JP3210261B2 - Boiling cooling device and manufacturing method thereof - Google Patents

Boiling cooling device and manufacturing method thereof

Info

Publication number
JP3210261B2
JP3210261B2 JP32625196A JP32625196A JP3210261B2 JP 3210261 B2 JP3210261 B2 JP 3210261B2 JP 32625196 A JP32625196 A JP 32625196A JP 32625196 A JP32625196 A JP 32625196A JP 3210261 B2 JP3210261 B2 JP 3210261B2
Authority
JP
Japan
Prior art keywords
boiling
refrigerant
heat transfer
transfer surface
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32625196A
Other languages
Japanese (ja)
Other versions
JPH10173115A (en
Inventor
利春 大部
伸広 高橋
育夫 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32625196A priority Critical patent/JP3210261B2/en
Publication of JPH10173115A publication Critical patent/JPH10173115A/en
Application granted granted Critical
Publication of JP3210261B2 publication Critical patent/JP3210261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力用半導体素子
等の発熱損失を沸騰部での冷媒の沸騰気化、凝縮部での
冷媒蒸気の凝縮液化にて放熱する沸騰冷却装置及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooling device for radiating heat loss of a power semiconductor device or the like by boiling vaporization of a refrigerant in a boiling portion and condensation and liquefaction of a refrigerant vapor in a condensation portion, and a method of manufacturing the same. .

【0002】[0002]

【従来の技術】近年、電力用半導体素子は大容量化・高
速化に伴い、発熱損失が増大している。このために、電
力用半導体素子を冷却する沸騰冷却装置の冷却効率を上
げ、発熱損失の増大に対応し、高熱密度冷却対応や冷却
装置の大型化を避けることが重要となってきている。
2. Description of the Related Art In recent years, heat dissipation loss of power semiconductor devices has been increasing as capacity and speed have been increased. For this reason, it has become important to increase the cooling efficiency of a boiling cooling device for cooling a power semiconductor element, to cope with an increase in heat generation loss, to cope with high heat density cooling, and to avoid increasing the size of the cooling device.

【0003】以下、従来の沸騰冷却装置の構造を、図2
1及び図22を参照して説明する。図21は正面図、図
22は図21のA−A断面図である。図21及び図22
において、沸騰冷却装置は、内部が中空で低沸点冷媒1
が封入された沸騰部2と、沸騰部2内の中空流路とヘッ
ダータンク3を介して連通し他端が閉塞され、低沸点冷
媒1の蒸気4で満たされる凝縮部5からなる密閉容器で
ある。凝縮部5と凝縮部5の間には、フィン6が取り付
けられている。また、電力用半導体素子7は沸騰部2の
外壁面である受熱部2Aに取り付けられる。さらに、沸
騰部2内の沸騰伝熱面2Bは、平面となっている。
[0003] The structure of a conventional boiling cooling device is described below with reference to FIG.
1 and FIG. 21 is a front view, and FIG. 22 is a sectional view taken along line AA of FIG. FIG. 21 and FIG.
, The boiling cooling device has a hollow inside and a low boiling point refrigerant 1
And a condensing section 5 which is in communication with the hollow flow path in the boiling section 2 via the header tank 3 and is closed at the other end and is filled with the vapor 4 of the low boiling point refrigerant 1. is there. Fins 6 are attached between the condensers 5. In addition, the power semiconductor element 7 is attached to a heat receiving section 2 </ b> A which is an outer wall surface of the boiling section 2. Further, the boiling heat transfer surface 2B in the boiling portion 2 is a flat surface.

【0004】このように構成された沸騰冷却装置におい
ては、電力用半導体素子7の発熱損失は、受熱部2Aを
経て沸騰部2内の沸騰伝熱面2Bまで熱伝導により伝わ
る。沸騰伝熱面2Bとこれに接する低沸点冷媒1の温度
が、蒸気相を形成するのに十分な条件のもとで、平面で
ある沸騰伝熱面2Bの発泡点より気泡核が発生し、気泡
8に成長し、沸騰伝熱面2Bより離脱し、沸騰伝熱面2
Bから低沸点冷媒1に発熱損失が伝わる。
[0004] In the boiling cooling device thus configured, the heat loss of the power semiconductor element 7 is transmitted by heat conduction to the boiling heat transfer surface 2B in the boiling portion 2 via the heat receiving portion 2A. Under the condition that the temperature of the boiling heat transfer surface 2B and the low-boiling refrigerant 1 in contact with the boiling heat transfer surface 2B are sufficient to form a vapor phase, bubble nuclei are generated from the foaming point of the boiling heat transfer surface 2B, It grows into bubbles 8 and separates from the boiling heat transfer surface 2B to form the boiling heat transfer surface 2B.
The heat loss is transmitted from B to the low boiling point refrigerant 1.

【0005】離脱した気泡8は、浮力により液面に上昇
し、発熱損失は凝縮部5に運ばれる。凝縮部5に運ばれ
た発熱損失は、フィン6間を通る冷却風により放熱され
る。一方、蒸気4は冷却され凝縮して液化し凝縮液9と
なり沸騰部2に戻るサイクルを繰り返す。以上のように
して、電力用半導体素子7は冷却される。
[0005] The separated bubbles 8 rise to the liquid level by buoyancy, and the heat loss is transferred to the condensing section 5. The heat loss carried to the condenser 5 is radiated by the cooling air passing between the fins 6. On the other hand, the cycle in which the steam 4 is cooled and condensed and liquefied to become the condensed liquid 9 and returns to the boiling portion 2 is repeated. As described above, the power semiconductor element 7 is cooled.

【0006】[0006]

【発明が解決しようとする課題】このとき、沸騰部2内
では低沸点冷媒1から発生した気泡8と凝縮部5から沸
騰部2に戻る凝縮液9が、さらに凝縮部5内では低沸点
冷媒1から発生した蒸気4と凝縮部5から沸騰部2に戻
る凝縮液9が、同一流路内を通るため、沸騰部2内で気
泡8と凝縮液9が干渉し、沸騰伝熱面2Bの発泡点より
気泡核が発生し、気泡8に成長し沸騰伝熱面2Bより離
脱するというサイクルの効率が悪く、沸騰熱伝達率が小
さい。
At this time, the bubbles 8 generated from the low-boiling refrigerant 1 and the condensate 9 returning from the condensing section 5 to the boiling section 2 in the boiling section 2 and the low-boiling refrigerant in the condensing section 5 Since the vapor 4 generated from 1 and the condensed liquid 9 returning from the condensing section 5 to the boiling section 2 pass through the same flow path, the bubbles 8 and the condensed liquid 9 interfere in the boiling section 2 and form the boiling heat transfer surface 2B. The efficiency of the cycle of generating bubble nuclei from the foaming point, growing into bubbles 8 and separating from the boiling heat transfer surface 2B is poor, and the boiling heat transfer coefficient is small.

【0007】また、沸騰部2内で気泡8と凝縮液9が干
渉し、さらに凝縮部3内で蒸気4と凝縮液9が干渉し液
戻りのムラが発生し、沸騰部2内で冷媒1の枯渇が起こ
る。さらに、沸騰伝熱面2Bは平面であるため、沸騰伝
熱面2Bでの発泡点が少なく(発泡点密度が小さく)、
気泡8の発生を助長し安定化させることができず、沸騰
熱伝達率が小さい。
Further, the bubbles 8 and the condensed liquid 9 interfere with each other in the boiling section 2, and the vapor 4 and the condensed liquid 9 interfere with each other in the condensing section 3, resulting in uneven return of the liquid. Depletion occurs. Further, since the boiling heat transfer surface 2B is a flat surface, the number of foaming points on the boiling heat transfer surface 2B is small (the foaming point density is small).
The generation of bubbles 8 cannot be promoted and stabilized, and the boiling heat transfer coefficient is small.

【0008】以上のことにより、以下の問題がある。 (1)沸騰伝熱面2Bと低沸点冷媒1の温度差が大きく
なる分、凝縮部5の壁面と冷却風の温度差が小さくな
り、フィン6が大型化し沸騰冷却装置が大型化する。 (2)比較的低い熱流束で冷媒1の枯渇によるドライア
ウトが発生し、発熱損失増大に対応できない。 (3)ドライアウトを防ぐためには冷媒1の量を増やす
必要があり、沸騰冷却装置のコストが高くなる。 (4)冷媒1の量を増やすためには沸騰部2の厚みを増
やす必要があり、沸騰冷却装置の重量が増す。 (5)沸騰部2の厚みが大きいので、半導体素子7間の
配線が長くなり、配線の寄生インダクタンスが増加す
る。
As described above, there are the following problems. (1) As the temperature difference between the boiling heat transfer surface 2B and the low-boiling-point refrigerant 1 increases, the temperature difference between the wall surface of the condensing section 5 and the cooling air becomes smaller, the fins 6 become larger, and the boiling cooling device becomes larger. (2) Dry-out occurs due to the depletion of the refrigerant 1 at a relatively low heat flux, and it cannot cope with an increase in heat loss. (3) In order to prevent dry-out, it is necessary to increase the amount of the refrigerant 1, which increases the cost of the boiling cooling device. (4) In order to increase the amount of the refrigerant 1, it is necessary to increase the thickness of the boiling portion 2, and the weight of the boiling cooling device increases. (5) Since the thickness of the boiling portion 2 is large, the wiring between the semiconductor elements 7 becomes longer, and the parasitic inductance of the wiring increases.

【0009】従って、本発明は、上記問題点を鑑み、沸
騰伝熱面と低沸点冷媒の間の沸騰熱伝達を向上させる沸
騰冷却装置を提供する。
Accordingly, the present invention has been made in view of the above problems, and provides a boiling cooling device that improves the transfer of boiling heat between a boiling heat transfer surface and a low-boiling refrigerant.

【0010】[0010]

【0011】[0011]

【0012】[0012]

【0013】[0013]

【0014】[0014]

【課題を解決するための手段】 上記目的を達成するため
に、 請求項1記載の発明は、沸騰部伝熱面に、ピッチが
0.12mm〜1.2mm,幅が0.06〜0.6m
m,高さが0.1mm〜1.0mmの微細なフィンを、
沸騰伝熱面の重力方向及び重力方向と直交する方向に設
けることを特徴とする。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
According to the first aspect of the present invention, the heat transfer surface of the boiling portion has a pitch of 0.12 mm to 1.2 mm and a width of 0.06 to 0.6 m.
m, a fine fin with a height of 0.1 mm to 1.0 mm,
It is characterized in that it is provided in the direction of gravity of the boiling heat transfer surface and in a direction orthogonal to the direction of gravity.

【0015】更に、請求項2記載の発明は、沸騰部伝熱
面に、ピッチが0.12mm〜1.2mm,幅が0.0
6〜0.6mm,高さが0.1mm〜1.0mmの微細
なフィンを、沸騰伝熱面の重力方向に設けることを特徴
とする。
Further, according to the second aspect of the present invention, the pitch is 0.12 mm to 1.2 mm and the width is 0.0
Fine fins having a diameter of 6 to 0.6 mm and a height of 0.1 to 1.0 mm are provided in the direction of gravity of the boiling heat transfer surface.

【0016】また更に、請求項3記載の発明は、沸騰部
伝熱面に、ピッチが0.12mm〜1.2mm,幅が
0.06〜0.6mm,高さが0.1mm〜1.0mm
の微細なフィンを、沸騰伝熱面の重力方向と直交する方
向に設けることを特徴とする。
Further, according to the third aspect of the present invention, the pitch is 0.12 mm to 1.2 mm, the width is 0.06 to 0.6 mm, and the height is 0.1 mm to 1. 0mm
Are provided in a direction orthogonal to the direction of gravity of the boiling heat transfer surface.

【0017】[0017]

【0018】[0018]

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。 (第1の実施の形態)図1は本発明の第1の実施の形態
である沸騰冷却装置の正面図、図2は図1のA−A断面
図、図3は図1のB−B断面図である。また、図4は本
発明の第1の実施の形態での沸騰曲線である。横軸は低
沸点冷媒1と沸騰伝熱面2Bとの温度差である伝熱面過
熱度、縦軸は熱流束である。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a front view of a boiling cooling apparatus according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. 3 is a line BB of FIG. It is sectional drawing. FIG. 4 is a boiling curve according to the first embodiment of the present invention. The horizontal axis is the heat transfer surface superheat degree, which is the temperature difference between the low boiling point refrigerant 1 and the boiling heat transfer surface 2B, and the vertical axis is the heat flux.

【0020】図1乃至図3において、沸騰冷却装置は、
内部が中空で低沸点冷媒1が封入された沸騰部2と、沸
騰部2内の中空流路とヘッダータンク3を介して連通し
他端が閉塞され、低沸点冷媒1の蒸気4で満たされる凝
縮部5からなる密閉容器である。凝縮部5と凝縮部5の
間には、フィン6が取り付けられている。また、電力用
半導体素子7は沸騰部2の外壁面である受熱部2Aに取
り付けられる。
In FIGS. 1 to 3, the boiling cooling device comprises:
A boiling portion 2 having a hollow inside and containing a low-boiling refrigerant 1 is communicated with a hollow flow passage in the boiling portion 2 via a header tank 3 and the other end is closed and filled with steam 4 of the low-boiling refrigerant 1. It is a closed container composed of the condenser 5. Fins 6 are attached between the condensers 5. In addition, the power semiconductor element 7 is attached to a heat receiving section 2 </ b> A which is an outer wall surface of the boiling section 2.

【0021】沸騰部2内には、冷媒1から発生した気泡
8を凝縮部5に導く第1の流路10と、凝縮部5で液化
した凝縮液9を沸騰部2に戻す第2の流路11と、第1
及び第2の流路が下部で互いに連通する第1の空間12
を、電力用半導体素子7が取り付けられる外壁面と平行
に設置した冷媒流路構成部材13により設け、さらにヘ
ッダータンク3内に、冷媒1から発生した気泡8を凝縮
部5に導く第3の流路14と、凝縮部5で液化した凝縮
液9を沸騰部5に戻す第4の流路15を形成する冷媒流
路構成部材13を設け、第1の流路10と第3の流路1
4、第2の流路11と第4の流路15を連通させる。ま
た、第4の流路15の断面積は、第2の流路11より大
きくなっている。
In the boiling section 2, a first flow path 10 for guiding bubbles 8 generated from the refrigerant 1 to the condensation section 5 and a second flow for returning the condensed liquid 9 liquefied in the condensation section 5 to the boiling section 2. Road 11 and the first
And the first space 12 in which the second flow path communicates with each other at the bottom
Is provided by a refrigerant flow path constituting member 13 installed in parallel with the outer wall surface on which the power semiconductor element 7 is mounted, and a third flow for guiding bubbles 8 generated from the refrigerant 1 to the condensing section 5 in the header tank 3. A first flow path and a third flow path; a refrigerant flow path forming member for forming a fourth flow path for returning the condensed liquid liquefied in the condensing section to the boiling section;
4. The second flow path 11 and the fourth flow path 15 are communicated. The cross-sectional area of the fourth flow path 15 is larger than that of the second flow path 11.

【0022】図1乃至図3のように構成された沸騰冷却
装置においては、電力用半導体素子7の発熱損失は、受
熱部2Aを経て沸騰部2内の沸騰伝熱面2Bまで熱伝導
により伝わる。
1 to 3, the heat loss of the power semiconductor element 7 is transmitted by heat conduction to the boiling heat transfer surface 2B in the boiling portion 2 via the heat receiving portion 2A. .

【0023】沸騰伝熱面2Bとこれに接する低沸点冷媒
1の温度が、蒸気相を形成するのに十分な条件のもと
で、沸騰伝熱面2Bの発泡点より気泡核が発生し、気泡
8に成長し、沸騰伝熱面2Bより離脱し、沸騰伝熱面2
Bから低沸点冷媒1に発熱損失が伝わる。
When the temperature of the boiling heat transfer surface 2B and the temperature of the low-boiling refrigerant 1 in contact with the surface are sufficient to form a vapor phase, bubble nuclei are generated from the bubbling point of the boiling heat transfer surface 2B. It grows into bubbles 8 and separates from the boiling heat transfer surface 2B to form the boiling heat transfer surface 2B.
The heat loss is transmitted from B to the low boiling point refrigerant 1.

【0024】離脱した気泡8は、第1の流路10を通り
浮力により液面に上昇し、さらに第3の流路14を通り
発熱損失は凝縮部5に運ばれる。蒸気4により凝縮部5
に運ばれた発熱損失は、フィン6間を通る冷却風により
放熱される。一方、蒸気4は冷却され凝縮して凝縮液9
となり、第4の流路15を通り、第2の流路11を通
り、さらに第1の空間12を通り、第1の流路10に戻
るサイクルを繰り返す。
The separated bubbles 8 rise to the liquid level by buoyancy through the first flow path 10, and further, the heat loss through the third flow path 14 is transferred to the condenser 5. Condensing part 5 by steam 4
Is carried by the cooling air passing between the fins 6. On the other hand, the steam 4 is cooled and condensed to form a condensate 9
Then, a cycle of returning to the first flow path 10 through the fourth flow path 15, passing through the second flow path 11, and further passing through the first space 12, is repeated.

【0025】このとき、沸騰部2内の冷媒流路構成用部
材13は受熱部2Aに対し平行に設けられているので、
第2の流路11内では気泡の発生がなく凝縮液9の液戻
りは良好である。また、第4の流路15の断面積を、第
2の流路11の断面積より大きくしてあるので、凝縮液
9が第4の流路15に流れ込みやすくなっている。以上
のようにして、電力用半導体素子7は冷却される。
At this time, since the refrigerant flow path forming member 13 in the boiling portion 2 is provided in parallel with the heat receiving portion 2A,
No bubbles are generated in the second flow path 11 and the liquid return of the condensate 9 is good. Further, since the cross-sectional area of the fourth flow path 15 is larger than the cross-sectional area of the second flow path 11, the condensate 9 can easily flow into the fourth flow path 15. As described above, the power semiconductor element 7 is cooled.

【0026】このとき、沸騰部2内で気泡8と凝縮液9
が干渉することがないので、沸騰伝熱面2Bの発泡点よ
り気泡核が発生し、気泡8に成長し沸騰伝熱面2Bより
離脱するというサイクルの効率が良く、沸騰熱伝達率が
向上する。沸騰熱伝達率が向上するため、図2に示すよ
うに従来の沸騰冷却装置に比べ、低沸点冷媒1と沸騰伝
熱面2Bとの温度差である伝熱面過熱度が小さくなる。
At this time, bubbles 8 and condensate 9
Do not interfere with each other, so that the efficiency of the cycle in which bubble nuclei are generated from the foaming point of the boiling heat transfer surface 2B, grow into bubbles 8 and separate from the boiling heat transfer surface 2B is high, and the boiling heat transfer coefficient is improved. . Since the boiling heat transfer coefficient is improved, as shown in FIG. 2, the superheat degree of the heat transfer surface, which is the temperature difference between the low boiling point refrigerant 1 and the boiling heat transfer surface 2B, is smaller than that of the conventional boiling cooling device.

【0027】さらに、沸騰部2内で気泡8と凝縮液9が
干渉することがないので、液戻りの効率が良く沸騰部2
内で冷媒1の枯渇が防げ、図2に示すように従来の沸騰
冷却装置に比べ、より高い熱流束を放熱できる。
Further, since the bubbles 8 and the condensate 9 do not interfere with each other in the boiling section 2, the efficiency of liquid return is high and the boiling section 2
In this case, the depletion of the refrigerant 1 can be prevented, and a higher heat flux can be radiated as compared with the conventional boiling cooling device as shown in FIG.

【0028】図1乃至図3に示した実施の形態において
は、沸騰熱伝達が向上し、冷却効率が向上するので、沸
騰伝熱面と低沸点冷媒の温度差が減少し、その分凝縮部
外壁面と冷却風の温度差を増大させることができ、フィ
ンを小型化することができ沸騰冷却装置が小型化でき
る。
In the embodiment shown in FIGS. 1 to 3, the boiling heat transfer is improved and the cooling efficiency is improved, so that the temperature difference between the boiling heat transfer surface and the low boiling point refrigerant is reduced, and the condensing section is accordingly reduced. The temperature difference between the outer wall surface and the cooling air can be increased, the fins can be downsized, and the boiling cooling device can be downsized.

【0029】更に、気泡と凝縮液の干渉を防ぎ、液戻り
をスムーズにしドライアウト熱流束を増加させ、発熱損
失増大に対応できる。 (第2の実施の形態)次に、本発明の第2の実施の形態
を図5乃至図8を参照して説明する。図5は本発明の第
2の実施の形態を示す正面図、図6は図5のA−A断面
図、図7は図5ののB−B断面図である。図8は、図5
のC−C断面図である。
Further, it is possible to prevent interference between the bubbles and the condensed liquid, smoothly return the liquid, increase the dry-out heat flux, and cope with an increase in heat loss. (Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIGS. 5 is a front view showing a second embodiment of the present invention, FIG. 6 is a sectional view taken along line AA of FIG. 5, and FIG. 7 is a sectional view taken along line BB of FIG. FIG. 8 shows FIG.
It is CC sectional drawing of.

【0030】図5乃至図8において、沸騰冷却装置は、
内部が中空で低沸点冷媒1が封入された沸騰部2と、沸
騰部2内の中空流路とヘッダータンク3を介して連通し
他端が閉塞され、低沸点冷媒1の蒸気4で満たされる凝
縮部5からなる密閉容器である。凝縮部5と凝縮部5の
間には、フィン6が取り付けられている。また、電力用
半導体素子7は沸騰部2の外壁面である受熱部2Aに取
り付けられる。
In FIGS. 5 to 8, the boiling cooling device comprises:
A boiling portion 2 having a hollow inside and containing a low-boiling refrigerant 1 is communicated with a hollow flow passage in the boiling portion 2 via a header tank 3 and the other end is closed and filled with steam 4 of the low-boiling refrigerant 1. It is a closed container composed of the condenser 5. Fins 6 are attached between the condensers 5. In addition, the power semiconductor element 7 is attached to a heat receiving section 2 </ b> A which is an outer wall surface of the boiling section 2.

【0031】沸騰部2内には、冷媒1から発生した気泡
8を凝縮部5に導く第1の流路10と、凝縮部5で液化
した凝縮液9を沸騰部2に戻す第2の流路11と、第1
及ぴ第2の流路が下部で互いに連通する第1の空間12
を、電力用半導体素子7が取り付けられる外壁面と平行
に設置した冷媒流路構成部材13により設け、さらにヘ
ッダータンク3内に、冷媒1から発生した気泡8を凝縮
部5に導くための第3の流路14と、凝縮部5で液化し
た凝縮液9を沸騰部5に戻す第4の流路15を形成する
冷媒流路構成部材13を設け、第1の流路10と第3の
流路14、第2の流路11と第4の流路15を連通させ
る。
In the boiling section 2, a first flow path 10 for guiding bubbles 8 generated from the refrigerant 1 to the condensing section 5 and a second flow for returning the condensed liquid 9 liquefied in the condensing section 5 to the boiling section 2 Road 11 and the first
And a first space 12 in which the second flow path communicates with each other at the bottom.
Is provided by a refrigerant flow path constituent member 13 installed in parallel with the outer wall surface on which the power semiconductor element 7 is mounted, and further, a third air passage 8 for guiding bubbles 8 generated from the refrigerant 1 to the condenser section 5 in the header tank 3. And a refrigerant flow path constituent member 13 forming a fourth flow path 15 for returning the condensed liquid 9 liquefied in the condensing section 5 to the boiling section 5, and the first flow path 10 and the third flow path The path 14, the second flow path 11 and the fourth flow path 15 are communicated.

【0032】更に、凝縮部5内には、冷媒1が気化して
発生した蒸気4が液化する第2の空間16と、冷媒が気
化して発生した蒸気4を第2の空間16に導く第5の流
路17と、第2の空間16で液化した冷媒1を沸騰部2
に戻す第6の流路18を形成する冷媒流路構成部材13
を設け、第3の流路14と第5の流路17、第4の流路
15と第6の流路18を連通させる。
Further, in the condensing section 5, a second space 16 in which the vapor 4 generated by vaporizing the refrigerant 1 is liquefied, and a second space 16 in which the vapor 4 generated by vaporizing the refrigerant is introduced into the second space 16 5 and the refrigerant 1 liquefied in the second space 16
Refrigerant flow path forming member 13 forming the sixth flow path 18 returning to
And the third flow path 14 and the fifth flow path 17 and the fourth flow path 15 and the sixth flow path 18 are communicated.

【0033】冷媒流路構成用の部材13は金属性の部材
であり、上記沸騰冷却装置は以下の2通りの方法で製作
される。1つの方法は、沸騰部2、ヘッダータンク3、
凝縮部5それぞれに冷媒流路構成用の部材13をろう付
けした後、沸騰部2とヘッダータンク3をロウ付けし、
さらにヘッダータンク3に凝縮部5をロウ付けするとい
う方法である。
The member 13 for forming the refrigerant channel is a metallic member, and the above-mentioned boiling cooling device is manufactured by the following two methods. One method is boiling section 2, header tank 3,
After brazing a member 13 for forming a refrigerant flow path to each of the condensing sections 5, the boiling section 2 and the header tank 3 are brazed,
Further, a method of brazing the condensing section 5 to the header tank 3 is employed.

【0034】また、もう1つの方法は、冷媒流路10及
び11を有する沸騰部2は押出し加工により成型し、ヘ
ッダータンク3、凝縮部5に前記冷媒流路構成用の部材
13をろう付けした後、沸騰部2とヘッダータンク3を
ロウ付けし、さらにヘッダータンク3に凝縮部5をロウ
付けするという方法である。
In another method, the boiling part 2 having the refrigerant flow paths 10 and 11 is formed by extrusion, and the member 13 for forming the refrigerant flow path is brazed to the header tank 3 and the condensing part 5. Thereafter, the boiling part 2 and the header tank 3 are brazed, and the condensing part 5 is further brazed to the header tank 3.

【0035】図5乃至図8に示したように構成された第
2の実施の形態においては、電力用半導体素子7の発熱
損失は、受熱部2Aを経て沸騰部2内の沸騰伝熱面2B
まで熱伝導により伝わる。
In the second embodiment configured as shown in FIGS. 5 to 8, the heat loss of the power semiconductor element 7 is reduced by the heat transfer surface 2B in the boiling portion 2 via the heat receiving portion 2A.
It is transmitted by heat conduction up to.

【0036】そして、沸騰伝熱面2Bとこれに接する低
沸点冷媒1の温度が、蒸気相を形成するのに十分な条件
のもとで、沸騰伝熱面2Bの発泡点より気泡核が発生
し、気泡8に成長し、沸騰伝熱面2Bより離脱し、沸騰
伝熱面2Bから低沸点冷媒1に発熱損失が伝わる。
Then, under the condition that the temperature of the boiling heat transfer surface 2B and the low boiling point refrigerant 1 in contact therewith are sufficient to form a vapor phase, bubble nuclei are generated from the foaming point of the boiling heat transfer surface 2B. Then, it grows into bubbles 8, separates from the boiling heat transfer surface 2 </ b> B, and the heat loss is transmitted from the boiling heat transfer surface 2 </ b> B to the low boiling point refrigerant 1.

【0037】離脱した気泡8は、第1の流路10を通り
浮力により液面に上昇し、さらに第3の流路14を通
り、第5の流路17を通り、発熱損失は第2の空間16
に運ばれる。蒸気4により第2の空間16に運ばれた発
熱損失は、フィン6間を通る冷却風により放熱される。
一方、蒸気4は冷却され凝縮して凝縮液9となり、第6
の流路18を通り、第4の流路15を通り、第2の流路
11を通り、さらに第1の空間12を通り第1の流路1
0に戻るサイクルを繰り返す。以上のようにして、電力
用半導体素子7は冷却される。
The separated bubbles 8 rise to the liquid level by buoyancy through the first flow path 10, further flow through the third flow path 14, flow through the fifth flow path 17, and generate heat loss in the second flow path 2. Space 16
Transported to The heat loss carried to the second space 16 by the steam 4 is radiated by the cooling air passing between the fins 6.
On the other hand, the steam 4 is cooled and condensed to form a condensed liquid 9,
Through the first flow path 18, through the fourth flow path 15, through the second flow path 11, further through the first space 12.
The cycle of returning to 0 is repeated. As described above, the power semiconductor element 7 is cooled.

【0038】このとき、第1の実施の形態と同様に、沸
騰部2内で気泡8と凝縮液9が干渉することがないの
で、沸騰熱伝達率が向上し、低沸点冷媒1と沸騰伝熱面
2Bとの温度差である伝熱面過熱度が小さくなる。
At this time, as in the first embodiment, since the bubbles 8 and the condensate 9 do not interfere with each other in the boiling portion 2, the boiling heat transfer coefficient is improved, and the low-boiling refrigerant 1 and the boiling heat The heat transfer surface superheat degree, which is the temperature difference with the heat surface 2B, is reduced.

【0039】また、沸騰部2内で気泡8と凝縮液9が干
渉することがなく、さらに凝縮部5内での蒸気4と凝縮
液9の干渉が無くなり液戻りがスムーズになるため、沸
騰部2内での冷媒1の枯渇を防ぐことができる。
Further, the bubbles 8 and the condensate 9 do not interfere with each other in the boiling part 2, and the interference between the vapor 4 and the condensate 9 in the condensing part 5 is eliminated and the liquid returns smoothly. 2 can prevent the refrigerant 1 from being depleted.

【0040】故に、第1の実施の形態に比べ、ドライア
ウト熱流束をさらに増加させることができ、発熱損失増
大に対応できる。 (第3の実施の形態)次に、本発明の第3の実施の形態
を、図9乃至図12を参照して説明する。
Therefore, as compared with the first embodiment, the dry-out heat flux can be further increased, and the heat loss can be increased. (Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIGS.

【0041】図9は本発明の第3の実施の形態を示す正
面図、図10は図9のA−A断面図、図11は図9のの
B−B断面図である。図12は、図10のC−C断面図
である。
FIG. 9 is a front view showing a third embodiment of the present invention, FIG. 10 is a sectional view taken along line AA of FIG. 9, and FIG. 11 is a sectional view taken along line BB of FIG. FIG. 12 is a sectional view taken along line CC of FIG.

【0042】図9乃至図12において、沸騰冷却装置
は、内部が中空で低沸点冷媒1が封入された沸騰部2
と、沸騰部2内の中空流路とヘッダータンク3を介して
連通し他端が閉塞され、低沸点冷媒1の蒸気4で満たさ
れる凝縮部5からなる密閉容器である。凝縮部5と凝縮
部5の間には、フィン6が取り付けられている。また、
電力用半導体素子7は沸騰部2の外壁面である受熱部2
Aに取り付けられる。
In FIGS. 9 to 12, the boiling cooling device is a boiling part 2 having a hollow interior and a low boiling point refrigerant 1 sealed therein.
And a condensing part 5 which is in communication with the hollow flow path in the boiling part 2 via the header tank 3 and whose other end is closed, and which is filled with the vapor 4 of the low boiling point refrigerant 1. Fins 6 are attached between the condensers 5. Also,
The power semiconductor element 7 includes a heat receiving portion 2 which is an outer wall surface of the boiling portion 2.
A is attached.

【0043】沸騰部2内の構造は、第2の実施の形態と
同様である。凝縮部5内の構造は、第2の空間16で液
化した凝縮液9を沸騰部2に戻す複数の第6の流路18
が、複数の冷媒流路構成用の部材13により設けられて
いる点を除けば、第2の実施の形態と同様である。沸騰
部2及びヘッダータンク3内の冷媒流路構成部材13は
金属部材であるが、特に凝縮部5内の冷媒流路構成部材
13は高熱伝導性の金属部材とする。
The structure inside the boiling part 2 is the same as that of the second embodiment. The structure inside the condensing section 5 includes a plurality of sixth flow paths 18 for returning the condensed liquid 9 liquefied in the second space 16 to the boiling section 2.
However, it is the same as the second embodiment except that it is provided by a plurality of members 13 for forming the refrigerant flow path. The refrigerant flow path constituent member 13 in the boiling part 2 and the header tank 3 is a metal member. In particular, the refrigerant flow path constituent member 13 in the condenser part 5 is a metal member having high thermal conductivity.

【0044】このとき、第1の実施の形態と同様に沸騰
部2内で気泡8と凝縮液9が干渉することがないので、
沸騰熱伝達率が向上し、低沸点冷媒1と沸騰伝熱面2B
との温度差である伝熱面過熱度が小さくなる。更に、凝
縮部5内に、複数の第6の流路18を構成する高熱伝導
性の金属部材13が複数設けられているため、蒸気4が
凝縮する放熱面積が大きく蒸気4と凝縮部5の内壁面の
温度差を、第1の実施の形態に比べ小さくすることがで
きる。
At this time, the bubbles 8 and the condensate 9 do not interfere in the boiling portion 2 as in the first embodiment.
Boiling heat transfer coefficient is improved, low boiling point refrigerant 1 and boiling heat transfer surface 2B
And the degree of superheat of the heat transfer surface, which is the temperature difference from Further, since a plurality of high thermal conductive metal members 13 constituting the plurality of sixth flow paths 18 are provided in the condenser 5, the heat radiation area in which the vapor 4 condenses is large, and the vapor 4 and the condenser 5 The temperature difference on the inner wall surface can be made smaller than in the first embodiment.

【0045】沸騰伝熱面2Bと低沸点冷媒1の温度差が
減少し、更に蒸気4と凝縮部5の内壁面の温度差が減少
し、その分凝縮部5の外壁面と冷却風の温度差を増大さ
せることができるので、第1の実施の形態よりもフィン
を小型化することができ沸騰冷却装置が小型化できると
いう極めて有用な効果を奏する。
The temperature difference between the boiling heat transfer surface 2B and the low-boiling-point refrigerant 1 is reduced, and the temperature difference between the steam 4 and the inner wall surface of the condenser 5 is further reduced. Since the difference can be increased, there is an extremely useful effect that the fins can be downsized and the boiling cooling device can be downsized compared to the first embodiment.

【0046】また、沸騰部2内で気泡8と凝縮液9が干
渉することがなく、加えて凝縮部5内での蒸気4と凝縮
液9の干渉が無くなり液戻りがスムーズになるため、沸
騰部2内での冷媒1の枯渇を防ぐことができる。故に、
第1の実施の形態に比べ、ドライアウト熱流束をさらに
増加させることができ、発熱損失増大に対応できる。
In addition, the bubbles 8 and the condensate 9 do not interfere with each other in the boiling part 2, and the interference between the vapor 4 and the condensate 9 in the condensing part 5 is eliminated, so that the liquid returns smoothly. The depletion of the refrigerant 1 in the section 2 can be prevented. Therefore,
Compared to the first embodiment, the dry-out heat flux can be further increased, and the heat loss can be increased.

【0047】(第4の実施の形態)次に、本発明の第4
の実施の形態を、図13乃至図18を参照して説明す
る。図13は本発明の第4の実施の形態を示す正面図、
図14は図13のA−A断面図、図15は図13のB−
B断面図である。図16は、第4の実施の形態に適用さ
れる微細フィンの斜視図である。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described.
The embodiment will be described with reference to FIGS. FIG. 13 is a front view showing a fourth embodiment of the present invention,
14 is a sectional view taken along line AA of FIG. 13, and FIG.
It is B sectional drawing. FIG. 16 is a perspective view of a fine fin applied to the fourth embodiment.

【0048】図16は第4の実施の形態におけるフィン
ピッチー伝熱面過熱度特性図であり、横軸はフィンピッ
チ、縦軸は低沸点冷媒1と沸騰伝熱面2Bとの温度差で
ある伝熱面過熱度を表す。尚、第4の実施の形態におけ
るフィンのフィン幅は0.06〜0.6mm,フィン高
さは0.1〜1.0mmである。
FIG. 16 is a fin pitch-heat transfer surface superheat degree characteristic diagram in the fourth embodiment, where the horizontal axis is the fin pitch and the vertical axis is the temperature difference between the low boiling point refrigerant 1 and the boiling heat transfer surface 2B. Indicates the degree of superheat on the heat transfer surface. In the fourth embodiment, the fin has a fin width of 0.06 to 0.6 mm and a fin height of 0.1 to 1.0 mm.

【0049】図17は第4の実施の形態における熱流束
一素子間最大温度差特性図であり、横軸は熱流束、縦軸
は電力用半導体素子7間最大温度差である。図13乃至
図16において、沸騰冷却装置は、内部が中空で低沸点
冷媒1が封入された沸騰部2と、沸騰部2内の中空流路
とヘッダータンク3を介して連通し他端が閉塞され、低
沸点冷媒1の蒸気4で満たされる凝縮部5からなる密閉
容器である。凝縮部5と凝縮部5の間には、フィン6が
取り付けられている。また、電力用半導体素子7は沸騰
部2の外壁面である受熱部2Aに取り付けられる。
FIG. 17 is a graph showing the heat flux and the maximum temperature difference between the elements in the fourth embodiment. The horizontal axis shows the heat flux and the vertical axis shows the maximum temperature difference between the power semiconductor elements 7. In FIGS. 13 to 16, the boiling cooling device communicates with a boiling portion 2 having a hollow inside and a low boiling point refrigerant 1 sealed therein through a hollow flow passage in the boiling portion 2 via a header tank 3, and the other end is closed. It is a closed container comprising a condenser 5 filled with the vapor 4 of the low-boiling refrigerant 1. Fins 6 are attached between the condensers 5. In addition, the power semiconductor element 7 is attached to a heat receiving section 2 </ b> A which is an outer wall surface of the boiling section 2.

【0050】沸騰部2内の第1の冷媒流路内の沸騰部伝
熱面2Bには、ピッチが0.12mm〜1.2mm,幅
が0.06〜0.6mm,高さが0.1mm〜1.0m
mの微細なフィン19が、沸騰伝熱面の重力方向及び重
力方向と直交する方向に設けられる。その他の沸騰部2
及びヘッダータンク3内の構造は、第1の実施の形態と
同様である。
The pitch of the heat transfer surface 2B in the first refrigerant flow path in the boiling portion 2 is 0.12 mm to 1.2 mm, the width is 0.06 to 0.6 mm, and the height is 0.1 mm. 1mm to 1.0m
m fine fins 19 are provided in the direction of gravity of the boiling heat transfer surface and in a direction perpendicular to the direction of gravity. Other boiling part 2
The structure inside the header tank 3 is the same as that of the first embodiment.

【0051】このとき、第1の実施の形態と同様に沸騰
部2内で気泡8と凝縮液9が干渉することがないので沸
騰熱伝達率が向上する。更に、図16のフィンピッチー
伝熱面過熱度特性図に示されているように、フィン幅
0.06〜0.6mm,フィン高さ0.1〜1.0mm
のもとでは、フィンピッチが0.12〜1.2mmのと
きに、沸騰伝熱面2Bに設けられた微細なフィン19に
より、沸騰伝熱面2Bでの発泡点密度が高められ、気泡
の発生を助長し安定化させることができ、非常に沸騰熱
伝達率を向上させることができる。故に、図4に示すよ
うに、低沸点冷媒1と沸騰伝熱面2Bとの温度蓋である
伝熱面過熱度が第1の実施の形態に比べ小さくなる。そ
の分、凝縮部5の外壁面と冷却風の温度差を増大させる
ことができるので、第1の実施の形態よりもフィンを小
型化することができ沸騰冷却装置が小型化できる。
At this time, as in the first embodiment, since the bubbles 8 and the condensate 9 do not interfere in the boiling section 2, the boiling heat transfer coefficient is improved. Further, as shown in the fin pitch-heat transfer surface superheat degree characteristic diagram of FIG. 16, the fin width is 0.06 to 0.6 mm and the fin height is 0.1 to 1.0 mm.
In the case where the fin pitch is 0.12 to 1.2 mm, the fine fins 19 provided on the boiling heat transfer surface 2B increase the foaming point density on the boiling heat transfer surface 2B. Generation can be promoted and stabilized, and the boiling heat transfer coefficient can be greatly improved. Therefore, as shown in FIG. 4, the superheat degree of the heat transfer surface, which is the temperature cover between the low-boiling-point refrigerant 1 and the boiling heat transfer surface 2B, is smaller than in the first embodiment. Accordingly, the temperature difference between the outer wall surface of the condensing section 5 and the cooling air can be increased, so that the fins can be made smaller than in the first embodiment, and the boiling cooling device can be made smaller.

【0052】さらに、沸騰伝熱面2Bに設けられた微細
なフィン19により、図18に示すように、従来の沸騰
冷却装置に比べ、受熱部2Aに取り付けられた電力用半
導体素子7A,7B,7C間の温度差を非常に小さくす
ることができ、電力用半導体素子7A,7B,7C間の
特性のアンバランスを防ぐことができる。
Further, as shown in FIG. 18, power semiconductor elements 7A, 7B, 7A, 7B, 7A, 7B, 7A, 7B, 7A, 7B, 7A, 7B, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A, 7A A temperature difference between the power semiconductor elements 7A, 7B, and 7C can be extremely small, and an imbalance in characteristics between the power semiconductor elements 7A, 7B, and 7C can be prevented.

【0053】さらに、沸騰部2内で気泡8と凝縮液9が
干渉することがないので、第1の実施の形態と同様に冷
却性能が向上する。 (第5の実施の形態)次に、本発明の第5の実施の形態
を、図19を参照して説明する。
Further, since the bubbles 8 and the condensate 9 do not interfere with each other in the boiling portion 2, the cooling performance is improved as in the first embodiment. (Fifth Embodiment) Next, a fifth embodiment of the present invention will be described with reference to FIG.

【0054】図19は、本発明の第5の実施の形態に用
いられる微細フィンの斜視図である。沸騰部2内の第1
の冷媒流路内の沸騰部伝熱面2Bには、ピッチが0.1
2mm〜1.2mm,幅が0.06〜0.6mm,高さ
が0.1mm〜1.0mmの微細なフィン19が、沸騰
伝熱面の重力方向に設けられる。その他の構造は、第4
の実施の形態と同様である。
FIG. 19 is a perspective view of a fine fin used in the fifth embodiment of the present invention. The first in the boiling section 2
The pitch is set to 0.1 on the heat transfer surface 2B of the boiling portion in the refrigerant flow path.
Fine fins 19 having a size of 2 mm to 1.2 mm, a width of 0.06 to 0.6 mm, and a height of 0.1 mm to 1.0 mm are provided in the gravity direction of the boiling heat transfer surface. Other structures are
This is the same as the embodiment.

【0055】このとき、実施の形態とほぼ同程度の作
用、効果が得られる。 (第6の実施の形態)次に、本発明の第6の実施の形態
を、図20を参照して説明する。
At this time, substantially the same operation and effect as those of the embodiment can be obtained. (Sixth Embodiment) Next, a sixth embodiment of the present invention will be described with reference to FIG.

【0056】図20は、本発明の第6の実施の形態に適
用される微細フィンの斜視図である。沸騰部2内の第1
の冷媒流路内の沸騰部伝熱面2Bには、ピッチが0.1
2mm〜1.2mm,幅が0.06〜0.6mm,高さ
が0.1mm〜1.0mmの微細なフィン19が、沸騰
伝熱面の重力方向と直交する方向に設けられる。その他
の構造は、第4の実施の形態と同様である。従って、第
4の実施とほぼ同程度の作用、効果が得られる。
FIG. 20 is a perspective view of a fine fin applied to the sixth embodiment of the present invention. The first in the boiling section 2
The pitch is set to 0.1 on the heat transfer surface 2B of the boiling portion in the refrigerant flow path.
Fine fins 19 having a size of 2 mm to 1.2 mm, a width of 0.06 to 0.6 mm, and a height of 0.1 mm to 1.0 mm are provided in a direction orthogonal to the direction of gravity of the boiling heat transfer surface. Other structures are the same as those of the fourth embodiment. Therefore, substantially the same operation and effect as those of the fourth embodiment can be obtained.

【0057】[0057]

【発明の効果】以上説明したように、本発明によれば、
沸騰伝熱面と低沸点冷媒の間の沸騰熱伝達を向上させる
ことが可能となる。
As described above, according to the present invention,
Boiling heat transfer between the boiling heat transfer surface and the low-boiling refrigerant can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態を示す正面図。FIG. 1 is a front view showing a first embodiment of the present invention.

【図2】 図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】 図1のB一B断面図。FIG. 3 is a sectional view taken along the line B-B of FIG. 1;

【図4】 本発明の第1の実施の形態における沸騰曲
線。
FIG. 4 is a boiling curve according to the first embodiment of the present invention.

【図5】 本発明の第2の実施の形態を示す正面図。FIG. 5 is a front view showing a second embodiment of the present invention.

【図6】 図5のA−A断面図。FIG. 6 is a sectional view taken along the line AA of FIG. 5;

【図7】 図5のB−B断面図。FIG. 7 is a sectional view taken along line BB of FIG. 5;

【図8】 図6のC−C断面図。FIG. 8 is a sectional view taken along line CC of FIG. 6;

【図9】 本発明の第3の実施の形態を示す正面図。FIG. 9 is a front view showing a third embodiment of the present invention.

【図10】 図9のA一A断面図。FIG. 10 is a sectional view taken along the line AA in FIG. 9.

【図11】 図9のB−B断面図。11 is a sectional view taken along the line BB of FIG. 9;

【図12】 図10のC−C断面図。12 is a sectional view taken along the line CC in FIG.

【図13】 本発明の第4の実施の形態を示す正面図。FIG. 13 is a front view showing a fourth embodiment of the present invention.

【図14】 図13のA−A断面図。14 is a sectional view taken along line AA of FIG. 13;

【図15】 図13のB−B断面図。FIG. 15 is a sectional view taken along line BB of FIG. 13;

【図16】 本発明の第4の実施の形態における微細なフ
ィンの斜視図。
FIG. 16 is a perspective view of a fine fin according to a fourth embodiment of the present invention.

【図17】 本発明の第4の実施の形態におけるフィンピ
ッチー伝熱面過熱度特性図。
FIG. 17 is a fin pitch-heat transfer surface superheat degree characteristic diagram according to the fourth embodiment of the present invention.

【図18】 本発明の第4の実施の形態における熱流束一
素子間最大温度差特性図。
FIG. 18 is a graph showing a maximum temperature difference characteristic between heat flux and one element according to the fourth embodiment of the present invention.

【図19】 本発明の第5の実施の形態における微細なフ
ィンの斜視図。
FIG. 19 is a perspective view of a fine fin according to a fifth embodiment of the present invention.

【図20】 本発明の第6の実施の形態における微細なフ
ィンの斜視図。
FIG. 20 is a perspective view of fine fins according to a sixth embodiment of the present invention.

【図21】 従来の電力用半導体素子用沸騰冷却装置を示
す正面図。
FIG. 21 is a front view showing a conventional boiling cooling device for a power semiconductor element.

【図22】 図21のA−A断面図。22 is a sectional view taken along the line AA in FIG. 21.

【符号の説明】[Explanation of symbols]

1・・・低沸点冷媒 2・・・沸騰部 2A・・・受
熱部 2B・・・沸騰伝熱面 3・・・ヘッダータンク 4
・・・蒸気 5・・・凝縮部 6・・・フィン 7・・・電力用
半導体素子 7A・・・電力用半導体素子 7B・・・電力用半導体素
子 7C・・・電力用半導体素子 8・・・気泡 9・・
・凝縮液 10・・・第1の流路 11・・・第2の流路 12・・
・第1の空間 13・・・冷媒流路構成用部材 14・・・第3の流路 15・・・第4の流路 16・・・第2の空間 17・・
・第5の流路 18・・・第6の流路 19・・・微細なフィン
DESCRIPTION OF SYMBOLS 1 ... Low boiling point refrigerant 2 ... Boiling part 2A ... Heat receiving part 2B ... Boiling heat transfer surface 3 ... Header tank 4
... Steam 5 ... Condensing part 6 ... Fin 7 ... Power semiconductor element 7A ... Power semiconductor element 7B ... Power semiconductor element 7C ... Power semiconductor element 8 ...・ Bubble 9 ・ ・
・ Condensate 10 ・ ・ ・ First channel 11 ・ ・ ・ Second channel 12 ・ ・
· First space 13 ··· Refrigerant flow path forming member 14 ··· Third flow path 15 ··· Fourth flow path 16 ··· Second space 17 ···
・ Fifth flow path 18 ・ ・ ・ Sixth flow path 19 ・ ・ ・ Fine fins

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−292847(JP,A) 特開 昭60−119799(JP,A) 特開 平10−116947(JP,A) 特開 平6−252300(JP,A) 実開 昭62−162847(JP,U) 実開 昭62−197862(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 23/34 - 23/473 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-292847 (JP, A) JP-A-60-119799 (JP, A) JP-A-10-116947 (JP, A) JP-A-6-119947 252300 (JP, A) Japanese Utility Model Showa 62-162847 (JP, U) Japanese Utility Model Showa 62-197862 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 23/34-23 / 473

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外壁に被冷却体が取り付けられ、内部
は中空で冷媒が封入されている沸騰部と、この沸騰部内
の中空流路とヘッダータンクを介して連通し他端が閉塞
されている凝縮部からなり、前記被冷却体の発熱損失を
前記沸騰部での冷媒の沸騰気化及び前記凝縮部での冷媒
蒸気の凝縮液化にて放熱する沸騰冷却装置において、前
記沸騰部の伝熱面に、ピッチが0.12mm〜1.2m
m,幅が0.06〜0.6mm,高さが0.1mm〜
1.0mmの微細なフィンを、沸騰伝熱面の重力方向及
び重力方向と直交する方向に設けることを特徴とする沸
騰冷却装置。
1. A cooling target is attached to an outer wall, and
Is the boiling part where the refrigerant is enclosed in the hollow, and the inside of this boiling part
Communicates with the hollow flow path through the header tank and the other end is closed
And the heat loss of the object to be cooled
Boiling of refrigerant in the boiling section and refrigerant in the condensing section
In a boiling cooling device that releases heat by condensing and liquefying steam,
The pitch is 0.12mm ~ 1.2m on the heat transfer surface of the boiling part
m, width is 0.06 ~ 0.6mm, height is 0.1mm ~
Fine fins of 1.0mm can be placed in the direction of gravity of the boiling heat transfer surface.
Characterized by being provided in a direction perpendicular to the direction of gravity and gravity.
Soaring cooling device.
【請求項2】 外壁に被冷却体が取り付けられ、内部
は中空で冷媒が封入されている沸騰部と、この沸騰部内
の中空流路とヘッダータンクを介して連通し他端が閉塞
されている凝縮部からなり、前記被冷却体の発熱損失を
前記沸騰部での冷媒の沸騰気化及び前記凝縮部での冷媒
蒸気の凝縮液化にて放熱する沸騰冷却装置において、前
記沸騰部の伝熱面に、ピッチが0.12mm〜1.2m
m,幅が0.06〜0.6mm,高さが0.1mm〜
1.0mmの微細なフィンを、沸騰伝熱面の重力方向に
設けることを特徴とする沸騰冷却装置。
2. A cooling target is attached to an outer wall, and
Is the boiling part where the refrigerant is enclosed in the hollow, and the inside of this boiling part
Communicates with the hollow flow path through the header tank and the other end is closed
And the heat loss of the object to be cooled
Boiling of refrigerant in the boiling section and refrigerant in the condensing section
In a boiling cooling device that releases heat by condensing and liquefying steam,
The pitch is 0.12mm ~ 1.2m on the heat transfer surface of the boiling part
m, width is 0.06 ~ 0.6mm, height is 0.1mm ~
1.0mm fine fins are placed in the direction of gravity on the boiling heat transfer surface.
A boiling cooling device, which is provided.
【請求項3】 外壁に被冷却体が取り付けられ、内部
は中空で冷媒が封入されている沸騰部と、この沸騰部内
の中空流路とヘッダータンクを介して連通し他端が閉塞
されている凝縮部からなり、前記被冷却体の発熱損失を
前記沸騰部での冷媒の沸騰気化及び前記凝縮部での冷媒
蒸気の凝縮液化にて放熱する沸騰冷却装置において、前
記沸騰部の伝熱面に、ピッチが0.12mm〜1.2m
m,幅が0.06〜0.6mm,高さが0.1mm〜
1.0mmの微細なフィンを、沸騰伝熱面の重力方向と
直交する方向に設けることを特徴とする沸騰冷却装置。
3. A cooling target is attached to an outer wall, and
Is the boiling part where the refrigerant is enclosed in the hollow, and the inside of this boiling part
Communicates with the hollow flow path through the header tank and the other end is closed
And the heat loss of the object to be cooled
Boiling of refrigerant in the boiling section and refrigerant in the condensing section
In a boiling cooling device that releases heat by condensing and liquefying steam,
The pitch is 0.12mm ~ 1.2m on the heat transfer surface of the boiling part
m, width is 0.06 ~ 0.6mm, height is 0.1mm ~
Fine fins of 1.0mm are attached to the gravitational direction of the boiling heat transfer surface.
A boiling cooling device, which is provided in a direction orthogonal to the boiling direction.
JP32625196A 1996-12-06 1996-12-06 Boiling cooling device and manufacturing method thereof Expired - Fee Related JP3210261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32625196A JP3210261B2 (en) 1996-12-06 1996-12-06 Boiling cooling device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32625196A JP3210261B2 (en) 1996-12-06 1996-12-06 Boiling cooling device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10173115A JPH10173115A (en) 1998-06-26
JP3210261B2 true JP3210261B2 (en) 2001-09-17

Family

ID=18185691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32625196A Expired - Fee Related JP3210261B2 (en) 1996-12-06 1996-12-06 Boiling cooling device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3210261B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3964580B2 (en) 1999-09-03 2007-08-22 富士通株式会社 Cooling unit
JP4481512B2 (en) * 2001-02-01 2010-06-16 住友精密工業株式会社 Thermosiphon-type cooler and manufacturing method thereof
JP4579269B2 (en) * 2007-05-25 2010-11-10 トヨタ自動車株式会社 Cooling system
JP2010010204A (en) * 2008-06-24 2010-01-14 Toyota Industries Corp Ebullient cooling device
JP5092931B2 (en) * 2008-06-24 2012-12-05 株式会社豊田自動織機 Boiling cooler
JP2010196912A (en) * 2009-02-23 2010-09-09 Toyota Industries Corp Ebullient cooling device
JP2010236792A (en) * 2009-03-31 2010-10-21 Toyota Industries Corp Ebullient cooling device
JP2011108685A (en) * 2009-11-12 2011-06-02 Toyota Industries Corp Natural circulation type boiling cooler
JP2011174647A (en) * 2010-02-24 2011-09-08 Showa Denko Kk Heat pipe type radiator
JP2011196632A (en) * 2010-03-19 2011-10-06 Toyota Industries Corp Ebullient cooling device
JP5447080B2 (en) * 2010-03-26 2014-03-19 富士通株式会社 Semiconductor package and semiconductor device
JP5874935B2 (en) * 2011-05-20 2016-03-02 日本電気株式会社 Flat plate cooling device and method of using the same
JP6285356B2 (en) * 2012-07-06 2018-02-28 治彦 大田 Boiling cooler
CN113008058B (en) * 2021-03-08 2022-05-24 华北电力大学 Photo-thermal seed bubble micro-evaporator

Also Published As

Publication number Publication date
JPH10173115A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
JP3210261B2 (en) Boiling cooling device and manufacturing method thereof
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
US6360814B1 (en) Cooling device boiling and condensing refrigerant
EP1383170B1 (en) Thermosiphon for electronics cooling with nonuniform airflow
JP3451737B2 (en) Boiling cooling device
JPH0735955B2 (en) Integrated heat pipe / heat exchanger / tightening assembly and method for obtaining same
US20030136550A1 (en) Heat sink adapted for dissipating heat from a semiconductor device
JPH04233259A (en) Removal device of heat
US7093647B2 (en) Ebullition cooling device for heat generating component
JP3549933B2 (en) Plate fin type element cooler
JP3900702B2 (en) Boiling cooler
JP2010080507A (en) Electronic apparatus
JP2003247790A (en) Boiling/cooling device
JP7444704B2 (en) Heat transfer member and cooling device having heat transfer member
JP6197651B2 (en) Cooling system
JPS6228774Y2 (en)
JP2004349652A (en) Boiling cooler
JP3384066B2 (en) Boiling cooling device
JPH08186208A (en) Boiling cooling device
JP7299441B1 (en) boiling cooler
JPS61131553A (en) Immersion liquid cooling apparatus
JP2003338593A (en) Boiling and cooling device
JPH10116947A (en) Vapor cooling equipment for semiconductor element
JP2021169883A (en) Heat transfer device and heat exchange unit
JPH05203377A (en) Flat plate type heat pipe and high density mounting module

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees