to improve toughness. In order to ensure the strength of such a low C component, it is an essential condition that the component is cooled to 500 ° C. or less at a cooling rate of 30 ° C./sec or more.

【0004】また、特開昭55−115922号公報に
示されているように、Cの上限を重量%で0.09%とし、
更に重量%で 0.5%以下のCu、0.50%以下のNi、
0.3%以下のCr、 0.3%以下のMo、 0.1%以下の
V、 0.1%以下のTiを1種又は2種以上含有する鋼
を、通常の熱間圧延後600℃以下まで冷却する溶接性
の優れた50kg/mm2 以上の高張力鋼の製造方法があ
る。この方法では、圧延能率の低下は避けられるもの
の、低C成分では50kg/mm2 以上の強度を得るため
に、コストの高い合金元素を含有することを必須として
おり、合金コスト削減上の制約を有する欠点がある。
Further, as disclosed in JP-A-55-115922, the upper limit of C is set to 0.09% by weight,
0.5% or less of Cu, 0.50% or less of Ni,
Weldability for cooling steel containing one or more of 0.3% or less of Cr, 0.3% or less of Mo, 0.1% or less of V, and 0.1% or less of Ti to 600 ° C or less after normal hot rolling. There is an excellent method for producing high-strength steel of 50 kg / mm 2 or more. In this method, a reduction in rolling efficiency can be avoided, but in order to obtain a strength of 50 kg / mm 2 or more with a low C component, it is essential to contain a high-cost alloy element. There are drawbacks to have.

【0005】更に、高張力鋼においても圧延温度域がオ
ーステナイトの低温域からフェライトとオーステナイト
域の2相域へと進展し、フェライトの加工硬化により高
張力化を達成することが行われている。ところが、この
ようなオーステナイト、フェライト2相域による高張力
化を利用して大幅な強度上昇を得るには極度な低温域圧
延が必須となる。そのために操業上の問題として圧延の
後段において変形抵抗の上昇や予測精度の劣化のため
に、予定した圧延パスが予定通りとれないことになり、
圧延形状の不良や圧延能率の急激な低下があり、実質的
なメリットが少ない。
[0005] Further, even in a high-tensile steel, the rolling temperature range has evolved from a low-temperature range of austenite to a two-phase range of ferrite and austenite, and high tensile strength has been achieved by work hardening of ferrite. However, extreme low-temperature rolling is indispensable in order to obtain a large increase in strength by utilizing such a high austenitic / ferrite two-phase region to increase the tensile strength. Therefore, as an operational problem, due to an increase in deformation resistance and a deterioration in prediction accuracy at a later stage of rolling, a planned rolling pass cannot be taken as planned.
There are poor rolling shapes and a sharp decrease in rolling efficiency, and there is little substantial merit.

【0006】また、前記した2相域圧延の問題点を解消
する方法として特開昭58−144419号公報記載の
方法がある。すなわち未再結晶域で30%以上の圧延
後、フェライトとオーステナイト域で加工することな
く、α域で圧下を加える方法である。しかしながら、こ
の方法でも実質的に未再結晶域での圧延を必須としてお
り、圧延能率の低下が避けられず、大幅なコスト上昇を
招く。
As a method for solving the above-mentioned problem of the two-phase rolling, there is a method described in Japanese Patent Application Laid-Open No. Sho 58-144419. That is, after rolling by 30% or more in the non-recrystallized region, the rolling is applied in the α region without working in the ferrite and austenite regions. However, even in this method, rolling in a substantially non-recrystallized region is essential, and a reduction in rolling efficiency is inevitable, resulting in a significant increase in cost.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記した従来
の製造方法の欠点を解消して、圧延能率を低下させず
に、合金を省略して強度、靭性の優れた構造用厚鋼板を
生産性よく、かつ経済的に製造する方法を提供すること
を課題とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional production method and eliminates alloys without reducing the rolling efficiency to produce a structural steel plate having excellent strength and toughness. It is an object of the present invention to provide a method for producing the product efficiently and economically.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は次の通り
である。 (1) 重量%で、 C :0.04〜0.20%、 Si:0.03〜1.00%、 Mn:0.30〜2.00%、 Al:0.005〜0.10%、 N :0.001〜0.01% を含有し、残部がFe及び不可避的成分からなり、凝固
後Ac3 以上に加熱した構造用鋼の鋳片を用い、再結晶
域で板厚中心部での圧延中の最大静水圧応力が12kg/
mm2 以上であるパスを少なくとも1パス以上実施し、圧
延終了後直ちに5℃/秒以上の冷却速度で冷却し、Ar
1以下の温度範囲に冷却を停止させた後、フェライトと
オーステナイトの2相域で圧延することなく、Ar1
以下で圧下率20%未満の圧延を実施することを特徴と
する強度、靭性に優れた構造用厚鋼板の製造法。
The gist of the present invention is as follows. (1) In weight%, C: 0.04 to 0.20%, Si: 0.03 to 1.00%, Mn: 0.30 to 2.00%, Al: 0.005 to 0.10% , N: 0.001 to 0.01%, with the balance being Fe and unavoidable components, using a slab of structural steel heated to at least Ac 3 after solidification, and using a central part of the sheet thickness in the recrystallization area. The maximum hydrostatic stress during rolling at 12kg /
mm 2 or more in a path performed at least one pass or more, cooled at the end of rolling immediately after 5 ° C. / sec or more cooling rate, Ar
After cooling was stopped in the temperature range of 1 or less, and characterized in that without rolling in the two-phase region of ferrite and austenite, to implement the rolling reduction ratio less than 20% in less than a point Ar
Manufacturing method for structural steel plates with excellent strength and toughness.

【0009】(2) 前記(1)記載の成分の鋼に、
量%で更に、 Ti:0.003〜0.10%、 Cr:0.01〜0.50%、 Ni:0.01〜3.00%、 Mo:0.01〜0.50%、 Cu:0.01〜1.50%、 V :0.005〜0.20%、 Nb:0.003〜0.05%、 B :0.0003〜0.0020% の1種または2種以上を含有することを特徴とする強
度、靭性に優れた構造用厚鋼板の製造法。
(2) In addition to the steel of the composition described in the above (1), by weight% , Ti: 0.003 to 0.10%, Cr: 0.01 to 0.50%, Ni: 0.01 to 3.00%, Mo: 0.01 to 0.50%, Cu: 0.01 to 1.50%, V: 0.005 to 0.20%, Nb: 0.003 to 0.05%, B : strong, characterized in that it contains one or more from 0.0003 to 0.0020%
Manufacturing method of structural steel plate with excellent strength and toughness.

【0010】(3) Ar1以下の温度範囲に冷却を停
止させた後、フェライトとオーステナイトの2相域で圧
延することなく、Ar1点以下で圧下率20%未満の圧
延を実施した後、引続き700℃以下の温度範囲に焼き
戻し処理を行うことを特徴とする前記(1)または
(2)に記載の強度、靭性に優れた構造用厚鋼板の製造
[0010] (3) After cooling to Ar 1 following temperatures stopped, without rolling in the two-phase region of ferrite and austenite, after performing the rolling reduction ratio less than 20% in less than a point Ar (1) or the tempering process is subsequently performed in a temperature range of 700 ° C. or lower.
Manufacture of structural steel plates with excellent strength and toughness as described in (2)
Law .

【0011】[0011]

【発明の実施の形態】また、本発明が対象としている構
造用圧延鋼材は、次記するように、通常の溶接構造用鋼
が所要の材質を得るために、従来から当業分野での活用
で確認されている作用・効果の関係を基に定めている添
加元素の種類と量を同様に使用して、同等の作用と効果
が得られる。従って、これ等を含む鋼を本発明は対象鋼
とするものである。これ等の各成分元素につきその添加
理由と量を以下に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described below, a rolled structural steel material to which the present invention is directed has been conventionally utilized in the field of the art in order to obtain a required material from ordinary welded structural steel. The same operation and effect can be obtained by using the type and amount of the additional element determined based on the relation between the operation and effect confirmed in the above. Therefore, the present invention is intended to include steels including these. The reasons and amounts of these components are shown below.

【0012】Cは、鋼の強度を向上する有効な成分とし
て少なくとも0.04%は添加するものであるが、0.
20%を超える過剰な含有量では、HAZ(eat ff
ected one)に島状マルテンサイトが析出し、HAZ靭
性を著しく劣化させるので、0.20%以下に規制す
る。Siは、溶鋼の脱酸元素として必要であり、また強
度増加元素として添加するが、0.03%未満では脱酸
効果が不十分であり、1.0%を超えて添加すると、鋼
の加工性が低下し、HAZの靭性が低下するため、添加
量は0.03〜1.0%に規制する。Mnも脱酸成分元
素として必要であり、0.30%未満では鋼の清浄度を
低下し、加工性を害する。また鋼材の強度を向上する成
分として0.30%以上の添加が必要である。しかし、
Mnは、過剰の添加により溶接性を著しく劣化させるの
で、2.00%を上限とする。
C is added at least 0.04% as an effective component for improving the strength of steel.
The excess amount of more than 20%, HAZ (H eat A ff
Since island martensite precipitates in the expected Z one) and significantly deteriorates the HAZ toughness, the content is restricted to 0.20% or less. Si is necessary as a deoxidizing element of molten steel and is added as a strength increasing element. However, if it is less than 0.03%, the deoxidizing effect is insufficient. Therefore, the addition amount is restricted to 0.03 to 1.0% because the HAZ has reduced toughness. Mn is also required as a deoxidizing component element, and if it is less than 0.30%, the cleanliness of the steel is reduced and workability is impaired. Further, it is necessary to add 0.30% or more as a component for improving the strength of the steel material. But,
Since Mn significantly deteriorates weldability due to excessive addition, the upper limit is set to 2.00%.

【0013】AlはAl窒化物による鋼の結晶粒径が微
細化できるので必要である。しかし、添加量が少ないと
きにはその効果がなく、過剰の場合には鋼の靭性を劣化
させるので、添加量は0.005〜0.10%に規制す
る。NはAlやTiと結びついてオーステナイト粒の微
細化に有効に働くが、その効果が明確になるためには
0.001%以上含有する必要があるが、0.01%を
超えて過剰に添加すると固溶Nが増加して靭性に悪影響
を及ぼすので、0.01%を上限とする。
Al is necessary because the grain size of steel by Al nitride can be reduced. However, when the addition amount is small, the effect is not obtained, and when the addition amount is excessive, the toughness of the steel is deteriorated. Therefore, the addition amount is restricted to 0.005 to 0.10%. N works effectively with the refinement of austenite grains in combination with Al and Ti, but in order to clarify the effect, it is necessary to contain N in an amount of 0.001% or more, but excessively exceeds 0.01%. Then, the amount of solute N increases and adversely affects toughness. Therefore, the upper limit is made 0.01%.

【0014】本発明が対象とする構造用鋼の基本成分は
以上である。これを基本に母材強度の上昇あるいは継手
靭性の向上を目的として要求される性質に応じてTi,
Cr,Ni,Mo,Cu,V,Nb,Bの1種または2
種以上を含有することができる。
The basic components of the structural steel to which the present invention is directed are as described above. On the basis of this, Ti, according to the properties required for the purpose of increasing the base metal strength or improving the joint toughness,
One or two of Cr, Ni, Mo, Cu, V, Nb, B
It can contain more than one species.

【0015】まず、Tiは析出強化により母材強度向上
に寄与するとともに、TiNの形成によりオーステナイ
ト粒を微細化し、溶接部の継手靭性に極めて有効な元素
であるが、効果を発揮できるためには0.003%以上
の添加が必要である。一方、0.10%を超えるTi炭
化物を形成して靭性や延性を劣化させるため、上限を
0.10%とする。Cr及びMoはいずれも母材の強度
上昇に有効な元素であるが、明瞭な効果を生じるために
は0.01%以上必要であり、一方0.50%を超えて
添加すると、靭性が劣化する傾向を有するため、それぞ
0.01〜0.50%の範囲とする。
First, while Ti contributes to the improvement of the base metal strength by precipitation strengthening and forms fine austenite grains by the formation of TiN, it is an extremely effective element for the joint toughness of the welded portion. It is necessary to add 0.003% or more. On the other hand, the upper limit is set to 0.10% to form Ti carbides exceeding 0.10% to deteriorate toughness and ductility. Both Cr and Mo are effective elements for increasing the strength of the base material. However, in order to produce a clear effect, 0.01% or more is required. On the other hand, if added over 0.50%, the toughness deteriorates. because it has a tendency to, it
In the range of 0.01 to 0.50%.

【0016】また、Niは母材の強度と靭性を同時に向
上させることができ、非常に有効な元素であるが、効果
を発揮させるためには0.01%以上含有させる必要が
ある。含有量が多くなると強度、靭性は向上するが3.
00%を超えて添加すると、変態挙動が変化して適正製
造条件が変化するので、本発明範囲では3.00%を上
限とする。次に、CuもほぼNiと同様の効果を有する
が、1.50%超の添加では析出硬化の問題が生じるた
め、0.01〜1.50%の範囲に限定する。
Ni is a very effective element that can simultaneously improve the strength and toughness of the base material, but must be contained at 0.01% or more in order to exert its effect. As the content increases, the strength and toughness improve, but 3.
If added in excess of 00%, the transformation behavior changes and the appropriate manufacturing conditions change, so the upper limit is 3.00% in the range of the present invention. Next, Cu has almost the same effect as Ni, but since addition of more than 1.50% causes a problem of precipitation hardening, it is limited to the range of 0.01 to 1.50%.

【0017】V及びNbはいずれも主として析出強化に
より母材の強度向上に寄与するが、過剰の添加でHAZ
靭性が劣化する。従って、靭性の劣化を招かずに、効果
が発揮できる範囲として、Vは0.005〜0.20
%、Nbは0.003〜0.05%とする。
V and Nb both contribute to the improvement of the strength of the base material mainly by precipitation strengthening.
The toughness deteriorates. Therefore, V is 0.005 to 0.20 as a range in which the effect can be exhibited without inducing the deterioration of toughness.
% And Nb are 0.003 to 0.05%.

【0018】Bは0.0003%以上の極微量添加で鋼
材の焼入れ性を高めて強度上昇に非常に有効であるが、
過剰に添加すると靭性を大きく劣化させるため、上限を
0.0020%とする。本発明における鋳片の加熱温度
はオーステナイトの粗大化防止のため1200℃を上限
とし、下限温度は圧延の作業を考慮すると900℃以上
が望ましい。また、Nb元素を含む鋼材は、Nbを完全
固溶させるために1100℃以上の加熱が必要となる。
B is very effective in increasing the strength by increasing the hardenability of steel by adding a trace amount of 0.0003% or more.
If added excessively, the toughness is greatly deteriorated, so the upper limit is made 0.0020%. In the present invention, the upper limit of the heating temperature of the slab is 1200 ° C. in order to prevent austenite coarsening, and the lower limit temperature is desirably 900 ° C. or higher in consideration of the rolling operation. Further, a steel material containing an Nb element requires heating at 1100 ° C. or higher in order to completely dissolve Nb.

【0019】[0019]

【作用】本発明者等は、前記従来技術が有する問題を解
決するとともに、本発明の課題を達成するため、C:
0.05〜0.15%、Si:0.15〜0.25%、
Mn:0.8〜1.6%、Al:0.01〜0.05
%、N:0.0020〜0.0050%の化学成分を有
する一般的な構造用鋼を用いて種々実験検討を繰り返し
た。
In order to solve the problems of the prior art and to achieve the object of the present invention, the present inventors have proposed:
0.05-0.15%, Si: 0.15-0.25%,
Mn: 0.8 to 1.6%, Al: 0.01 to 0.05
%, N: Various experimental studies were repeated using a general structural steel having a chemical composition of 0.0020 to 0.0050%.

【0020】合金元素を多量に添加せず、圧延調整のた
めの滞留・待機、更には低温域での再加熱圧延等を用い
ることなく、従来技術で得られていたものと同等もしく
はそれ以上の強度、靭性を得る方法を確立するため、オ
ーステナイトの低温の未再結晶域での圧延を省略し、オ
ーステナイト粒径を制御することに着眼し、次の3点か
ら実験検討を重ねた。 1.圧延中の静水圧応力とオーステナイト粒径の関係。 2.圧延パス数とオーステナイト粒径の関係。 3.フェライト域での加工量と材質との関係。
Without adding a large amount of alloying elements, without using stagnation / standby for rolling adjustment, and further using reheating rolling in a low temperature region, etc., the same or better than that obtained by the prior art can be obtained. In order to establish a method for obtaining strength and toughness, the rolling in the low-temperature unrecrystallized region of austenite was omitted, and attention was paid to controlling the austenite grain size, and experimental studies were repeated from the following three points. 1. Relationship between hydrostatic stress during rolling and austenite grain size. 2. Relationship between number of rolling passes and austenite grain size. 3. Relationship between amount of processing in ferrite region and material.

【0021】圧延中の静水圧応力が大きくなるとオース
テナイト再結晶挙動に変化をもたらし、静水圧応力が1
2kg/mm2 以上(圧縮を正とする)になると動的回復量
が少なくなり、再結晶粒が細かくなることが判明した。
その結果を図1に示す。静水圧応力が大きくなると加工
温度が変化しても到達するオーステナイト粒径がおよそ
一定値に収斂し、再結晶粒径が加工温度に依存せずほぼ
一定になることが判明した。
When the hydrostatic stress during rolling increases, the austenite recrystallization behavior changes, and the hydrostatic stress becomes 1%.
When it was 2 kg / mm 2 or more (compression was defined as positive), it was found that the amount of dynamic recovery was small and the recrystallized grains were fine.
The result is shown in FIG. It was found that when the hydrostatic stress increased, the austenite grain size reached even when the working temperature changed converged to a substantially constant value, and the recrystallized grain size became almost constant independent of the working temperature.

【0022】従来の技術として、例えば特開平4−32
332号公報に記載されているように、オーステナイト
の未再結晶域での圧延中の静水圧応力を高めることによ
り、歪蓄積効果を用いた靭性改善技術が述べられてい
る。しかしながら、対象としている温度範囲が比較的低
温の未再結晶温度域であり、回復、再結晶を抑制するも
のである。それに対して本発明の場合、再結晶域での圧
延中の応力を制御することにより、圧延中の動的回復量
を極力抑え、歪を蓄積させて逆に再結晶を促進させてオ
ーステナイト粒径を細粒化させる点が従来技術と大きく
異なっている。
As a conventional technique, for example, Japanese Patent Application Laid-Open No. 4-32
As described in JP-A-332, there is described a technique for improving toughness using a strain accumulation effect by increasing hydrostatic stress during rolling in a non-recrystallized region of austenite. However, the target temperature range is a relatively low non-recrystallization temperature range, which suppresses recovery and recrystallization. On the other hand, in the case of the present invention, by controlling the stress during rolling in the recrystallization region, the amount of dynamic recovery during rolling is suppressed to the utmost, the strain is accumulated, and conversely, the recrystallization is promoted, and the austenite grain size is increased. Is greatly different from the conventional technology.

【0023】また、図2に再結晶域での静水圧応力が1
2kg/mm2 以上の条件で圧延パス回数と再結晶後のオー
ステナイト粒径の関係を示す。図2から、圧延パス数を
繰り返すと徐々にオーステナイト粒径が細粒化し、パス
数が多いほど細粒化傾向にあるが実質的には1パスでも
十分であることが判明した。従って、圧延中の板厚中心
部の最大静水圧応力が12kg/mm2 以上の圧延を再結晶
域で少なくとも1パス以上確保すると、オーステナイト
粒径が細粒化し、未再結晶域での圧延を実施しなくても
十分に靭性を確保できる程度にまで細粒化し、所望の靭
性は確保できることが判明した。
FIG. 2 shows that the hydrostatic stress in the recrystallization region is 1%.
The relationship between the number of rolling passes and the austenite grain size after recrystallization under the condition of 2 kg / mm 2 or more is shown. From FIG. 2, it was found that when the number of rolling passes is repeated, the austenite grain size gradually becomes finer, and as the number of passes increases, the grain size tends to become finer, but it is found that substantially one pass is sufficient. Therefore, if at least one pass in the recrystallization region secures at least one pass in the recrystallization region where the maximum hydrostatic stress at the center of the plate thickness during rolling is 12 kg / mm 2 or more, the austenite grain size becomes finer, and the rolling in the non-recrystallization region is performed. It has been found that the grain size is reduced to such an extent that sufficient toughness can be ensured without performing, and the desired toughness can be ensured.

【0024】このように圧延中の静水圧応力を大きくす
ることは1パス当りの圧延歪の絶対量がとれないような
圧延の場合でも十分オーステナイト粒径が細粒化し、未
再結晶域での圧延を実施しなくても十分靭性を確保する
ことが可能となる。更に、圧延終了後細粒化させたオー
ステナイト粒の粒成長を抑えることを目的として、フェ
ライト域での加工の前に制御冷却を実施する。その際の
冷却停止温度としては復熱を考慮してAr1 変態点以下
とした。この時、鋼板の強度、靭性を向上させるには、
圧延終了後に水、水蒸気、気水混合体等のいずれかの冷
却剤を用いて、冷却速度5℃/秒以上が必要である。ま
た、必要に応じて加速冷却後に焼戻しを行っても本発明
の効果を損なうものではない。しかし、本発明における
焼戻し温度は強度、靭性の確保から700℃以下とし
た。
Increasing the hydrostatic stress during rolling as described above makes it possible to sufficiently reduce the austenite grain size even in rolling in which the absolute amount of rolling strain per pass cannot be obtained. Even if rolling is not performed, sufficient toughness can be ensured. Further, for the purpose of suppressing the grain growth of the austenite grains refined after the rolling is completed, controlled cooling is performed before working in the ferrite region. The cooling stop temperature at that time was set to be lower than the Ar 1 transformation point in consideration of reheating. At this time, to improve the strength and toughness of the steel sheet,
After the end of rolling, a cooling rate of 5 ° C./second or more is required using any one of coolants such as water, steam, and a steam-water mixture. Further, if necessary, tempering after accelerated cooling does not impair the effects of the present invention. However, the tempering temperature in the present invention was set to 700 ° C. or less in order to secure strength and toughness.

【0025】フェライト域での加工量と材質の関係を図
3に示す。フェライト域での加工量が増加するにつれ
て、強度はフェライトの加工効果により上昇する。一
方、靭性はフェライト域での圧下率が20%以上になる
と大きく劣化するため、圧下率は20%未満とした。
FIG. 3 shows the relationship between the processing amount and the material in the ferrite region. As the amount of processing in the ferrite region increases, the strength increases due to the processing effect of ferrite. On the other hand, since the toughness is significantly deteriorated when the rolling reduction in the ferrite region is 20% or more, the rolling reduction is set to less than 20%.

【0026】以上のように、オーステナイト域で適正な
加工を施し、フェライト域での加工前の組織を微細化さ
せ、更にフェライト域での加工を施すことにより、靭性
を大きく劣化させることなく、強度を上昇させ、合金元
素の多量添加を必要とせずに強度、靭性の優れた構造用
鋼板を製造することが可能となる。本発明は上記知見に
より成立するものである。
As described above, by performing appropriate processing in the austenite region, refining the structure before processing in the ferrite region, and performing further processing in the ferrite region, the toughness can be reduced without greatly deteriorating the toughness. And it is possible to produce a structural steel sheet having excellent strength and toughness without requiring a large amount of alloying elements. The present invention is achieved based on the above findings.

【0027】静水圧応力は、剛塑性有限要素法プログラ
ムを用いて計算にて求めた。剛塑性有限要素法による圧
延中のロールバイト内の応力計算に関しては下記文献
(1)、(2)の方法に従った。 (1)森ら:機械学会論文集、45-396(1979)、P.955 (2)山田ら:塑性加工学会春季講演会前刷集、1986、
P.235 、東京また、板厚方向の温度分布を考慮した計算
をする必要があるので、各要素につき圧延噛込み時の温
度、変形抵抗を与えて剛塑性有限要素法により圧延中に
作用する応力、歪を計算した。変形抵抗は下記文献
(3)、(4)の式を用いた。 (3)志田:塑性と加工、9(1968) 、P.127 (4)志田:塑性と加工、10(1968)、P.610 最も温度が高く、オーステナイト粒が大きい板厚中心部
を管理基準とした。
The hydrostatic stress was obtained by calculation using a rigid-plastic finite element method program. The calculation of the stress in the roll bite during rolling by the rigid-plastic finite element method followed the method of the following documents (1) and (2). (1) Mori et al .: Transactions of the Japan Society of Mechanical Engineers, 45-396 (1979), P.955 (2) Yamada et al .: Preprints of the Spring Meeting of the Japan Society for Technology of Plasticity, 1986.
P.235, Tokyo Also, since it is necessary to calculate in consideration of the temperature distribution in the thickness direction, each element is given a temperature and deformation resistance at the time of rolling bite and acts during rolling by the rigid-plastic finite element method. Stress and strain were calculated. The equations of the following references (3) and (4) were used for the deformation resistance. (3) Shida: plasticity and processing, 9 (1968), p. 127 (4) Shida: plasticity and processing, 10 (1968), p. 610 The central part of the plate thickness where the temperature is the highest and the austenite grains are large And

【0028】[0028]

【実施例】本発明の供試鋼の成分は、前記した一般的な
構造用鋼の元素と添加量であればいずれの組合せでもよ
いが、強度レベルが異なる代表的な構造用鋼として本実
施例に用いた鋼の化学成分を表1に示す。また、本例の
製造条件と得られた材質を表2(表2−1)〜表5(表
2−4)に従来例を併記して示す。
The components of the test steel of the present invention may be any combination as long as they are the same as the elements of the above-mentioned general structural steels, but the present steels are used as representative structural steels having different strength levels. Table 1 shows the chemical components of the steel used in the examples. Table 2 (Table 2-1) to Table 5 (Table 2)
2-4) shows a conventional example.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】表1に示す供試鋼は、鋼番1〜10は強度
レベルが異なる鋼で、必要に応じてV,Nb,Ni,T
i,Cu,B,Cr,Mo等の合金元素を添加してい
る。No.A1−1〜A10−3の本発明例は、強度、
靭性ともに優れた特性をもつ構造用鋼板が得られた。こ
れに対し、圧延、冷却条件及びフェライト域での圧下率
が所定の条件を満足しないNo.B1−1〜B10−2
はそれぞれに問題がある。再結晶域での静水圧応力が1
2kg/mm2 未満のB1−1、B2−1、B3−1、B4
−1、B4−2、B7−1、B8−1、B9−1、B1
0−1は本発明例に比べ靭性が著しく劣化した。また、
冷却停止温度がAr1 点以上となったNo.B3−1、
B3−2、B4−2、B5−1、B5−2は同一成分の
本発明例に比べ、強度が低かった。
In the test steels shown in Table 1, steel numbers 1 to 10 are steels having different strength levels, and V, Nb, Ni, T
Alloying elements such as i, Cu, B, Cr, and Mo are added. No. Examples of the present invention of A1-1 to A10-3, strength,
A structural steel sheet having excellent properties in both toughness was obtained. On the other hand, the rolling and cooling conditions and the rolling reduction in the ferrite region do not satisfy the predetermined conditions. B1-1 to B10-2
Have their own problems. Hydrostatic stress in the recrystallization area is 1
B1-1, B2-1, B3-1, B4 of less than 2 kg / mm 2
-1, B4-2, B7-1, B8-1, B9-1, B1
No. 0-1 markedly deteriorated toughness as compared with the inventive examples. Also,
No. in which the cooling stop temperature became Ar 1 point or more. B3-1,
B3-2, B4-2, B5-1, and B5-2 had lower strengths than those of the present invention having the same components.

【0035】また、圧延後の冷却速度が5℃/秒未満で
あるNo.B2−1、B2−2、B6−1では本発明例
と比較して強度が低かった。Ar1 点以下での圧下がな
いB1−2、B5−1、B6−2、B8−1、B8−2
は本発明例に比べ強度が低い。また、Ar1 点以下での
圧下が20%以上のB3−1、B6−1では靭性が著し
く劣化した。更に、焼戻し材で焼戻し温度が700℃以
上となったNo.B1−2、B5−1、B6−2、B8
−1、B8−2、B10−2は強度、靭性ともに本発明
例に比べ著しく劣化した。
In the case of No. 3 in which the cooling rate after rolling was less than 5 ° C./sec. In B2-1, B2-2, and B6-1, the strength was lower than that of the present invention. B1-2, B5-1, B6-2, B8-1, B8-2 with no reduction below Ar 1 point
Is lower in strength than the examples of the present invention. Further, in B3-1 and B6-1 in which the reduction at the Ar 1 point or less was 20% or more, the toughness was significantly deteriorated. Further, in the case of the tempering material No. B1-2, B5-1, B6-2, B8
-1, B8-2 and B10-2 remarkably deteriorated in both strength and toughness as compared with the examples of the present invention.

【0036】[0036]

【発明の効果】本発明は、圧延中の圧延条件と圧延後の
冷却条件を制御し、更にフェライト域での適切な加工を
行うことにより、強度、靭性に優れた構造用鋼板を高い
生産性のもとで円滑に安定して製造することを可能とし
たもので、この種の分野を中心に、産業界にもたらす効
果は極めて大きい。
The present invention controls the rolling conditions during rolling and the cooling conditions after rolling, and furthermore, performs appropriate processing in the ferrite region, thereby producing a structural steel sheet having excellent strength and toughness with high productivity. It has made it possible to produce the product smoothly and stably under the conditions described above, and the effect brought to the industry in this kind of field is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】静水圧応力とオーステナイト粒径の関係の図表
を示す。
1 shows a chart of the relationship between hydrostatic stress and austenite grain size.

【図2】圧延パス数とオーステナイト粒径の関係の図表
を示す。
FIG. 2 is a table showing the relationship between the number of rolling passes and the austenite grain size.

【図3】フェライト域での圧下率と材質の関係の図表を
示す。
FIG. 3 is a table showing a relationship between a reduction ratio and a material in a ferrite region.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.04〜0.20%、 Si:0.03〜1.00%、 Mn:0.30〜2.00%、 Al:0.005〜0.10%、 N :0.001〜0.01% を含有し、残部がFe及び不可避的成分からなり、凝固
後Ac3 以上に加熱した構造用鋼の鋳片を用い、再結晶
域で板厚中心部での圧延中の最大静水圧応力が12kg/
mm2 以上であるパスを少なくとも1パス以上実施し、圧
延終了後直ちに5℃/秒以上の冷却速度で冷却し、Ar
1以下の温度範囲に冷却を停止させた後、フェライトと
オーステナイトの2相域で圧延することなく、Ar1
以下で圧下率20%未満の圧延を実施することを特徴と
する強度、靭性に優れた構造用厚鋼板の製造法。
1. C: 0.04 to 0.20%, Si: 0.03 to 1.00%, Mn: 0.30 to 2.00%, Al: 0.005 to 0. 10%, N: 0.001 to 0.01%, the balance being Fe and unavoidable components, and using a slab of structural steel heated to Ac 3 or more after solidification, and using a plate thickness in the recrystallization region. The maximum hydrostatic stress during rolling at the center is 12 kg /
mm 2 or more in a path performed at least one pass or more, cooled at the end of rolling immediately after 5 ° C. / sec or more cooling rate, Ar
After stopping cooling to a temperature range of 1 or less, rolling at a Ar 1 point or less and a rolling reduction of less than 20% is performed without rolling in a two-phase region of ferrite and austenite. Manufacturing method of excellent structural steel plate.
【請求項2】 請求項1記載の成分の鋼に、重量%で
に、 Ti:0.003〜0.10%、 Cr:0.01〜0.50%、 Ni:0.01〜3.00%、 Mo:0.01〜0.50%、 Cu:0.01〜1.50%、 V :0.005〜0.20%、 Nb:0.003〜0.05%、 B :0.0003〜0.0020% の1種または2種以上を含有することを特徴とする強
度、靭性に優れた構造用厚鋼板の製造法。
Wherein the steel component according to claim 1, further weight%
To, Ti: 0.003~0.10%, Cr: 0.01~0.50%, Ni: 0.01~3.00%, Mo: 0.01~0.50%, Cu: 0. 01~1.50%, V: 0.005~0.20%, Nb: 0.003~0.05%, B: 0.0003~0.0020% of one or containing two or more A method for producing a structural steel plate having excellent strength and toughness characterized by the following characteristics.
【請求項3】 Ar1点以下で圧下率20%未満の圧延
を実施した後、引続き700℃以下の温度範囲に焼き戻
し処理を行うことを特徴とする請求項1また は2に記載
強度、靭性に優れた構造用厚鋼板の製造法。
3. After performing the rolling reduction ratio less than 20% in less than a point Ar, claim 1 also continue and performing tempering in a temperature less than 700 ℃ described 2
For manufacturing structural steel sheets with excellent strength and toughness.
JP19068294A 1994-08-12 1994-08-12 Manufacturing method of structural steel plate with excellent strength and toughness Expired - Fee Related JP3215269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19068294A JP3215269B2 (en) 1994-08-12 1994-08-12 Manufacturing method of structural steel plate with excellent strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19068294A JP3215269B2 (en) 1994-08-12 1994-08-12 Manufacturing method of structural steel plate with excellent strength and toughness

Publications (2)

Publication Number Publication Date
JPH0860241A JPH0860241A (en) 1996-03-05
JP3215269B2 true JP3215269B2 (en) 2001-10-02

Family

ID=16262132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19068294A Expired - Fee Related JP3215269B2 (en) 1994-08-12 1994-08-12 Manufacturing method of structural steel plate with excellent strength and toughness

Country Status (1)

Country Link
JP (1) JP3215269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679668B1 (en) * 2015-04-10 2016-11-28 동국제강주식회사 Manufacturing method for high strength steel palte with low temperature toughness and high strength steel palte with low temperature toughness thereof
KR200496098Y1 (en) * 2020-09-21 2022-11-01 박순희 Two straps harness for pet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858196B2 (en) * 2013-03-28 2016-02-10 新日鐵住金株式会社 Steel sheet pile and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679668B1 (en) * 2015-04-10 2016-11-28 동국제강주식회사 Manufacturing method for high strength steel palte with low temperature toughness and high strength steel palte with low temperature toughness thereof
KR200496098Y1 (en) * 2020-09-21 2022-11-01 박순희 Two straps harness for pet

Also Published As

Publication number Publication date
JPH0860241A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP6311633B2 (en) Stainless steel and manufacturing method thereof
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP3275783B2 (en) Method for producing Ti-added hot-rolled high-strength steel sheet excellent in formability
JP3410241B2 (en) Method for producing ultra-thick H-section steel excellent in strength, toughness and weldability
JP3215269B2 (en) Manufacturing method of structural steel plate with excellent strength and toughness
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP2005120437A (en) High-strength steel thin sheet superior in hole-expandability and ductility
CN108350550B (en) High-strength cold-rolled steel sheet having excellent shear workability and method for producing same
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JPH0741854A (en) Production of ferrite single phase stainless hot rolled steel sheet excellent in toughness
JP2004052063A (en) METHOD FOR PRODUCING 780 MPa-CLASS NON-HEAT REFINING THICK STEEL PLATE
JPH083635A (en) Production of steel plate excellent in toughness
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
CN114945689A (en) High-strength ferritic stainless steel for clamping device and method for manufacturing same
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP3255004B2 (en) High strength steel material for welding excellent in toughness and arrestability and method for producing the same
JPH09256038A (en) Heat treatment before stress relieving annealing treatment for thick steel plate
JPH09295067A (en) Manufacture of high strength bent pipe excellent in toughness at welded metal part
JP4821181B2 (en) Manufacturing method of high-tensile steel plate with excellent workability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees