JP3210933B2 - Magnetic sensing element and method of manufacturing the same - Google Patents

Magnetic sensing element and method of manufacturing the same

Info

Publication number
JP3210933B2
JP3210933B2 JP24486096A JP24486096A JP3210933B2 JP 3210933 B2 JP3210933 B2 JP 3210933B2 JP 24486096 A JP24486096 A JP 24486096A JP 24486096 A JP24486096 A JP 24486096A JP 3210933 B2 JP3210933 B2 JP 3210933B2
Authority
JP
Japan
Prior art keywords
magnetic
sensing element
layer
film
magnetic sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24486096A
Other languages
Japanese (ja)
Other versions
JPH1090380A (en
Inventor
明宏 磯村
賢一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP24486096A priority Critical patent/JP3210933B2/en
Priority to US08/929,558 priority patent/US6069475A/en
Priority to CN97121378A priority patent/CN1110794C/en
Priority to EP99115496A priority patent/EP0965851B1/en
Priority to DE69714613T priority patent/DE69714613T2/en
Priority to DE69705095T priority patent/DE69705095T2/en
Priority to SG9703445A priority patent/SG82576A1/en
Priority to EP97116192A priority patent/EP0831335B1/en
Priority to SG9906444A priority patent/SG89311A1/en
Priority to MYPI97004323A priority patent/MY130911A/en
Priority to TW086113435A priority patent/TW344799B/en
Publication of JPH1090380A publication Critical patent/JPH1090380A/en
Priority to HK98104084A priority patent/HK1004822A1/en
Priority to US09/484,315 priority patent/US6255813B1/en
Application granted granted Critical
Publication of JP3210933B2 publication Critical patent/JP3210933B2/en
Priority to CN02132192A priority patent/CN1432998A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は外部磁気に応じたイ
ンピーダンスを呈する磁気検出素子に関するもので,特
に各種磁気ヘッド,磁気センサ一として有用な磁気検出
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensing element exhibiting impedance according to external magnetism, and more particularly to a magnetic sensing element useful as various magnetic heads and magnetic sensors.

【0002】[0002]

【従来の技術】近年,電予機器の小型・高性能化が急速
に進み,特にコンピューター関連機器ではハードディス
クの小型・大容量化に伴って従来の磁束密度の変化を用
いたヘッドに代わり,磁気抵抗効果を利用したヘッド
(MRヘッド)が読みとりに使用されつつある。しか
し,さらなる記録密度の増大にはこのMRヘッドでも十
分ではなく,外部磁界の変化に対してさらに電気特性の
変化の大きいヘッド用の素子が望まれている。
2. Description of the Related Art In recent years, miniaturization and high performance of electronic propulsion devices have been rapidly progressing. A head utilizing the resistance effect (MR head) is being used for reading. However, this MR head is not enough to further increase the recording density, and there is a demand for an element for a head in which the electrical characteristics change more greatly with the change in the external magnetic field.

【0003】また,地磁気の測定,脳内磁界の測定等,
微小磁界の測定・検出を行なう場合にもMRヘッドでは
十分ではない。
[0003] In addition, measurement of geomagnetism, measurement of magnetic field in the brain, etc.
Even when measuring and detecting a minute magnetic field, an MR head is not sufficient.

【0004】このような点に鑑みて,軟磁性線に高周波
電流を通電し,外部磁界の変動に応じた軟磁性線の抵
抗,及びインダクタンスの変化,すなわちインピーダン
スの変化として捕らえる磁気検出素子(「磁気インピー
ダンス素子」ともいわれる。)が提案されている(特開
平6−176930,特開平7−248365,電気学
会論文誌E116巻1号p7(1996)など)。この
ような磁気検出素子は,外部磁界の変化に伴うインピー
ダンスの変化が大きく,センサー,ヘッドとして優れた
特徴を持つているが,磁界変化に伴うインピーダンスの
変化率(すなわち磁界感度)は10%/Oeの程度にと
どまるという欠点がある。
In view of such a point, a high-frequency current is applied to the soft magnetic wire, and the resistance and inductance of the soft magnetic wire corresponding to the change of the external magnetic field are changed. (Also referred to as "magnetic impedance element") (JP-A-6-176930, JP-A-7-248365, Transactions of the Institute of Electrical Engineers of Japan, E116, Vol. 1, p7 (1996), etc.). Such a magnetic sensing element has a great change in impedance due to a change in an external magnetic field and has excellent characteristics as a sensor and a head. However, the rate of change in impedance (magnetic field sensitivity) due to a change in a magnetic field is 10% / There is a drawback that it is only Oe.

【0005】このような欠点を改善するために,トラン
ジスタと軟磁性線を組み合わせて発振回路を構成し,L
C共振を利用することによって検出感度を向上させよう
とすることが提案されている(日本応用磁気学会誌,第
19巻,469(1995)など)。しかし,この提案
による磁気検出素子は,能動部品を必要とするばかりで
なく,いくつかの抵抗器,コンデンサー,ダイオードな
どを必要とする。したがって,素子自体のコストアップ
は避けられないという欠点がある。
In order to improve such a defect, an oscillation circuit is formed by combining a transistor and a soft magnetic wire.
It has been proposed to improve detection sensitivity by utilizing C resonance (Journal of the Japan Society of Applied Magnetics, Vol. 19, 469 (1995), etc.). However, the magnetic sensing element according to this proposal requires not only active components but also several resistors, capacitors, diodes, and the like. Therefore, there is a disadvantage that the cost of the element itself cannot be avoided.

【0006】他方で,アモルファス金属磁性単層膜を磁
気検出素子として用いることが検討されている(内山
ほか,電気学会論文誌,115−A,949(199
5))。このような磁気検出素子では,磁性膜に直接通
電を行うことにより外部磁界によりインピーダンスが変
化する小型の磁気センサを実現できる。しかしながらア
モルファス金属磁性膜はCu,Al,Agなど,導体線
路として−般に用いられる金属に比べ,電気抵抗が大き
いため,励磁が効率よく行えず,かつインピーダンス変
化率が小さくなるという欠点を有する。
On the other hand, it has been studied to use an amorphous metal magnetic single-layer film as a magnetic sensing element (Uchiyama).
In addition, IEICE Transactions, 115-A, 949 (199)
5)). In such a magnetic detection element, a small-sized magnetic sensor whose impedance changes due to an external magnetic field can be realized by directly applying a current to the magnetic film. However, since the amorphous metal magnetic film has a higher electric resistance than metals generally used as a conductor line, such as Cu, Al, and Ag, it has a drawback that excitation cannot be performed efficiently and an impedance change rate is small.

【0007】また,Cu膜を内包したストライプ状のパ
ーマロイスパッタ膜を磁気インピーダンス素子として用
いることが提案されている(千田他,電気学会マグネテ
ィックス研究会資料,MAG−95−126,91(1
995)。さらに,−軸異方性を付与されたCoSiB
膜の間にCu導電体層を挟んだ構造の磁気検出素子も提
案されている(森川他,日本応用磁気学会誌,20,5
53(1996))。これらの磁気検出素子では,その
インピーダンスの変化率が−50〜+120%程度を呈
するようなす外部印加磁界の変化範囲があるが,磁界感
度は−5〜+10%/Oe程度に留まり,また,磁気異
方性を制御しにくいという欠点がある。
It has also been proposed to use a striped permalloy sputtered film containing a Cu film as a magnetic impedance element (Senda et al., Materials of the Institute of Magnetics, MAG-95-126, 91 (1)
995). Furthermore, CoSiB with -axis anisotropy
A magnetic sensing element having a structure in which a Cu conductor layer is sandwiched between films has also been proposed (Morikawa et al., Journal of the Japan Society of Applied Magnetics, 20, 5).
53 (1996)). In these magnetic sensing elements, there is a change range of the externally applied magnetic field such that the rate of change of the impedance exhibits about -50 to + 120%, but the magnetic field sensitivity remains at about -5 to + 10% / Oe. There is a disadvantage that it is difficult to control the anisotropy.

【0008】[0008]

【発明が解決しようとする課題】上に述べた磁気検出素
子の等価回路は図1のような2端子回路となり,もっぱ
ら磁界の変化分をZ=R+jωL(ωは素子に流す交流
電流の角周波数)の形のインピーダンスの変化として検
出している。このような磁気検出素子では数MHz程度
の周波数帯域においては比透磁率がほとんど1に近いた
め,外部磁界に対するインダクタンス分Lの変化は小さ
い。しかし,外部磁界が異方性磁界の大きさと同じにな
るとき比透磁率が最大をとるという性質を利用して,外
部磁界の変化に対するインピーダンス変化分を大きくで
きる。ところが,数10〜数100MHz程度の周波数
帯域では表皮効果の影響,及び渦電流損失の増大のため
に,素子自体のインピーダンスが増大し,相対的に外部
磁界の変化に対するインピーダンス変化分が小さくなる
という欠点がある。
The equivalent circuit of the magnetic detecting element described above is a two-terminal circuit as shown in FIG. 1, and the change of the magnetic field is determined by Z = R + jωL (ω is the angular frequency of the alternating current flowing through the element). ) Is detected as a change in impedance. In such a magnetic detecting element, the relative permeability is almost close to 1 in a frequency band of about several MHz, so that the change of the inductance L with respect to the external magnetic field is small. However, by utilizing the property that the relative magnetic permeability becomes maximum when the external magnetic field becomes the same as the magnitude of the anisotropic magnetic field, the amount of impedance change with respect to the change of the external magnetic field can be increased. However, in the frequency band of about several tens to several hundreds MHz, the impedance of the element itself increases due to the effect of the skin effect and the increase of eddy current loss, and the impedance change relative to the change of the external magnetic field is relatively small. There are drawbacks.

【0009】さらに,従来提案されてきた上記の軟磁性
線,または軟磁性薄膜を用いた磁気検出素子では接地導
体を持たないため,素子周辺に存在する他の回路要素や
配線等との間に種々の浮遊容量が発生するために動作が
不安定になりがちてあるという欠点がある。
Furthermore, the magnetic sensing element using the above-described soft magnetic wire or soft magnetic thin film, which has been conventionally proposed, does not have a ground conductor, so that it is connected to other circuit elements, wiring, etc. existing around the element. There is a disadvantage that the operation tends to be unstable due to generation of various stray capacitances.

【0010】さらには通電電流により発生される電界が
素子外部に存在する導体,あるいは誘電体のために乱さ
れやすく,動作が不安定になりがちであるという欠点が
ある。
Further, there is a disadvantage that the electric field generated by the current flow is easily disturbed by the conductor or the dielectric existing outside the element, and the operation tends to be unstable.

【0011】そこで,本発明の第1の技術的課題は,磁
性金属層,または磁性金属線に導体金属の役割を兼用さ
せるような構造の検出素子に比べ,直流電気抵抗を低減
させることができるため,より高感度の検出素子を実現
できる磁気検出素子及びその製造方法を提供することに
ある。
Therefore, a first technical object of the present invention is to reduce the DC electric resistance as compared with a detection element having a structure in which a magnetic metal layer or a magnetic metal wire also serves as a conductor metal. Therefore, an object of the present invention is to provide a magnetic detection element capable of realizing a detection element with higher sensitivity and a method for manufacturing the same.

【0012】また,本発明の第2の技術的課題は,渦電
流損失が低減でき,高周波帯域での磁気特性が改善され
る磁気検出素子及びその製造方法を提供することにあ
る。
A second technical object of the present invention is to provide a magnetic sensing element capable of reducing eddy current loss and improving magnetic characteristics in a high frequency band, and a method of manufacturing the same.

【0013】更に,本発明の第3の技術的課題は,大き
なインピ一ダンス変化率を有する磁気検出素子及びその
製造方法を提供することにある。
Still another object of the present invention is to provide a magnetic sensing element having a large impedance change rate and a method of manufacturing the same.

【0014】[0014]

【課題を解決するための手段】本発明者らは,ガラスセ
ラミック絶縁層を介しつつ,導電体層を内包し,かつC
oNbZr膜,及びガラスセラミックス層と積層構造を
持たせたCoNbZrは磁気異方性を制御しやすく,か
つ磁歪が零近傍の膜を容易に得られることから,この種
の磁気検出素子として用いた場合,上記問題点の解決が
図れることを見出した。この磁気異方性の制御について
は,回転磁界中熱処理,あるいは静磁界中熱処理を施す
ことによって膜面内で等方的な異方性をもたせたり,あ
るいは一軸異方性をもたせることが容易にできる。
Means for Solving the Problems The inventors of the present invention have included a conductor layer through a glass ceramic insulating layer,
An oNbZr film and CoNbZr having a laminated structure with a glass ceramic layer can easily control the magnetic anisotropy and easily obtain a film having a magnetostriction near zero. It was found that the above problems could be solved. Regarding the control of the magnetic anisotropy, it is easy to provide anisotropic or uniaxial anisotropy in the film surface by performing heat treatment in a rotating magnetic field or heat treatment in a static magnetic field. it can.

【0015】また、本発明によれば、磁性層とこれに隣
接した導電層とを備え、磁気インピーダンス効果を利用
た磁気検出素子において,前記磁性層は,80−87
at%Co−10〜17at%Nb−1〜6at%Zr
のCo−Nb−Zr薄膜を含むことを特徴とする磁気検
出素子が得られる。
According to the present invention, a magnetic layer and a conductive layer adjacent to the magnetic layer are provided , and the magnetic impedance effect is utilized.
In the magnetic sensing element described above, the magnetic layer is 80-87.
at% Co-10 to 17 at% Nb-1 to 6 at% Zr
A magnetic sensing element characterized by including the Co—Nb—Zr thin film of the present invention.

【0016】また,本発明によれば,前記磁気検出素子
において導体層を含み,前記導体層は,Cu,Ag,A
l,Auの内の少なくとも一種から実質的になり,前記
Co−Nb−Zr薄膜と,前記導体層とは,絶縁層を介
して互いに絶縁されていることを特徴とする磁気検出素
子が得られる。
Further, according to the present invention, the magnetic sensing element includes a conductor layer, and the conductor layer includes Cu, Ag, A
a magnetic sensing element substantially consisting of at least one of l and Au, wherein the Co-Nb-Zr thin film and the conductor layer are insulated from each other via an insulating layer. .

【0017】また,本発明によれば,前記いずれかの磁
気検出素子において,前記磁性層は,前記Co−Nb−
Zr薄膜を複数絶縁膜を介して積層したものであること
を特徴とする磁気検出素子が得られる。
According to the invention, in any one of the magnetic sensing elements, the magnetic layer may include the Co—Nb—
A magnetic sensing element characterized by stacking a plurality of Zr thin films via a plurality of insulating films is obtained.

【0018】また,本発明によれば,前記いずれかの磁
気検出素子において,前記磁性層に,前記絶縁層を積層
してなり,前記絶縁層及び前記絶縁膜は,SiO2 ,S
34 ,Al2 3 ,AlNのうち少なくとも一種か
らなることを特徴とする磁気検出素子が得られる。
Further, according to the present invention, in any one of the above magnetic sensing elements, the insulating layer is laminated on the magnetic layer, and the insulating layer and the insulating film are made of SiO 2 , S
A magnetic sensing element characterized by comprising at least one of i 3 N 4 , Al 2 O 3 and AlN is obtained.

【0019】また、本発明によれば、導体層の周囲を絶
縁層を介して磁性層にて覆った磁気インピーダンス効果
を利用した磁気検出素子であって,前記磁性層は,80
−87at%Co−10〜17at%Nb−1〜6at
%ZrのCo−Nb−Zr薄膜を含むことを特徴とする
磁気検出素子が得られる。
Further, according to the present invention, the magneto-impedance effect in which the periphery of the conductor layer is covered with the magnetic layer via the insulating layer is provided.
A magnetic detection element using the magnetic layer 80
-87 at% Co-10 to 17 at% Nb-1 to 6 at
A magnetic sensing element characterized by including a Co—Nb—Zr thin film of% Zr is obtained.

【0020】また,本発明によれば,前記磁気検出素子
において,前記磁性層は,前記Co−Nb−Zr薄膜を
複数絶縁膜を介して積層したものであることを特徴とす
る磁気検出素子が得られる。
According to the present invention, in the magnetic sensing element, the magnetic layer is formed by laminating the Co—Nb—Zr thin films via a plurality of insulating films. can get.

【0021】また,本発明によれば,前記いずれかの磁
気検出素子において,前記導体層は,Cu,Ag,A
l,Auの内の少なくとも一種から実質的になり,前記
絶縁層及び絶縁膜は,SiO2 ,Si3 4 ,Al2
3 ,AlNのうち少なくとも一種から実質的になること
を特徴とする磁気検出素子が得られる。
Further, according to the present invention, in any of the above magnetic sensing elements, the conductor layer may include Cu, Ag, A
l, essentially made from at least one of Au, said insulating layer and the insulating film, SiO 2, Si 3 N 4 , Al 2 O
3. A magnetic sensing element characterized by being substantially composed of at least one of AlN is obtained.

【0022】また、本発明によれば、磁気インピーダン
ス効果を利用した磁気検出素子を製造する方法であっ
て、第1の磁性膜上に第1の絶縁膜を形成し,前記絶縁
膜上に導体層を形成し,前記導体層を両端部を残して覆
うように,第2の絶縁膜で覆い,前記第2の絶縁膜を前
記第1の磁性膜と閉磁路を構成するように,第2の磁性
膜で覆うことを含み,前記第1及び第2の磁性膜は,8
0−87at%Co−10〜17at%Nb−1〜6a
t%ZrのCo−Nb−Zr薄膜を含むことを特徴とす
る磁気検出素子の製造方法が得られる。
Further, according to the present invention, the magnetic impedance
A method for manufacturing a magnetic sensing element utilizing the
Te, a first insulating film formed on the first magnetic layer, said conductive layer is formed on the insulating film, so as to cover, leaving both ends of said conductor layer is covered with the second insulating film, Covering the second insulating film with a second magnetic film so as to form a closed magnetic circuit with the first magnetic film, wherein the first and second magnetic films are
0-87 at% Co-10 to 17 at% Nb-1 to 6a
A method for manufacturing a magnetic sensing element, which includes a Co-Nb-Zr thin film of t% Zr, is obtained.

【0023】また,本発明によれば,前記磁気検出素子
の製造方法において,前記磁性層は,前記Co−Nb−
Zr薄膜を複数の第3の絶縁膜を介して積層したもので
あることを特徴とする磁気検出素子の製造方法が得られ
る。
According to the invention, in the method of manufacturing the magnetic sensing element, the magnetic layer may be formed of the Co-Nb-
A method for manufacturing a magnetic sensing element, wherein a Zr thin film is laminated with a plurality of third insulating films interposed therebetween, is obtained.

【0024】さらに,本発明によれば,前記磁気検出素
子の製造方法において,前記第1乃至第3の絶縁膜は,
夫々SiO2 ,Si3 4 ,Al2 3 ,AlNのうち
少なくとも一種からなり,前記導体層はCu,Ag,A
lの内の少なくとも一種から実質的になることを特徴と
する磁気検出素子の製造方法が得られる。
Further, according to the present invention, in the method for manufacturing a magnetic sensing element, the first to third insulating films may include:
The conductor layer is made of at least one of SiO 2 , Si 3 N 4 , Al 2 O 3 , and AlN.
and a method for manufacturing a magnetic sensing element characterized in that the method substantially consists of at least one of the above.

【0025】ここで,本発明の組成の限定理由について
述べる。Co−Nb−Zr薄膜の組成について,Coは
87at%を越えると飽和磁化が大きくなる反面,磁歪
が大きくなり,軟磁気特性が劣化することから外部磁界
の変動に伴うインピーダンス変化率が小さくなり,さら
には非晶質の膜が得られにくくなるという弊害がある。
80at%を下回ると飽和磁化が小さくなり,外部磁界
の変動に伴うインピーダンス変化率が小さくなる。Zr
はCo−Nb−Zr膜を非晶質化する効果があり,概ね
1at%以上であることが必要である。しかし,6at
%を越えると磁歪が大きくなり,軟磁気特性の劣化を招
くので好ましくない。Nb量については10〜16at
%のときに零磁歪となるので最も好ましく,10at%
を下回ると正の磁歪が大きくなり,軟磁気特性の劣化,
すなわちインピーダンス変化率劣化を招き,16at%
を越えると飽和磁化の低下を招くので好ましくない。
Here, the reasons for limiting the composition of the present invention will be described. Concerning the composition of the Co—Nb—Zr thin film, when Co exceeds 87 at%, the saturation magnetization increases, but the magnetostriction increases, and the soft magnetic characteristics deteriorate, so that the impedance change rate due to the fluctuation of the external magnetic field decreases. Further, there is a problem that it is difficult to obtain an amorphous film.
If it is less than 80 at%, the saturation magnetization becomes small, and the impedance change rate accompanying the fluctuation of the external magnetic field becomes small. Zr
Has the effect of making the Co—Nb—Zr film amorphous, and it is necessary that the content be approximately 1 at% or more. However, 6at
%, The magnetostriction is increased and the soft magnetic characteristics are deteriorated, which is not preferable. About 10-16at for Nb amount
% Is most preferable because zero magnetostriction occurs, and 10 at%
Below which the positive magnetostriction increases, the soft magnetic properties deteriorate,
That is, the impedance change rate is deteriorated, and
Exceeding the limit results in a decrease in the saturation magnetization, which is not preferable.

【0026】このように,本発明においては,薄膜技術
を用いているため,微細加工が容易にできる点において
は,他の薄膜磁気検出素子と同様,線材を用いた磁気検
出素子よりも優れている。
As described above, in the present invention, the thin-film technology is used, and therefore, it is superior to a magnetic sensing element using a wire, like other thin-film magnetic sensing elements, in that fine processing can be easily performed. I have.

【0027】さらには,本発明においては,導電体層と
磁性体層とが電気的に絶縁されているため,渦電流損失
を低減することができるため,高周波帯域での特性に優
れる。
Further, according to the present invention, since the conductor layer and the magnetic layer are electrically insulated, eddy current loss can be reduced, and the characteristics in a high frequency band are excellent.

【0028】[0028]

【発明の実施の形態】以下,本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0029】図1は本発明の実施の形態による磁気検出
素子を示す斜視図である。また,図2は図1の磁気検出
素子の横断面図,図3は図1の磁気検出素子の縦断面図
である。図1乃至図3を参照すると,磁気検出素子1
は,ガラス基板2上に形成された外郭をなす厚さ1μm
のCo−Nb−Zr膜からなる磁性層10と,中心部に
設けられた厚さ1μmのCu膜からなる導体層20と,
磁性層10及び導体層20との間に介在する厚さ0.5
μmのSiO2 膜からなる絶縁層30とから構成されて
いる。磁性層10は,ガラス基板2上の第1の磁性膜1
1と,上方に形成された第2の磁性膜からなる。絶縁層
30は導体層20と第1の磁性膜11との間に介在する
第1の絶縁層31と,導体層20と第2の磁性膜12と
の間に介在する第2の絶縁膜32とからなり,第1の絶
縁膜31と第2の絶縁膜32とは,両側部分において,
密着している。
FIG. 1 is a perspective view showing a magnetic sensing element according to an embodiment of the present invention. FIG. 2 is a transverse sectional view of the magnetic sensing element of FIG. 1, and FIG. 3 is a longitudinal sectional view of the magnetic sensing element of FIG. Referring to FIG. 1 to FIG.
Is a 1 μm-thick outer shell formed on the glass substrate 2
A magnetic layer 10 made of a Co—Nb—Zr film and a conductor layer 20 made of a Cu film having a thickness of 1 μm and provided at the center.
Thickness 0.5 between magnetic layer 10 and conductor layer 20
and an insulating layer 30 made of a μm SiO 2 film. The magnetic layer 10 is formed on the first magnetic film 1 on the glass substrate 2.
1 and a second magnetic film formed above. The insulating layer 30 includes a first insulating layer 31 interposed between the conductor layer 20 and the first magnetic film 11, and a second insulating film 32 interposed between the conductor layer 20 and the second magnetic film 12. The first insulating film 31 and the second insulating film 32 are
Closely adhered.

【0030】次に本発明の実施の形態による磁気検出素
子の製造の具体例について説明する。
Next, a specific example of manufacturing the magnetic sensing element according to the embodiment of the present invention will be described.

【0031】(本発明試料1〜10,及び比較試料1〜
5)図4は本発明の実施の形態による磁気検出素子の製
造工程を順に示す図である。図4を参照して,高周波マ
グネトロンスパッタリング等により図1乃至図3に示す
構造の磁気検出素子を厚さ1mmのガラス基板上に作製
した。作製手順は次の通りである。なお,Co−Nb−
Zr膜の製膜にあたっては種々の組成のCo−Nb−Z
r薄膜を得るために数種類の組成のCo−Nb−Zr合
金ターゲット,ならびにNbペレット,Zrペレットを
用いた。Co−Nb−Zr膜の組成はすべてEPMAで
分析した。
(Samples 1 to 10 of the present invention and Comparative samples 1 to
5) FIG. 4 is a view sequentially showing the steps of manufacturing the magnetic sensing element according to the embodiment of the present invention. Referring to FIG. 4, a magnetic sensing element having the structure shown in FIGS. 1 to 3 was fabricated on a glass substrate having a thickness of 1 mm by high-frequency magnetron sputtering or the like. The fabrication procedure is as follows. Note that Co-Nb-
In forming the Zr film, various compositions of Co-Nb-Z
In order to obtain an r thin film, several types of Co—Nb—Zr alloy targets, Nb pellets, and Zr pellets were used. All compositions of the Co—Nb—Zr film were analyzed by EPMA.

【0032】まず,図4(a)に示すような,縦横が1
0mm×20mmのガラス基板2上に,マスクを施し,
図4(b)に示すように,幅4mm,長さ14mm,厚
さ1μmCo−Nb−Zr膜の第1の磁性膜11をスパ
ッタにより製膜した。
First, as shown in FIG.
A mask is applied on a glass substrate 2 of 0 mm × 20 mm,
As shown in FIG. 4B, a first magnetic film 11 of a Co-Nb-Zr film having a width of 4 mm, a length of 14 mm, and a thickness of 1 μm was formed by sputtering.

【0033】次に,図4(c)に示すように,マスクを
用いて,幅3mm,長さ16mm,厚さ0.5μmのS
iO2 膜の第1の絶縁膜31をRFマグネトロンスパッ
タリングにより製膜した。更に,図4(d)に示すよう
に,第1の絶縁膜31上に,第1の絶縁膜31の両端よ
りもさらに長さ方向に延在して,幅2mm,長さ20m
mで,厚さ1μmのCu膜からなる導体層20を製膜し
た。次に,図4(e)に示すように,導体層20の中央
部を覆い,第1の絶縁膜31と重なるように,幅3m
m,長さ16mm,厚さ0.5μmのSiO2 膜からな
る第2の絶縁膜32を製膜した。続いて,図4(f)に
示すように,第2の絶縁膜を覆うように,幅4mm,長
さ14mm,厚さ1μmのCo−Nb−Zr膜からなる
第2の磁性膜12を製膜し,磁気検出素子を得た。試作
した磁気検出素子1の大きさはCo−Nb−Zr膜の長
手方向で14mm,幅が4mm,電極Cuの長手方向で
20mm,幅で2mmである。この素子を5.0×10-6
Torr以下,Hex=500Oeの真空・回転磁界中で
400℃,2時間熱処理し,製膜中に導入された異方性
を緩和した後,同条件の真空・静磁界中で熱処理し,素
子の幅方向一軸磁気異方性を導入した。
Next, as shown in FIG. 4C, a mask having a width of 3 mm, a length of 16 mm, and a thickness of 0.5 μm is formed using a mask.
A first insulating film 31 of an iO 2 film was formed by RF magnetron sputtering. Further, as shown in FIG. 4D, the first insulating film 31 extends further in the length direction than both ends of the first insulating film 31 to have a width of 2 mm and a length of 20 m.
m, a conductive layer 20 made of a Cu film having a thickness of 1 μm was formed. Next, as shown in FIG. 4 (e), the central part of the conductor layer 20 is covered with a width of 3 m so as to overlap the first insulating film 31.
A second insulating film 32 made of a SiO 2 film having a thickness of m, 16 mm in length, and 0.5 μm in thickness was formed. Subsequently, as shown in FIG. 4F, a second magnetic film 12 made of a Co—Nb—Zr film having a width of 4 mm, a length of 14 mm, and a thickness of 1 μm is formed so as to cover the second insulating film. The film was obtained to obtain a magnetic sensing element. The size of the magnetic sensing element 1 manufactured as a prototype is 14 mm in the longitudinal direction of the Co—Nb—Zr film, 4 mm in width, 20 mm in the longitudinal direction of the electrode Cu, and 2 mm in width. This element is 5.0 × 10 -6
Heat treatment at 400 ° C. for 2 hours in a vacuum and rotating magnetic field of Hex = 500 Oe at Torr or less to relax the anisotropy introduced during the film formation, and then heat treatment in a vacuum and static magnetic field under the same conditions. Uniaxial magnetic anisotropy in the width direction was introduced.

【0034】次いで,この素子の導体層20の両端部を
端子として,10MHzの通電電流を流したときのイン
ピーダンスのバイアス磁界依存性を測定した。また,イ
ンダクタンス変化率,ならびにEPMAによる組成分析
の結果を下記表1に示す。下記表1の試料1の場合のバ
イアス磁界依存性のグラフを一例として図5に示す。下
記表1でNo.1〜10の試料は本発明の請求範囲内の
組成である。また,No.11〜15の試料は本発明の
範囲外の組成で比較例である。
Next, the dependence of the impedance on the bias magnetic field when a current of 10 MHz was passed was measured using both ends of the conductor layer 20 of the device as terminals. Table 1 below shows the inductance change rate and the results of composition analysis by EPMA. FIG. 5 shows, as an example, a graph of the bias magnetic field dependence in the case of Sample 1 in Table 1 below. In Table 1 below, No. Samples 1 to 10 have compositions within the scope of the present invention. No. Samples 11 to 15 are comparative examples with compositions outside the scope of the present invention.

【0035】(比較試料6)比較試料6として,厚さ1
mmのガラス基板上に膜厚2μm,長手方向14mm,
幅4mmのCo−Nb−Zr膜のみを製膜した。さらに
本発明試料1〜10と同様の方法で磁場中熱処理を施
し,磁気検出素子とした。この素子に10MHzの電流
を直接流したときのインピーダンスのバイアス磁界依存
性を測定したところ,インピーダンス変化率は30%/
7Oe,磁界感度は4.3%/Oeであった。また,膜
組成は83.8at%Co−13.3at%Nb−2.
9at%Zrであった。この場合と,本発明試料2とを
比較すれば,図1の構造のように磁性層とは別に導体層
を持つ磁気検出素子の優位性は明らかである。
(Comparative Sample 6) As Comparative Sample 6, a thickness of 1
on a 2 mm glass substrate, 14 mm in the longitudinal direction,
Only a Co-Nb-Zr film having a width of 4 mm was formed. Further, a heat treatment in a magnetic field was performed in the same manner as in Samples 1 to 10 of the present invention to obtain a magnetic detection element. When the bias magnetic field dependency of the impedance when a current of 10 MHz was directly passed through this element was measured, the impedance change rate was 30% /
7 Oe, the magnetic field sensitivity was 4.3% / Oe. The film composition was 83.8 at% Co-13.3 at% Nb-2.
9 at% Zr. When this case is compared with the sample 2 of the present invention, the superiority of the magnetic sensing element having a conductor layer separately from the magnetic layer as in the structure of FIG. 1 is apparent.

【0036】(比較試料7)比較試料7として図1乃至
図3に示した構造の磁気検出素子のSiO2 膜からなる
絶縁層30を除き,ガラス基板上にCuの導体層20,
Co−Nb−Zr膜からなる磁性層10のみを製膜した
磁気検出素子を得た。さらに,本発明試料1〜10と同
様の方法で磁場中熱処理を施した。この試料に本発明試
料1〜10と同様に,10MHzの通電電流を流したと
きのインピーダンスの磁界依存性を調べたところ,イン
ピーダンス変化率は,50%/9Oe,磁界感度は約6
%/Oeであった。また,膜組成は83.3at%Co
−13.8at%Nb−2.9at%Zrであった。こ
の場合と本発明試料3とを比較すれば,図1乃至図3の
構造のように磁性層と導体層との間に絶縁体層を持つ磁
気検出素子の優位性は明らかである。
(Comparative Sample 7) As Comparative Sample 7, a Cu conductor layer 20 and a Cu conductive layer 20 were formed on a glass substrate, except for the insulating layer 30 made of the SiO 2 film of the magnetic sensor having the structure shown in FIGS.
A magnetic sensing element in which only the magnetic layer 10 made of a Co-Nb-Zr film was formed was obtained. Further, a heat treatment in a magnetic field was performed in the same manner as the samples 1 to 10 of the present invention. The magnetic field dependence of the impedance when a current of 10 MHz was applied to this sample was examined in the same manner as in Samples 1 to 10 of the present invention. The impedance change rate was 50% / 9 Oe, and the magnetic field sensitivity was about 6%.
% / Oe. The film composition was 83.3 at% Co.
-13.8 at% Nb-2.9 at% Zr. When this case is compared with the sample 3 of the present invention, the superiority of the magnetic sensing element having an insulator layer between the magnetic layer and the conductor layer as in the structure of FIGS. 1 to 3 is apparent.

【0037】(比較試料8)比較試料8として,図1乃
至図3に示した構造の磁気検出素子のCo−Nb−Zr
からなる磁性層に代え,磁性層としてパーマロイを製膜
したものの磁気インピーダンス特性を調べた。本発明試
料1〜10と同様,10MHzの通電電流を流したときの
インピーダンスの磁界依存性を測定したところ,インピ
ーダンス変化率は45%/90e,磁界感度は5%/O
eであった。
(Comparative Sample 8) As Comparative Sample 8, the Co-Nb-Zr of the magnetic sensing element having the structure shown in FIGS.
The magnetic impedance characteristics of a permalloy film formed as a magnetic layer instead of the magnetic layer consisting of As in the case of Samples 1 to 10 of the present invention, when the magnetic field dependence of the impedance when a current of 10 MHz was applied was measured, the impedance change rate was 45% / 90e, and the magnetic field sensitivity was 5% / O.
e.

【0038】(本発明試料11)第2の実施の形態とし
て,図1乃至図3に示す構造を有する磁気検出素子で,
本発明試料1のCo−Nb−Zr単層膜である第1の磁
性膜11及び第2の磁性膜12に代え,図6に示すよう
に,厚さ0.1μmのSiO2 からなる第3の絶縁膜3
3を間に挟みながら厚さ0.25μmのCo−Nb−Z
r膜からなる第3の磁性膜13を4層積層した第1の磁
性膜14及び第2の磁性膜からなる磁性層を備えた磁気
インピーダンス素子を得た。さらに,本発明試料1〜1
0と同様の方法で磁場中熱処理を施した。この導体層2
0に40MHzの通電電流を流したときのインピーダン
ス,インダクタンス,抵抗の磁界依存性を測定したとこ
ろ,図6に示すようなインピーダンス,インダクタン
ス,抵抗の変化が見られた。このときのインビーダンス
変化率は12%/8Oe,磁界感度は15%/Oe,膜
組成は84at%Co−12.8st%Nb−3.2a
t%Zrであった。後に述する比較試料9と比べると高
周波域での特性に優れていることがわかる。
(Sample 11 of the Present Invention) As a second embodiment, a magnetic sensing element having the structure shown in FIGS.
As shown in FIG. 6, instead of the first magnetic film 11 and the second magnetic film 12 which are the Co—Nb—Zr single-layer films of the sample 1 of the present invention, a third magnetic film made of SiO 2 having a thickness of 0.1 μm was used. Insulation film 3
0.25 μm Co-Nb-Z with 3 in between
A magnetic impedance element including a first magnetic film 14 in which four third magnetic films 13 made of an r film were stacked and a magnetic layer made of a second magnetic film was obtained. Furthermore, the present invention samples 1 to 1
A heat treatment in a magnetic field was performed in the same manner as in Example 1. This conductor layer 2
Measurement of the magnetic field dependence of the impedance, inductance and resistance when a current of 40 MHz was applied to 0 showed changes in the impedance, inductance and resistance as shown in FIG. At this time, the impedance change rate was 12% / 8 Oe, the magnetic field sensitivity was 15% / Oe, and the film composition was 84 at% Co-12.8 st% Nb-3.2a.
t% Zr. It can be seen that the characteristics in the high frequency range are superior to the comparative sample 9 described later.

【0039】(比較試料9)本発明試料1に記載の磁気
検出素子に,本発明試料11と同様,40MHzの通電
電流を流したときのインピーダンス磁界依存性を測定し
たところ,インピーダンス変化率は80%/8Oe,磁
界感度は10%/Oeであった。
(Comparative Sample 9) As in the case of Sample 11 of the present invention, when the impedance magnetic field dependency was measured when a current of 40 MHz was applied to the magnetic sensing element described in Sample 1 of the present invention, the impedance change rate was 80%. % / 8 Oe, and the magnetic field sensitivity was 10% / Oe.

【0040】(本発明試料12)図1に示す構造の磁気
検出素子で,SiO2 絶縁層に代え,Si3 4 を絶縁
層として同様の素子を得た。さらに,本発明試料1〜1
0と同様の方法で磁場中熱処理を施し,10MHzの通
電電流を流したときのインピーダンス変化率を調べたと
ころ,110%/6.5Oe,磁界感度は16.9/O
eであった。
(Sample 12 of the Present Invention) A similar magnetic sensing element having the structure shown in FIG. 1 was obtained by using Si 3 N 4 as the insulating layer instead of the SiO 2 insulating layer. Furthermore, the present invention samples 1 to 1
A heat treatment in a magnetic field was performed in the same manner as in Example 0, and the impedance change rate when a current of 10 MHz was applied was examined. The result was 110% / 6.5 Oe, and the magnetic field sensitivity was 16.9 / O.
e.

【0041】(本発明試料13)図1に示す構造の磁気
検出素子で,SiO2 絶縁層に代え,Al2 3 膜を絶
縁層として同様の素子を得た。さらに,本発明試料1〜
10と同様の方法で磁場中熱処理を施し,10MHzの
通電電流を流したときのインピーダンス変化率を調べた
ところ,113%/6.7Oe,磁界感度は16.9%
/Oeであった。
(Sample 13 of the Present Invention) A similar magnetic sensing element having the structure shown in FIG. 1 was obtained by using an Al 2 O 3 film as the insulating layer instead of the SiO 2 insulating layer. Furthermore, the present invention samples 1 to
Heat treatment in a magnetic field was performed in the same manner as in Example 10, and the rate of change in impedance when a 10-MHz current was passed was examined. The result was 113% / 6.7 Oe, and the magnetic field sensitivity was 16.9%.
/ Oe.

【0042】(本発明試料14)図1に示す構造の磁気
検出素子で,SiO2 の絶縁層30に代え,AlN膜を
絶縁層として用いて同様の構造の素子を得た。さらに,
本発明試料1〜10と同様の方法で磁場中熱処理を施
し,10MHzの通電電流を流したときのインピーダンス
変化率を調べたところ,103%/6.3Oe,磁界感
度は16.3%/Oeであった。
(Sample 14 of the Present Invention) A magnetic sensor having the same structure as that shown in FIG. 1 was obtained by using an AlN film as an insulating layer instead of the insulating layer 30 of SiO 2 . further,
Heat treatment in a magnetic field was performed in the same manner as in Samples 1 to 10 of the present invention, and the rate of change in impedance when a current of 10 MHz was applied was examined. The result was 103% / 6.3 Oe and the magnetic field sensitivity was 16.3% / Oe. Met.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】以上,説明したように,本発明において
は,導体金属層を内包したCo−Nb−Zrアモルファ
ス金属磁性薄膜を磁気検出素子として,用いることによ
り,従来見られたような磁性金属層,または磁性金属線
に導体金属の役割を兼用させるような構造の検出素子に
比べ,直流電気抵抗を低減させることができるため,よ
り高感度の検出素子を実現できる。
As described above, according to the present invention, by using a Co—Nb—Zr amorphous metal magnetic thin film including a conductor metal layer as a magnetic sensing element, a magnetic metal as conventionally seen can be obtained. Compared with a detection element having a structure in which a layer or a magnetic metal wire also serves as a conductor metal, the DC electric resistance can be reduced, so that a detection element with higher sensitivity can be realized.

【0045】また,本発明においては,導体金属層とC
o−Nb−Zrアモルファス金属磁性薄膜との間にガラ
スセラミック絶縁層を持たせることにより,アモルフア
ス金属磁性薄膜にはバイアス磁界印加のための直流は流
れないので,渦電流損失が低減でき,絶縁層を持たない
場合よりも高周波帯域での磁気特性が改善される。
In the present invention, the conductive metal layer and the C
By providing a glass-ceramic insulating layer between the o-Nb-Zr amorphous metal magnetic thin film, a direct current for applying a bias magnetic field does not flow through the amorphous metal magnetic thin film, so that eddy current loss can be reduced and the insulating layer can be reduced. The magnetic characteristics in the high frequency band are improved as compared with the case without the above.

【0046】また,本発明においては,Co−Nb−Z
r層を単層膜ではなく,ガラスセラミック層を介した積
層構造にすることにより,なお一層の高周波帯域化が可
能である。
Further, in the present invention, Co-Nb-Z
If the r-layer is not a single-layer film but has a laminated structure via a glass ceramic layer, it is possible to further increase the high-frequency band.

【0047】さらには,本発明においては,アモルファ
スCo−Nb−Zr磁性金属層の組成を適切にすること
により,従来用いられてきたパーマロイ薄膜,Co−S
i−B薄膜などを用いた場合よりも大きなインピ一ダン
ス変化率を有する磁気検出素子を得ることができる。
Further, in the present invention, by appropriately setting the composition of the amorphous Co—Nb—Zr magnetic metal layer, a permalloy thin film conventionally used, Co—S
It is possible to obtain a magnetic sensing element having a larger impedance change rate than when an i-B thin film or the like is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による磁気検出素子を示す
斜視図である。
FIG. 1 is a perspective view showing a magnetic sensing element according to an embodiment of the present invention.

【図2】図1の磁気検出素子の横断面図である。FIG. 2 is a cross-sectional view of the magnetic sensing element of FIG.

【図3】図1の磁気検出素子の縦断面図である。FIG. 3 is a longitudinal sectional view of the magnetic sensor of FIG. 1;

【図4】(a)〜(f)は図1の磁気検出素子の製造工
程を示す平面図である。
4 (a) to 4 (f) are plan views showing manufacturing steps of the magnetic sensing element in FIG.

【図5】図1の磁気検出素子のインピーダンスの磁界依
存性を示す図である。
FIG. 5 is a diagram showing the magnetic field dependence of the impedance of the magnetic detection element of FIG. 1;

【図6】本発明の他の実施の形態による磁気検出素子を
示す断面図である。
FIG. 6 is a sectional view showing a magnetic sensing element according to another embodiment of the present invention.

【図7】図6の磁気検出素子(本発明試料11)のZ,
L,Rのバイアス磁場依存性を示す図である。
FIG. 7 shows Z, Z of the magnetic detection element (sample 11 of the present invention) in FIG.
FIG. 6 is a diagram illustrating the bias magnetic field dependence of L and R.

【符号の説明】[Explanation of symbols]

1 磁気検出素子 2 ガラス基板 10 磁性層 11,14 第1の磁性膜 12 第2の磁性膜 13 第3の磁性膜 20 導体層 30 絶縁層 31 第1の絶縁膜 32 第2の絶縁膜 33 第3の絶縁膜 DESCRIPTION OF SYMBOLS 1 Magnetic detection element 2 Glass substrate 10 Magnetic layer 11, 14 First magnetic film 12 Second magnetic film 13 Third magnetic film 20 Conductive layer 30 Insulating layer 31 First insulating film 32 Second insulating film 33 First 3 insulating film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−270321(JP,A) 特開 平8−8473(JP,A) 特開 平6−163257(JP,A) 特開 平6−334237(JP,A) 特開 平8−78757(JP,A) 特開 平8−213238(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 33/00 - 33/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-9-270321 (JP, A) JP-A-8-8473 (JP, A) JP-A-6-163257 (JP, A) JP-A-6-163257 334237 (JP, A) JP-A-8-78757 (JP, A) JP-A-8-213238 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01R 33/00-33 / 18

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁性層とこれに隣接した導電層とを備
、磁気インピーダンス効果を利用した磁気検出素子に
おいて,前記磁性層は,80−87at%Co−10〜
17at%Nb−1〜6at%ZrのCo−Nb−Zr
薄膜を含むことを特徴とする磁気検出素子。
1. A includes a magnetic layer and a conductive layer adjacent thereto, the magnetic sensing element using a magnetic impedance effect, said magnetic layer, 80-87at% Co-10~
17 at% Nb-1 to 6 at% Zr Co-Nb-Zr
A magnetic sensing element comprising a thin film.
【請求項2】 請求項1記載の磁気検出素子において導
体層を含み,前記導体層は,Cu,Ag,Al,Auの
内の少なくとも一種から実質的になり,前記Co−Nb
−Zr薄膜と,前記導体層とは,絶縁層を介して互いに
絶縁されていることを特徴とする磁気検出素子。
2. The magnetic sensing element according to claim 1, further comprising a conductor layer, wherein said conductor layer is substantially made of at least one of Cu, Ag, Al, and Au, and said Co-Nb
-A magnetic sensing element, wherein the Zr thin film and the conductor layer are insulated from each other via an insulating layer.
【請求項3】 請求項1又は2記載の磁気検出素子にお
いて,前記磁性層は,前記Co−Nb−Zr薄膜を複数
絶縁膜を介して積層したものであることを特徴とする磁
気検出素子。
3. The magnetic sensing element according to claim 1, wherein the magnetic layer is formed by laminating the Co—Nb—Zr thin films via a plurality of insulating films.
【請求項4】 請求項2又は3記載の磁気検出素子にお
いて,前記磁性層に,前記絶縁層を積層してなり,前記
絶縁層及び前記絶縁膜は,SiO2 ,Si34 ,Al
2 3 ,AlNのうち少なくとも一種からなることを特
徴とする磁気検出素子。
4. The magnetic sensing element according to claim 2, wherein the insulating layer is laminated on the magnetic layer, and the insulating layer and the insulating film are made of SiO 2 , Si 3 N 4 , Al.
A magnetic sensing element comprising at least one of 2 O 3 and AlN.
【請求項5】 導体層の周囲を絶縁層を介して磁性層に
て覆った磁気インピーダンス効果を利用した磁気検出素
子であって,前記磁性層は,80−87at%Co−1
0〜17at%Nb−1〜6at%ZrのCo−Nb−
Zr薄膜を含むことを特徴とする磁気検出素子。
5. A magnetic sensing element utilizing a magnetic impedance effect in which the periphery of a conductor layer is covered with a magnetic layer via an insulating layer, wherein the magnetic layer is 80-87 at% Co-1.
0 to 17 at% Nb-1 to 6 at% Zr Co-Nb-
A magnetic sensing element comprising a Zr thin film.
【請求項6】 請求項5記載の磁気検出素子において,
前記磁性層は,前記Co−Nb−Zr薄膜を複数絶縁膜
を介して積層したものであることを特徴とする磁気検出
素子。
6. The magnetic sensing element according to claim 5, wherein
The magnetic sensing element according to claim 1, wherein the magnetic layer is formed by laminating the Co-Nb-Zr thin films via a plurality of insulating films.
【請求項7】 請求項5又は6記載の磁気検出素子にお
いて,前記導体層は,Cu,Ag,Alの内の少なくと
も一種から実質的になり,前記絶縁層及び絶縁膜は,S
iO2 ,Si3 4 ,Al2 3 ,AlNのうち少なく
とも一種から実質的になることを特徴とする磁気検出素
子。
7. The magnetic sensing element according to claim 5, wherein the conductor layer is substantially made of at least one of Cu, Ag, and Al, and the insulating layer and the insulating film are
iO 2, Si 3 N 4, Al 2 O 3, the magnetic detecting device characterized by consisting essentially of at least one of AlN.
【請求項8】 磁気インピーダンス効果を利用した磁気
検出素子を製造する方法であって、第1の磁性膜上に第
1の絶縁膜を形成し,前記絶縁膜上に導体層を形成し,
前記導体層を両端部を残して覆うように,第2の絶縁膜
で覆い,前記第2の絶縁膜を前記第1の磁性膜と閉磁路
を構成するように,第2の磁性膜で覆うことを含み,前
記第1及び第2の磁性膜は,80−87at%Co−1
0〜17at%Nb−1〜6at%ZrのCo−Nb−
Zr薄膜を含むことを特徴とする磁気検出素子の製造方
法。
8. A magnet utilizing the magneto-impedance effect.
A method for manufacturing a detection element , comprising: forming a first insulating film on a first magnetic film; forming a conductor layer on the insulating film;
The conductive layer is covered with a second insulating film so as to cover both ends, and the second insulating film is covered with a second magnetic film so as to form a closed magnetic circuit with the first magnetic film. Wherein the first and second magnetic films are 80-87 at% Co-1
0 to 17 at% Nb-1 to 6 at% Zr Co-Nb-
A method for manufacturing a magnetic sensing element, comprising a Zr thin film.
【請求項9】 請求項8記載の磁気検出素子の製造方法
において,前記磁性層は,前記Co−Nb−Zr薄膜を
複数の第3の絶縁膜を介して積層したものであることを
特徴とする磁気検出素子の製造方法。
9. The method for manufacturing a magnetic sensing element according to claim 8, wherein the magnetic layer is formed by laminating the Co—Nb—Zr thin film via a plurality of third insulating films. Of manufacturing a magnetic sensing element.
【請求項10】 請求項8又は9記載の磁気検出素子の
製造方法において,前記第1乃至第3の絶縁膜は,夫々
SiO2 ,Si3 4 ,Al2 3 ,AlNのうち少な
くとも一種からなり,前記導体層はCu,Ag,Al,
Auの内の少なくとも一種から実質的になることを特徴
とする磁気検出素子の製造方法。
10. The method for manufacturing a magnetic sensing element according to claim 8, wherein the first to third insulating films are each formed of at least one of SiO 2 , Si 3 N 4 , Al 2 O 3 , and AlN. And the conductor layer is made of Cu, Ag, Al,
A method for manufacturing a magnetic sensing element, comprising substantially at least one of Au.
JP24486096A 1996-09-17 1996-09-17 Magnetic sensing element and method of manufacturing the same Expired - Lifetime JP3210933B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP24486096A JP3210933B2 (en) 1996-09-17 1996-09-17 Magnetic sensing element and method of manufacturing the same
US08/929,558 US6069475A (en) 1996-09-17 1997-09-15 Magnetic sensor utilizing impedance variation of a soft magnetic element in dependence upon a magnetic field strength and a method of manufacturing the same
CN97121378A CN1110794C (en) 1996-09-17 1997-09-16 Magnetic sensor utilizing impedance variation of soft magnetic element in dependence upon magnetic field strength and method of manufacturing the same
TW086113435A TW344799B (en) 1996-09-17 1997-09-17 Magnetic sensor utilizing impedance variation of a soft magnetic element in dependence upon a magnetic field strength and a method of manufacturing the same
DE69705095T DE69705095T2 (en) 1996-09-17 1997-09-17 Magneto-impedance sensor
SG9703445A SG82576A1 (en) 1996-09-17 1997-09-17 Magnetic sensor utilizing impedance variation of a soft magnetic element in dependence upon a magnetic field strength and a method of manufacturing the same
EP97116192A EP0831335B1 (en) 1996-09-17 1997-09-17 Magneto-Impedance Sensor
SG9906444A SG89311A1 (en) 1996-09-17 1997-09-17 Magnetic sensor utilizing impedance variation of a soft magnetic element in dependence upon a magnetic field strength and a method of manufacturing the same
EP99115496A EP0965851B1 (en) 1996-09-17 1997-09-17 Magneto-Impedance sensor
DE69714613T DE69714613T2 (en) 1996-09-17 1997-09-17 Magneto-impedance sensor
MYPI97004323A MY130911A (en) 1996-09-17 1997-09-17 Magneto-impedance sensor
HK98104084A HK1004822A1 (en) 1996-09-17 1998-05-12 Magneto-impedance sensor
US09/484,315 US6255813B1 (en) 1996-09-17 2000-01-18 Magnetic sensor comprising a soft magnetic thin film element
CN02132192A CN1432998A (en) 1996-09-17 2002-08-26 Magnetic sensor based on the impedance of soft magnetic element varying with field strength and its making process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24486096A JP3210933B2 (en) 1996-09-17 1996-09-17 Magnetic sensing element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1090380A JPH1090380A (en) 1998-04-10
JP3210933B2 true JP3210933B2 (en) 2001-09-25

Family

ID=17125074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24486096A Expired - Lifetime JP3210933B2 (en) 1996-09-17 1996-09-17 Magnetic sensing element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3210933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088021A1 (en) 2007-01-17 2008-07-24 Fujikura Ltd. Magnetic sensor element and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270919A (en) * 2001-03-12 2002-09-20 Toyota Central Res & Dev Lab Inc Laminated magnetic field sensor
JP7203490B2 (en) * 2017-09-29 2023-01-13 昭和電工株式会社 Magnetic sensor assembly and magnetic sensor assembly manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088021A1 (en) 2007-01-17 2008-07-24 Fujikura Ltd. Magnetic sensor element and method for manufacturing the same

Also Published As

Publication number Publication date
JPH1090380A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
US6255813B1 (en) Magnetic sensor comprising a soft magnetic thin film element
US20100045285A1 (en) Magnetic sensor element and manufacturing method thereof
US4489357A (en) Magnetic sensor having multilayered flux conductors
JP4695325B2 (en) Magnetic detection element, method of manufacturing the same, and portable device using the element
KR100265986B1 (en) Composite-typed thin film magnetic head and method for manufacturing the same
US6239594B1 (en) Mageto-impedance effect element
JP3210933B2 (en) Magnetic sensing element and method of manufacturing the same
KR19990014231A (en) MR / inductive composite thin film magnetic head using soft magnetic film and soft magnetic film
JP3936137B2 (en) Magneto-impedance effect element
JPS61258323A (en) Magneto-resistance effect head
JP2001221838A (en) Magnetic impedance effect element and production method thereof
US20220308128A1 (en) Magnetic sensor
JP3656018B2 (en) Method for manufacturing magneto-impedance effect element
JPH04252411A (en) Thin-film magnetic head
JP3385501B2 (en) Magnetic sensing element
JPH10289821A (en) Magnetic device for high-frequency band use
JP3602988B2 (en) Magnetic impedance effect element
KR100481497B1 (en) Magnetic sensor utilizing impedance variation of a soft magnetic element in dependence upon a magnetic field strength and a method of manufacturing the same
JP4474835B2 (en) Magneto-impedance element
Ochiai et al. High‐frequency permeability in double‐layered structure of amorphous Co‐Ta‐Zr films
JP3161667B2 (en) Magnetic field detection sensor
JP2001119081A (en) Magnetic impedance effect element and manufacturing method therefor
JPH09106913A (en) Magnetoelectric transducer
JP3523834B2 (en) Magnetic field sensor and magnetic field sensing system
JPH08330645A (en) Magnetic detection element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010502

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9