JP3209222U - 磁気センサ、集積回路及びモータ組立体 - Google Patents

磁気センサ、集積回路及びモータ組立体 Download PDF

Info

Publication number
JP3209222U
JP3209222U JP2016006004U JP2016006004U JP3209222U JP 3209222 U JP3209222 U JP 3209222U JP 2016006004 U JP2016006004 U JP 2016006004U JP 2016006004 U JP2016006004 U JP 2016006004U JP 3209222 U JP3209222 U JP 3209222U
Authority
JP
Japan
Prior art keywords
magnetic sensor
state
magnetic
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016006004U
Other languages
English (en)
Inventor
ピン スン チ
ピン スン チ
シン フェイ
シン フェイ
ウォン ケン
ウォン ケン
ヒン イェウン シン
ヒン イェウン シン
ミン グオ フイ
ミン グオ フイ
ズオ ロウ シュ
ズオ ロウ シュ
ミン チェン シャオ
ミン チェン シャオ
ジエ ツァイ グアン
ジエ ツァイ グアン
ファイ ウォン チュン
ファイ ウォン チュン
ジュアン フアン シュ
ジュアン フアン シュ
ロン ジアン ユン
ロン ジアン ユン
リ ユエ
リ ユエ
ティン リウ バオ
ティン リウ バオ
フイ ワン エン
フイ ワン エン
ウェン ヤン シウ
ウェン ヤン シウ
シェン リウ リ
シェン リウ リ
ユン ツイ ヤン
ユン ツイ ヤン
Original Assignee
ジョンソン エレクトリック ソシエテ アノニム
ジョンソン エレクトリック ソシエテ アノニム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2015/086422 external-priority patent/WO2016019921A1/zh
Priority claimed from CN201610392395.3A external-priority patent/CN106443513A/zh
Application filed by ジョンソン エレクトリック ソシエテ アノニム, ジョンソン エレクトリック ソシエテ アノニム filed Critical ジョンソン エレクトリック ソシエテ アノニム
Application granted granted Critical
Publication of JP3209222U publication Critical patent/JP3209222U/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/141Stator cores with salient poles consisting of C-shaped cores
    • H02K1/143Stator cores with salient poles consisting of C-shaped cores of the horse-shoe type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0088Arrangements or instruments for measuring magnetic variables use of bistable or switching devices, e.g. Reed-switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/22Arrangements for starting in a selected direction of rotation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/09Motor speed determination based on the current and/or voltage without using a tachogenerator or a physical encoder

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

【課題】使用の容易さ及び正確な検出のために改善する磁気センサ、集積回路、及びモータ組立体を提供する。【解決手段】半導体基板と、入力ポート1102、1104及び出力ポート1106と、半導体基板上の電気回路とを含む集積回路に関する。入力ポート1102、1104は、外部交流電源に結合される。電気回路は、出力ポート1106に結合された出力制御回路1120であって、検出された信号に応答して集積回路を制御して、所定条件が満たされている場合、負荷電流が出力ポート1106を通って流れる状態で動作させ、所定状態が満たされていない場合、別の状態で動作させるように構成される出力制御回路1120を含む。集積回路の動作周波数は、外部AC電源の周波数に正比例する。【選択図】図4

Description

本教示は、回路技術の分野に関する。特に、本教示は、磁気センサに関する。
同期モータの始動時に、固定子は、永久磁石回転子を振動させる交流磁界を発生させる。回転子の振動の振幅は、回転子が回転し始めるまで大きくなり、最終的に回転子が加速されて固定子の交流磁界と同期して回転する。従来の同期モータの始動を保証するためには、モータの始動点は低く設定されており、その結果、モータは比較的高い動作点では動作できないことになり、そのため効率が低い。別の態様において、永久磁石回転子の停止又は静止位置が一定ではないので、回転子が毎回同じ方向に回転することを保証することができない。したがって、ファン及び水ポンプなどの用途では、回転子により駆動されるインペラは直線的な半径方向ベーンを有するので、その結果、ファン及び水ポンプの動作効率は低くなる。
図1は、回転子が始動するたびに同じ所定方向に回転子を回転させることを可能にする、同期モータのための従来の駆動回路を示す。回路内で、モータの固定子巻線1は、AC電源VMの2つの端子M及びNの間でTRIACと直列に接続され、AC電源VMは、変換回路DCにより直流電圧に変換され、直流が位置センサHに供給される。モータ内の回転子の磁極位置は、位置センサHにより検出され、位置センサHの出力信号Vhは、スイッチ制御回路PCに接続され、双方向サイリスタTを制御する。
図2は、駆動回路の波形を示す。図2から、駆動回路において、双方向サイリスタTのスイッチがオン又はオフのどちらであっても、AC電源は変換回路DCに電力を供給するので、変換回路DCは常に出力して位置センサHに対して電力供給することになる(図2の信号VHを参照)。低電力用途において、AC電源が約200Vの商用電力の場合、変換回路DC内の2つの抵抗器R2及びR3によって消費される電気エネルギーは、モータによって消費される電気エネルギーより大きい。
磁気センサは、ホール効果を適用し、ここで、電流Iが物質を通って流れ、磁界Bが電流Iに対して正の角度で印加されると、電流Iの方向及び磁界Bの方向に対して垂直な方向に位相差Vが発生する。磁気センサは、電気モータの磁気極性を検出するためにしばしば実装される。
回路設計及び信号処理技術が進歩するにつれて、磁気センサ及び実装されたICを、使用の容易さ及び正確な検出のために改善することが必要とされている。
本教示の1つの態様は、ハウジングと、両方ともハウジングから延びた入力ポート及び出力ポートと、電気回路と、を備えた磁気センサを提供する。入力ポートは、外部交流(AC)電源に接続される。電気回路は、外部磁界を検出し、外部磁界の少なくとも1つの特性を示す磁気誘導信号を出力するように構成された磁界検出回路と、出力ポートに結合された出力制御回路と、を備え、出力制御回路は、所定条件が満たされている場合、磁気センサを制御して第1の状態及び第2の状態の少なくとも一方で動作させ、所定条件が満たされていない場合、磁気センサを制御して第3の状態で動作させるように構成される。第1の状態において、負荷電流は、第1の方向で出力ポートから磁気センサの外部へ流出し、第2の状態において、負荷電流は、第1の方向とは反対の第2の方向で前記磁気センサの外部から前記出力ポートを介して前記磁気センサ内へ流入する。磁気センサの動作周波数は、外部AC電源の周波数に正比例する。
本教示の別の態様は、交流(AC)電源に基づいて動作するように構成されたモータと、モータによって発生した磁界を検出し、検出された磁界に基づいて決定された動作状態で動作するように構成された磁気センサと、モータと直列に結合し、磁気センサの動作状態に基づいて前記モータを制御するように構成された双方向ACスイッチと、を含むモータ組立体を提供する。磁気センサは、入力ポート及び出力ポートと、電気回路とを含む。入力ポートは、AC電源に結合され、出力ポートは、双方向ACスイッチの制御端子に結合される。電気回路は、検出された磁界の少なくとも1つの特性を示す磁気誘導信号に応答し、磁気センサを制御して、所定条件が満たされている場合、第1の状態及び第2の状態の少なくとも一方で動作させ、所定条件が満たされていない場合、第3の状態で動作させるように構成された、出力制御回路を含む。第1の状態において、負荷電流は、第1の方向で前記出力ポートから磁気センサの外部へ流出し、第2の状態において、負荷電流は、第1の方向とは反対の第2の方向で磁気センサの外部から出力ポートを介して磁気センサ内へ流入する。磁気センサの動作周波数は、外部AC電源の周波数に正比例する。
本教示の別の態様は、半導体基板と、入力ポート及び出力ポートと、半導体基板上の電気回路とを含む集積回路を提供する。入力ポートは、外部交流電源に結合される。電気回路は、出力ポートに結合された出力制御回路を含み、出力制御回路は、検出された信号に応答して集積回路を制御して、所定条件が満たされている場合、負荷電流が出力ポートを通って流れる状態で動作させ、所定状態が満たされていない場合、別の状態で動作させるように構成される。集積回路の動作周波数は、外部AC電源の周波数に正比例する。
本明細書で説明する方法、システム、及び/又はプログラミングを、例示的な実施形態に関してさらに説明する。これらの例示的な実施形態は、図面を参照して詳細に説明される。これらの実施形態は、非限定的な例示的実施形態であり、ここで図面の幾つかの図を通じて同様の参照符号は類似の構造を表す。
本教示の実施形態による、同期モータのための従来技術の駆動回路を示す。 図1の駆動回路の波形を示す。 本教示の実施形態による磁気センサ1105の例示的な図を示す。 本教示の異なる実施形態による磁気センサ1105の例示的な図を示す。 本教示のさらに別の実施形態による磁気センサ1105の例示的な図を示す。 本教示の実施形態による出力制御回路1120の例示的な実装を示す。 本教示の別の実施形態による出力制御回路1120の例示的な実装を示す。 本教示のさらに別の実施形態による磁気センサ1105の別の例示的な図を示す。 本教示の実施形態による整流器1150の例示的な図を示す。 本教示のさらに別の実施形態による磁気センサ1105の例示的な図を示す。 本教示のさらに別の実施形態による磁気センサ1105の一部の例示的な実装回路を示す。 状態制御回路1140に接続された出力制御回路1120の別の実施形態を示す。 本教示の実施形態による、磁気センサ1105により行われる例示的な信号処理方法のフローチャートを示す。 本教示の実施形態による、本明細書で論じられる磁気センサを組み込んだモータ組立体2200の例示的な図を示す。 本教示の実施形態によるモータ2300の例示的な図を示す。 本教示の実施形態による、AC電源1610及び整流器ブリッジ1150の出力電圧の波形をそれぞれ示す。
以下の詳細な説明において、関連する教示の完全な理解を提供するために、多数の具体的な詳細を例示の目的で記述する。しかしながら、本教示はこのような詳細がなくても実施できることが当業者には明らかであるはずである。他の例において、本教示の態様を不必要に不明瞭にすることを避けるために、周知の方法、手順、システム、構成要素、及び/又は回路は、詳述することなく比較的高レベルで説明されている。
明細書及び実用新案登録請求の範囲を通じて、用語は、明示的に述べられた意味を超えた文脈で示唆又は含意される微妙な意味合いを有する場合がある。同様に、本明細書で用いられる「1つの実施形態/例」という語句は、必ずしも同じ実施形態を指すものではなく、本明細書で用いられる「別の実施形態/例」という語句は、必ずしも異なる実施形態を指すものではない。例えば、実用新案登録請求される主題は、例示的な実施形態の全体又は部分の組合せを含むことが意図される。
一般に、用語法は、少なくとも部分的に文脈における用法から理解することができる。例えば、本明細書で用いられる「及び」、「又は」又は「及び/又は」などの用語は、このような用語が用いられている文脈に少なくとも部分的に依存する場合がある種々の意味を含むことができる。典型的には、「又は」は、A、B又はCのようにリストに関連して用いられる場合、包括的な意味で用いられてA、B、及びCを意味することが意図されるのみならず、排他的な意味で用いられてA、B又はCを意味すること意図とされる。さらに、本明細書で用いられる「1つ又はそれ以上の」という用語は、少なくとも部分的に文脈に依存して、任意の特徴、構造、又は特性を単数的意味で説明するために用いることもでき、又は特徴、構造又は特性の組合せを複数的意味で説明するために用いることもできる。同様に、「a」、「an」又は「the」などの用語もまた、少なくとも部分的に文脈に依存して、単数的用法を伝える又は複数的用法を伝えるものと理解することができる。さらに、「基づいて」という用語は、同じく少なくとも部分的に文脈に依存して、必ずしも排他的な因子の集合を伝えることを意図したものではなく、その代わり、必ずしも明白には説明されていない付加的な因子の存在を許すものとして、理解することができる。
図3は、本教示の実施形態による磁気センサ1105の例示的な図を示す。磁気センサ1105は、ハウジング(図示せず)と、ハウジング内に存在する半導体基板(図示せず)と、第1の入力A1 1102と、第2の入力A2 1104と、出力ポートB 1106と、半導体基板上に存在する電子回路1100とを含む。電子回路1100は、制御信号生成回路1110と、制御信号生成回路1110に結合された出力制御回路1120とを含む。実施形態において、第1の入力A1 1102及び第2の入力A2 1104は、外部電源(例えば1610)に直接接続することができる。実施形態において、第1の入力A1 1102及び第2の入力A2 1104は、例えば外部負荷を通じて、外部電源に直列に接続することができる。
制御信号生成回路1110は、1つ又はそれ以上の信号を検出し、検出された1つ又はそれ以上の信号に基づいて制御信号を生成するように構成することができる。幾つかの例において、1つ又はそれ以上の信号は、電線又はケーブルを通じて受け取る1つ又はそれ以上の電気信号とすることができる。幾つかの他の例において、1つ又はそれ以上の信号は、無線若しくはその他の手段で磁気センサ1105が受け取る1つ若しくはそれ以上の磁気信号又はその他のタイプの信号とすることができる。
動作中、制御信号生成回路1110は、1つ又はそれ以上の検出された信号に基づいて、所定条件が満たされたか否かを判定する。所定条件が1つ又はそれ以上の検出された信号に基づく場合、制御信号生成回路1110は、第1の制御信号を生成して出力制御回路1120に送信することができ、次にそれに応じてこれが磁気センサ1105を制御して第1の状態で動作させる。第1の状態において、(負荷)電流は、磁気センサから流出して出力ポートB 1106へ流れることができる。制御信号生成回路1110はまた、第2の制御信号を生成して出力制御回路1120に送信して、磁気センサ1105を制御して第2の状態で動作させることもできる。第2の状態において、(負荷)電流は、出力ポートB 1106から磁気センサ内へ流れることができる。制御信号生成回路1110において第1の状態又は第2の状態を決定する方法をさらに詳細に説明する。
他方、所定条件が満足されていないことが1つ又はそれ以上の検出された信号に基づいて判定された場合、制御信号生成回路1110は、第3の制御信号を生成して出力制御回路1120に送信し、磁気センサ1105を制御して第3の状態で動作させることができる。第3の状態において、出力ポートB 1106を通って流れる(負荷)電流は存在しない。第3の状態の幾つかの状況において、少量の電流のみが出力ポートB 1106通って流れ、例えば、電流の強度は、(負荷)電流の5分の1未満である。
幾つかの実施形態において、出力制御回路1120は、制御信号生成回路1110に結合しており、磁気センサ1105を制御して、制御信号生成回路1110から受信する制御信号に基づいて決定された状態で動作させるように構成される。例えば、出力制御回路1120が第1の制御信号を受信した場合、出力制御回路1120は、磁気センサ1105を制御して、(負荷)電流が出力ポートB 1106へ流出する第1の状態で動作させる。出力制御回路1120が第2の制御信号を受信した場合、出力制御回路1120は、磁気センサ1105を制御して、(負荷)電流が外部から出力ポートB 1106を介して磁気センサ内へ流入する第2の状態で動作させる。出力制御回路1120が第3の制御信号を受信した場合、出力制御回路1120は、磁気センサ1105を制御して、出力ポートB 1106を通って流れる(負荷)電流が存在しない(又は(負荷)電流と比べて少量の電流のみが流れ、例えば、このような電流は(負荷)電流の4分の1未満である)第3の状態で動作させる。実施形態において、出力制御回路1120は、第1の制御信号及び第2の制御信号などを含む複数の制御信号を交互に受信することができる。したがって、出力制御回路1120は、磁気センサ1105を制御して、異なる状態間で交互に動作させることができる。詳細には、磁気センサ1105は、第1の状態と第2の状態との間で交互に動作することができる。実施形態において、磁気センサ1105が第3の状態で動作しているとき、磁気センサ1105は、第1の状態又は第2の状態のどちらで動作することも防がれているものとすることができる。
実施形態において、第1の入力A1 1102及び第2の入力A2 1104が外部AC電源1610(図8)に接続されている場合、磁気センサ1105の動作周波数は、第1の状態、第2の状態、又は第3の状態のいずれであれ、外部AC電源1610の周波数に正比例するように設定されることができる。実施形態において、第3の状態における磁気センサ1105の動作周波数は、第1の状態及び第2の状態の動作周波数の2倍であり、これは外部AC電源1610の周波数の2倍である。
図4は、本教示の異なる実施形態による磁気センサ1105の例示的な図を示す。この例において、磁気センサ1105は、第1の入力A1 1102、第2の入力A2 1104、出力ポートB 1106、及び電子回路1100を含む。電子回路1100は、磁界検出回路1130と、磁界検出回路1130に結合した状態制御回路1140と、状態制御回路1140に結合した出力制御回路1120とを含む。
磁界検出回路1130は、外部磁界を検出し、検出された外部磁界に従って磁気誘導信号を出力するように構成することができる。磁気誘導信号は、外部磁界の極性及び強度を示す又は表すことができる。
状態制御回路1140は、所定条件が満たされたか否かを判定し、対応する制御信号を出力制御回路1120に送信するように構成することができ、制御信号を受信したときの判定に基づいて、出力制御回路1120は、磁気センサ1105を制御して、磁気誘導信号に基づいて判定された対応する状態で動作させることができる。詳細には、所定条件が満たされている場合、対応する状態は、磁気誘導信号により示される外部磁界の特定の極性にそれぞれ対応する第1の状態及び第2の状態の一方とすることができる。例えば、第1の状態は、外部磁界の第1の極性が検出される状態に対応することができ、第2の状態は、外部磁界の第2の極性(これは第1の極性の逆である)が検出される状況に対応することができる。したがって、所定条件が満たされ、かつ外部磁界が第1の極性を示す場合、状態制御回路1140は、そのことを示す制御信号を出力制御回路1120に送ることができ、これに従って、出力制御回路1120は、磁気センサ1105を制御して第1の状態で動作させることができる。上述のように、第1の状態において、(負荷)電流は、磁気センサから出力ポートB 1106を介して外部へ流れる。所定条件が満たされ、かつ外部磁界が第1の極性の逆の第2の極性を示す場合、状態制御回路1140は、そのことを示す制御信号を出力制御回路1120へ送ることができ、これに基づいて、出力制御回路1120は、磁気センサ1105を制御して第2の状態で動作させることができる。上述のように、第2の状態において、(負荷)電流は、外部から出力ポートB 1106を介して磁気センサ内へ流れる。
他方、状態制御回路1140が、所定条件が満たされていないと判定した場合(又は状態制御回路1140が磁気誘導信号に応答しない又は磁界検出回路1130から磁気誘導信号を得ることができない場合)、状態制御回路1140は、そのことを示す制御信号を出力制御回路1120に送信して、磁気センサ1105を制御して第1の状態で動作させることができる。第3の状態において、出力ポートB 1106を通って流れる(負荷)電流は存在しない(又は(負荷)電流に比べて少量の電流のみが出力ポートBを通って流れ、例えば電流の強度は(負荷)電流の4分の1である)。
出力制御回路1120は、制御信号生成回路1110に結合しており、磁気センサ1105制御して、制御信号生成回路1110から受信した制御信号に基づいて決定された状態で動作させるように構成される。例えば、出力制御回路1120が、所定条件が満たされており、かつ外部磁界が第1の極性であることを示す制御信号を受信した場合、出力制御回路1120は、磁気センサ1105を制御して第1の状態で動作させ、(負荷)電流が磁気センサから出力ポートB 1106を介して流出することを可能にする。出力制御回路1120が、所定条件を満たしたこと及び外部磁界から検出された第2の極性を示す制御信号を受信した場合、出力制御回路1120は、磁気センサ1105を制御して第2の状態で動作させ、(負荷)電流が外部から出力ポートB 1106を介して磁気センサ内へ流入することを可能にする。出力制御回路1120が、所定条件が満たされていないことを示す制御信号を受信した場合、出力制御回路1120は、磁気センサ1105を制御して第3の状態で動作させ、このとき出力ポートB 1106を通って流れる(負荷)電流は存在しない場合がある(又は上記の(負荷)電流に比べて少量の電流のみが出力ポートB 1106を通って流れ、例えば電流は(負荷)電流の4分の1未満である)。実施形態において、出力制御回路1120は、複数の制御信号を経時的に交互に受信することができる。従って、出力制御回路1120は、磁気センサ1105を制御して、第1の状態と第2の状態との間を含む異なる状態の間で交互に動作させる。
実施形態において、出力制御回路1120は、ユーザ仕様に基づいて構成することができる。例えば、出力制御回路1120は、磁気センサ1105を制御して、ワーキング状態(working state)と高インピーダンス状態との間で交互に動作させるように構成することができる。ワーキング状態は、第1の状態又は第2の状態に対応することができ、高インピーダンス状態は、第3の状態に対応することができる。
図5は、本教示のさらに別の実施形態による磁気センサ1105の例示的な図を示す。この実施形態において、磁界検出回路1130の例示的な構成が提供される。電子回路1100は、図4と同様であり、磁界検出回路1130、状態制御回路1140、及び出力制御回路1120を含む。この実施形態における磁界検出回路1130は、磁気検知要素1131、信号処理要素1132、及びアナログ−デジタル変換要素1133を含む。
磁気検知要素1131は、外部磁界に関連した特定の情報を示すアナログ電気信号を検出し、信号処理要素に出力するように構成することができる。例えば、磁気検知要素1131からの信号の出力は、外部磁界の極性を示すことができる。実施形態において、磁気検知要素1131は、ホール基板(Hall Board)に基づいて実装することができる。
信号処理要素1132は、検出された信号の精度を改善するために、例えばアナログ電気信号の干渉を増幅及び低減することにより、磁気検知要素1131からのアナログ電気信号を処理して、処理されたアナログ電気信号を生成するように構成することができる。処理されたアナログ電気信号は、アナログ−デジタル変換素子1133に送られる。
アナログ−デジタル変換素子1133は、処理されたアナログ電気信号を磁気誘導信号に変換するように構成することができる。外部磁界の極性の検出のみが必要とされる場合、磁気誘導信号は、切換えデジタル信号に対応するものとすることができる。図5の状態制御回路1140及び出力制御回路1120は、図4に示すものと同様の方式で動作する。
図6は、本教示の実施形態による出力制御回路1120の例示的な実装を示す。実施形態において、出力制御回路1120は、ユーザの仕様にしたがって構成することができる。図6に示すように、出力制御回路1120は、第1のスイッチK1 1410、第2のスイッチK2 1420、及び第3のスイッチK3 1430を含む。第1のスイッチK1 1410、第3のスイッチK3 1430、及び第3のスイッチK3 1430の各々は、ダイオード又はトランジスタである。第1のスイッチは、第3のスイッチK3 1430を通じて出力ポートB1106に結合して、負荷電流が第1の方向に通って流れることを可能にする第1の電流路を形成する。第2のスイッチは、第3のスイッチK3 1430を通じて出力ポートB1106に結合して、負荷電流が第1の方向とは反対の第2の方向に通って流れることを可能にする第2の電流路を形成する。第1のスイッチK1 1410及び第2のスイッチK2 1420は、磁気誘導信号1405に応答して、対応する電流路を選択的にオンにする。
1つの実施形態において、第1のスイッチK1 1410及び第2のスイッチK2 1420は、ユーザの仕様にしたがって選択的にオン又はオフになることができる。実施形態において、第1のスイッチK1 1410及び第2のスイッチK2 1420は、外部磁界の検出された極性を示す磁気誘導信号1405を受信するように構成することができる。第1のスイッチK1 1410及び第2のスイッチK2 1420は、磁気誘導信号1405に応答して、選択的にオン又はオフになることができる。例えば、第1のスイッチK1 1410は、高電圧伝導スイッチとすることができ、第2のスイッチK2 1420は、低電圧伝導スイッチとすることができる。これを達成するために、第1のスイッチK1 1410は、高電圧側VDD1407(例えば直流電源)に接続され、第2のスイッチK2 1420は、低電圧側(例えば接地)に接続される。磁気誘導信号1405が高電圧を有する場合、例えば外部磁界の第1の極性を示す場合、第1のスイッチK1 1410がオンになり、第2のスイッチK2 1420がオフになるものとすることができる。磁気誘導信号1405が低電圧を有する場合、例えば、外部磁界の第1の極性とは逆の第2の極性を示す場合、第1のスイッチK1 1410がオフになり、第2のスイッチK2 1420がオンになるものとすることができる。
実施形態において、第3のスイッチK3 1430は、磁気センサ1105が所定の条件を満たしているか否かに基づいてオン又はオフになるものとすることができる。例えば、磁気センサ1105が所定条件を満たしている場合、第3のスイッチK3 1430はオンになるものとすることができる。そうでない場合、第3のスイッチK3 1430は、オフになるものとすることができる。第3のスイッチをどのように制御するかの詳細は、図10に関して論じる。
上述のように、磁気センサ1105が所定条件を満たし、磁気誘導信号が高電圧を有しているとき、第1のスイッチK1 1410はオンになり、第2のスイッチK2 1420はオフになり、第3のスイッチK3 1430はオンになる。従って、第1の電流路がオンになり、第2の電流路がオフになる。結果として、出力制御回路1120は、磁気センサ1105を制御して第1の状態で動作させる。すなわち、(負荷)電流は、VDD1407から、第1のスイッチK1 1410、第3のスイッチK3 1430を通って、最終的に出力ポートB1106から流出する。
磁気センサ1105が所定条件を満たし、磁気誘導信号が低電圧を有しているとき、第1のスイッチK1 1410はオフになり、第2のスイッチK2 1420はオンになり、第3のスイッチK3 1430はオンになる。従って、第1の電流路がオフになり、第2の電流路がオンになる。結果として、出力制御回路1120は、磁気センサ1105を制御して第2の状態で動作させることができる。すなわち、(負荷)電流は、出力ポートB1106へ流入し、第3のスイッチK3 1430及び第2のスイッチK2 1420を通って接地へ至る。
磁気センサ1105が所定条件を満たさない場合、第3のスイッチK3 1430はオフになる。従って、第1の電流路も第2の電流路もオンにならない。結果として、出力制御回路1120は、磁気誘導信号1405が高電圧又は低電圧のどちらであるかにかかわらず、磁気センサ1105を制御して第3の状態で動作させることができる。すなわち、出力ポートB1106を通って流れる(負荷)電流は存在しない(又は上記(負荷)電流と比べて少量の電流のみが出力ポートB1106を通って流れ、例えば、電流は(負荷)電流の4分の1未満であり、磁気センサの外部の負荷を駆動させることはできない)。このように、出力制御回路1120は磁気誘導信号1405に応答しない。
図7は、本教示の別の実施形態による出力制御回路1120の例示的な実装を示す。図示したように、出力制御回路1120は、磁界検出回路1130に結合される。出力制御回路1120は、磁界検出回路1130から磁気誘導信号1405(図6に示すような)を受信する。出力制御回路1120は、単方向伝導スイッチD1510、抵抗器R1520、及び第3のスイッチK3 1430を含む。単方向伝導スイッチD1510は、第3のスイッチK3 1430を通じて出力ポートB1106に結合し、負荷電流が第1の方向に流れることを可能にする電流路を形成する。他方、抵抗器R1520は、第3のスイッチK3 1430を通じて出力ポートB1106に結合し、負荷電流が第1の方向とは反対の第2の方向に流れることを可能にする第2の電流路を形成する。磁気センサ1105が所定条件を満たしている場合、第3のスイッチK3 1430はオンになることができる。そうでない場合、第3のスイッチK3 1430はオフになることができる。第3のスイッチのオン/オフをどのように制御するかの詳細は、図10に関して論じる。単方向伝導スイッチD1510は、磁界検出回路1130から受けた磁気誘導信号1405に基づいて選択的にオン又はオフにすることができる。例えば、磁気誘導信号1405が高電圧を有するとき、単方向伝導スイッチD1510はオンになる。磁気誘導信号1405が低電圧を有するとき、単方向伝導スイッチD1510はオフになる。別の実施形態において、抵抗器R1520は、単方向伝導スイッチD1510と逆並列に接続された別の単方向伝導スイッチで置き換えることができる。
上述のように、磁気センサ1105が所定条件を満たし、磁界検出回路1130から受けた磁気誘導信号1405が高電圧を有する場合、単方向伝導スイッチD1510及び第3のスイッチK3 1430はオンになる。従って、第1の電流路がオンになり、第2の電流路がオフになる。結果として、出力制御回路1120は、磁気センサ1105を制御して第1の状態で動作させることができる。すなわち、(負荷)電流は、単方向伝導スイッチD1510及び第3のスイッチK3 1430を通って出力ポートB1106から流出する。
磁気センサ1105が所定条件を満たし、磁界検出回路1130から受けた磁気誘導信号1405が低電圧を有する場合、単方向伝導スイッチD1510はオフになり、第3のスイッチK3 1430はオンになる。従って、第1の電流路はオフなる。磁気誘導信号が低であり、第3のスイッチK3 1430がオンであるので、第2の電流路が導通する。結果として、出力制御回路1120は、磁気センサ1105を制御して第2の状態で動作させることができる。すなわち、(負荷)電流は、出力ポートB1106に流入し、第3のスイッチK3 1430及び抵抗器R1520をそれぞれ通る。
磁気センサ1105が所定条件を満たさない場合、第3のスイッチK3 1430はオフになる。この場合、第1の電流路も第2の電流路もオンにならない。結果として、出力制御回路1120は、磁気誘導信号1405が高電圧又は低電圧のどちらを有するかにかかわらず、磁気センサ1105を制御して第3の状態で動作させる。すなわち、出力ポートB1106を通って流れる(負荷)電流は存在しない。このように、出力制御回路1120は磁気誘導信号1405に応答しない。
図8は、本教示のさらに別の実施形態による磁気センサ1105の別の例示的な図を示す。図示したように、磁気センサ1105の入力1615は、外部AC電源1610に接続されている。この実施形態において、磁気センサ1105は、入力1615に接続された、外部AC電源1610から一対の差分AC信号を受け取り、この一対の差分AC信号を直流(DC)信号に変換するように構成された整流器1150を含む。整流器1150の出力電圧は、磁界検出回路1130、状態制御回路1140、及び出力制御回路1120の電源導入のために用いることができる。磁気センサ1105は、上述のような磁界検出回路1130、状態制御回路1140、及び出力制御回路1120をさらに含むことができる。
図9は、本教示の実施形態による整流器1150の例示的な図を示す。整流器1150は、全波整流器ブリッジと、全波整流器ブリッジに接続された安定化ユニットとを含む。全波整流器ブリッジは、第1のダイオードD1 1710、第2のダイオードD2 1720、第3のダイオードD3 1730、及び第4のダイオードD4 1740を含む。図9に示すように、第1のダイオードD1 1710は、第2のダイオードD2 1720と直列に接続され、第3のダイオードD3 1730は、第4のダイオードD4 1740と直列に接続される。第1のダイオードD1 1710の出力及び第2のダイオードD2 1720の入力は、第1の入力ポートVAC+1705に接続され、第3のダイオードD3 1730の出力及び第4のダイオードD4 1740の入力は、第2の入力ポートVAC−1707に接続される。実施形態において、第1の入力ポートVAC+1705及び第2の入力ポートVAC−1707は、一対の差分AC信号である。全波整流器ブリッジは、AC電源1610によって出力された一対の差分AC信号を直流信号に変換するように構成することができる。安定化ユニットは、ツェナーダイオードDZ1750とすることができ、全波整流器ブリッジによって出力された直流信号を所定範囲内に安定化するように構成することができる。安定化ユニットは、安定化DC電圧を出力する。
実施形態において、第1のダイオードD1 1710の入力は、第1の接続点で第3のダイオードD3 1730の入力に接続され、それにより全波整流器ブリッジの接地ポートを形成する。さらに、第2のダイオードD2 1720の出力は、第2の接続点で第4のダイオードD4 1740の出力に接続され、それにより全波整流器ブリッジの出力ポートVDD1760を形成する。ツェナーダイオードDZ1750は、第1の接続点と第2の接続点との間に位置する。実施形態において、出力ポートVDD1760は、出力制御回路1120に直接接続することができる。
実施形態において、第1の入力ポートVAC+1705及び第2の入力ポートVAC−1707は、外部AC電源1610に接続される。この場合、出力制御回路1120は、磁気誘導信号1405に加えて、外部AC電源1610の極性に応答することができる。
実施形態において、磁気センサ1105は、ユーザの仕様に従って決めることができる所定条件を磁気センサ1105が満たしているか否かに応じて、第1の状態、第2の状態、又は第3の状態で動作する。従って、出力制御回路1120は、磁気センサ1105を制御して、(負荷)電流が出力ポートB1106から流出する第1の状態、又は(負荷)電流が出力ポートB1106へ流入する第2の状態で動作させることができる。代替的に又は付加的に、磁気センサ1105が所定条件を満たしている場合、出力制御回路1120は、磁気センサ1105を制御して、外部AC電源1610の極性と、磁気誘導信号1405により示される磁界の極性とに応答して、第1の状態と第2の状態で交互に動作させることができる。磁気センサ1105が所定条件を満たさない場合、出力制御回路1120は、磁気センサ1105を制御して、出力ポートB1106を通って流れる(負荷)電流が存在しない、又は上記の(負荷)電流と比べて少量の電流のみが出力ポートB1106を通って流れ、例えば電流の強度が(負荷)電流の4分の1未満である、第3の状態で動作させることができる。
実施形態において、磁気センサ1105が所定条件を満たす場合、出力制御回路1120は、磁気誘導信号及び外部AC電源1610の両方に応答して、さらに磁気センサ1105制御して、第1の状態又は第2の状態で動作させることができる。例えば、磁気センサ1105が所定条件を満たし、磁気誘導信号1405が、外部磁界が第1の磁気極性を有することを示し、外部AC電源1610が第1の電気極性を有する場合、出力制御回路1120は、磁気センサ1105を制御して第1の状態で動作させることができる。別の例の場合、磁気センサ1105が所定条件を満たし、磁気誘導信号1405が、外部磁界が第1の磁気極性とは逆の第2の磁気極性を有することを示し、外部AC電源1610が第1の電気極性とは逆の第2の電気極性を有する場合、出力制御回路1120は、磁気センサ1105を制御して第2の状態で動作させることができる。
図10は、本教示の別の実施形態による磁気センサ1105の例示的な図を示す。この例示的な実施形態において、状態制御回路1140の例示的な構成が提供される。図示されるように、磁気センサ1105の入力1615は、外部AC電源1610に接続される。以前に示したように、磁気センサ1105は、入力1615に制御された、外部AC電源1610から一対の差分AC信号を受けてこの一対の差分AC信号を直流信号に変換するように構成された整流器1150を含む。磁気センサ1105は、磁界検出回路1130、状態制御回路1140、及び出力制御回路1120をさらに含む。図10に示すように、状態制御回路1140は、電圧検出回路1141、遅延回路1142、及び論理回路1143をさらに含む。
電圧検出回路1142は、磁気センサ1105内の電圧が閾値電圧と等しいか又はそれを超えるかどうかを検出するように構成することができる。電圧が閾値電圧を超えたとき場合、電圧検出回路1142は、所定のトリガ信号を生成し、これを遅延回路1141に伝送する。実施形態において、電圧は、磁界検出回路1130の供給電圧とすることができる。閾値電圧は、磁界検出回路1130の磁気検知要素1131、信号処理要素1132、及びアナログ−デジタル変換要素1133の動作のために必要な最低電圧とすることができる。実施形態において、閾値電圧は、図9に関して説明した安定化ユニットにより達成される安定化DC電圧より小さい値に設定することができる。
ひとたび電圧検出回路1142によりトリガされると、遅延回路1141は、磁気センサ1105が所定条件を満たしているかどうかを判定する。詳細には、遅延回路1141は、所定のトリガ信号を電圧検出回路1142から受信すると、計時を開始することができる。計時期間が所定の期間の長さと等しいか又はそれより長くなったとき、遅延回路1141は、磁気センサ1105が所定条件を満たしていと判定することができる。そうでない場合、遅延回路1141は、磁気センサ1105が所定条件を満たしていないと判定する。
論理回路1143は、出力制御回路1120をイネーブルにして、磁気誘導信号に応答して、磁気センサ1105を制御して本明細書で説明した方式で3つの状態のいずれかで動作させるように、構成することができる。例えば、磁気センサは、遅延回路1141により記録された計時期間が所定期間と等しいか又はそれより長くなったときに、第1の状態又は第2状態で動作する。論理回路1143は、遅延回路1141によって記録された計時期間が所定期間より短いときに、出力制御回路1120をイネーブルにして、磁気センサ1105を制御して第3の状態で動作させるように、さらに構成することができる。
実施形態において、磁界検出回路1130の供給電圧が所定の電圧閾値に達したことを検出することは、磁界検出回路1130の全てのモジュール、すなわち磁気検知要素1131、信号処理要素1132、及びアナログ−デジタル変換要素1133が正常に機能することができることを保証することである。
図11は、本教示のさらに別の実施形態による磁気センサ1105の一部の例示的実装回路を示す。詳細には、図11は、出力制御回路1120及び状態制御回路1140の例示的な実装を示す。状態制御回路1140は、電圧検出回路1141と、遅延回路1142と、図11で示されるようにANDゲート1910である論理回路1143とを含む。ANDゲート1910の第1の入力は、磁気誘導信号1905に対応することができ、ANDゲート1910の第2の入力は、遅延回路1141に接続することができ、ANDゲート1910の出力は、出力制御回路1120に接続することができる。
この実施形態において、出力制御回路1120は、3つの高電圧伝導スイッチM0 1920、M1 1960、M2 1970、ダイオードD5 1980、インバータ1990、第1の抵抗器R1 1930、及び第2の抵抗器R2 1950を含む。スイッチM0 1920の制御端子は、ANDゲート1910の出力に接続される。スイッチM0 1920の入力は、抵抗器R1 1930を通じて整流器1150の電圧出力ポート1940(OUTAD+)に接続される。スイッチM2 1970は、スイッチM0 1920と並列に結合される。スイッチM2 1970の制御端子は、インバータ1990を通じて遅延回路1141の出力に接続される。実施形態において、スイッチM2 1970の等価抵抗は、スイッチM0 1920の等価抵抗より大きい。
動作中、遅延回路1141によって記録された計時期間が所定の閾値期間と等しいか又はそれより長い場合、遅延回路1141は、高電圧を出力する。従って、この高電圧は、磁界検出回路1130からの磁気誘導信号1905を、ANDゲート1910を通じてスイッチM0 1920に伝送することを可能にする。さらに、AC電源1610からの信号が正の半周期にあり、磁界検出回路1130からの磁気誘導信号1905が低電圧を出力する場合、スイッチM0 1920及びスイッチM2 1970は、オフになることができ、スイッチM1 1960は、オンになることができる。結果として、(負荷)電流は、スイッチM1 1960を通って出力ポートB1106から流出することができる。すなわち、出力制御回路1120は、磁気センサ1105を第1の状態で動作させる。あるいは、AC電源1610からの信号が負の半周期にあり、磁界検出回路1130からの磁気誘導信号1905が高電圧を出力する場合、スイッチM0 1920はオンになることができ、スイッチM1 1960及びM2 1970は、オフになることができる。結果として、(負荷)電流は、出力ポートB1106に流入してダイオードD5 1980及びスイッチM0 1920を通過することができる。すなわち、出力制御回路1120は、磁気センサ1105を制御して第2の状態で動作させることができる。
遅延回路1141によって記録された計時期間が閾値期間より短い場合。遅延回路1141及びANDゲート1910は、低電圧を出力することができ、スイッチM0 1920及びM1は、オフになることができ、スイッチM2 1970はオンになることができる。結果として、電流は、出力ポートB1106に流入し、ダイオードD5 1980及びスイッチM2 1970を通過する。スイッチM2 1970の等価抵抗が大きいので、電流は非常に小さいか、又は無視できる。すなわち、出力制御回路1120は、磁気センサ1105を制御して第3の状態で動作させる。
図12は、状態制御回路1140に接続された出力制御回路1120の別の実施形態を示す。状態制御回路1140は、電圧検出回路1141、遅延回路1142、及び論理回路1143を含む。詳細には、状態制御回路1140の論理回路1143は、第1の信号入力ポート2002、第2の信号入力ポート2004、第1の信号出力ポート2006、及び第2の信号出力ポート2008を含む。第1の信号入力ポート2002は、遅延回路1141の出力に接続することができ、第2の信号入力ポートは、磁気誘導信号2005を受けるように接続することができる。遅延回路1141によって記録された計時期間が閾値期間より短い場合、論理回路1143は、遅延回路1141として低電圧を出力するように構成することができる。他方、遅延回路1141によって記録された計時期間が閾値期間と等しいか又はそれより長い場合、遅延回路1141は高電圧を出力することができる。さらに、論理回路1143は、第1の信号出力ポート2006又は第2の信号出力ポート2008を通して磁気誘導信号2005を出力することができる。第1の信号出力ポート2006及び第2の信号出力ポート2008における出力信号は、180度の位相差を有することができる。第1の信号出力ポート2006及び第2の信号出力ポート2008における出力信号が同時に高電圧を有することはできないことを認識されたい。
この実施形態において、出力制御回路1120は、3つのスイッチ、すなわちスイッチM3 2060、M4 2040、及びM5 2070と、2つの抵抗器、すなわち抵抗器R3 2050及びR4 2030と、保護ダイオードD6 2020とを含む。詳細には、スイッチM3 2060及びM5 2070は、両方とも高電圧伝導スイッチであり、スイッチM4 2040は、低電圧伝導スイッチである。スイッチM3 2060及びスイッチM5 2070の制御端子は、それぞれ、論理回路1143の第1の信号出力ポート2006及び第2の信号出力ポート2008に接続される。スイッチM3 2060の入力は、抵抗器R3 2050の第1のポートに接続される。スイッチM3 2060の出力は、整流器1150の接地出力(OUTAD−2080)に接続される(図7に示すように)。
スイッチM4 2040の制御端子は、抵抗器R3 2050の第2のポートに接続される。スイッチM4 2040の入力は、整流器1150の電圧出力ポート(OUTAD+2010)に接続される。スイッチM4 2040の出力は、スイッチM5 2070の入力に接続される。スイッチM5 2070の出力は、整流器1150の電圧出力ポート(OUTAD−2080)に接続される。1つの実施形態において、電圧出力ポート(OUTAD−2080)は浮動接地である。スイッチM4 2040の出力は、スイッチM5 2070の入力及び出力ポートB1106に接続される。スイッチM4 2040の制御端子は、保護ダイオードD6 2020の正の極性に接続される。スイッチM4 2040の入力は、保護ダイオードD6 2020の負の極性に接続される。抵抗器R4 2030は、スイッチM4 2040の制御端子と入力端子との間に接続される。
動作中、遅延回路1141によって記録された計時期間が閾値期間と等しいか又はそれより長い場合、遅延回路1141は、高電圧を出力する。この場合、論理回路1143は、磁気誘導信号が第1の信号出力ポート2006又は第2の信号出力ポート2008を通って出力されることを可能にする。第1の信号出力ポート2002及び第2の信号出力ポート2004の出力信号は、180度の位相差を有することができる。さらに、AC電源1610からの信号が正の半周期にあり、磁界検出回路1130からの磁気誘導信号2005が高電圧に対応する場合、スイッチM3 2060及びM4 2040は、オンになることができ、スイッチM5 2070はオフになることができる。結果として、(負荷)電流は、スイッチM4 2040を通って出力ポートB1106から流出する。すなわち、出力制御回路1120は、磁気センサ1105を制御して第1の状態で動作させる。あるいは、AC電源1610からの信号が負の半周期にあり、磁界検出回路1130からの磁気誘導信号2005が低電圧に対応する場合、スイッチM3 2060及びM4 2040はオフになることができ、スイッチM5 2070はオンになることができる。結果として、電流は、出力ポートB1106に流入してスイッチM5 2070を通過する。すなわち、出力制御回路1120は、磁気センサ1105を制御して第2の状態で動作させる。
遅延回路1141によって記録された計時期間が閾値期間より短い場合、出力制御回路1120は、磁気センサ1105を制御して第3の状態で動作させるように設計されている。この場合、遅延回路1141は、低電圧を出力し、論理回路1143は、第1の出力ポート2006及び第2の出力ポート2008の各々で低電圧を出力し、スイッチM3 2060、M4 2040及びM5 2070はオフになることができる。結果として、電流は、出力ポートB1106を通って流れる電流は存在しない(又は上記(負荷)電流と比べて少量の電流のみが出力ポートBを通って流れ、例えば、電流は(負荷)電流の4分の1未満である)。
図13は、本教示の実施形態による、磁気センサ1105によって行われる信号処理の例示的方法のフローチャートである。ステップS101において、外部磁界が検出される。外部磁界の極性及び/又は強度を示すことができる磁気誘導信号が生成される。詳細には、ステップ101において、外部磁界に関連付けられたアナログ電気信号及びその中に関連付けられた情報が検出され、出力される。さらに、検出されたアナログ電気信号は、アナログ電気信号の干渉を増幅及び低減することによって処理することができる。さらに、処理されたアナログ電気信号を変換して磁気誘導信号を発生させることができる。同じ用途において、磁気誘導信号は、外部磁界の極性を示す切換えデジタル信号とすることができる。
ステップS102において、所定条件が満たされているか否かが判定される。所定条件は、磁気センサの特定の電圧に関連付けられるか又はそれに関して評価される。所定条件が満たされている場合、方法はステップS103に進む。そうでない場合、方法は、ステップS104に進む。詳細には、所定条件は、磁気センサの電圧が所定電圧閾値に達している所定期間として設定される。実施形態において、所定条件が満たされているか否かは、磁気センサ1105の電圧が上記の所定電圧閾値と等しいか又はそれを上回っている期間に基づいて判定することができる。本明細書で論じるように、ステップS102を実行するために、磁気センサ1105の電圧が所定電圧閾値に達しているか否かが判定される。達している場合、遅延回路1142が計時を開始する。期間が所定の長さに達した場合、所定条件が満たされたと判定される。そうでない場合、所定条件は満たされていないと判定される。
ステップS103において、磁気誘導信号に基づいて、磁気センサは、第1の状態及び第2の状態の少なくとも一方で動作するように制御される。本明細書で論じるように、第1の状態において、(負荷)電流は、出力ポートB1106から流出する。第2の状態において、(負荷)電流は、出力ポートB1106に流入する。ステップS104において、磁気センサは、第3の状態で動作するように制御され、この場合、磁気センサ1105は、第1の状態でも第2の状態でも動作せず、すなわち出力ポートB1106を通って流れる電流は存在しない(又は無視できる)。
図14は、本教示の実施形態による、本明細書で論じる磁気センサを組み入れたモータ組立体2200の例示的な図を示す。モータ組立体2200は、外部AC電源1610に結合されたモータM1202と、モータM1202と直列に結合された制御可能な双方向ACスイッチ1300と、磁気センサ1105とを含む。磁気センサ1105は、回転子付近の磁界の変動を検出するためにモータ1202の回転子の近くに位置する。
実施形態において、磁気センサ1105は、モータ1202に結合された第1の入力1102と、外部AC電源1610に結合された第2の入力1104と、制御可能な双方向ACスイッチ1300の制御端子に結合された出力1106とを含む。
実施形態において、モータ組立体2200は、例えばAC電源1610に基づいて得られた低減された電圧を磁気センサ1105に提供するように構成された、電圧低減回路1200をさらに含むことができる。この実施形態において、磁気センサ1105の第1の入力1102は、代わりに電圧低減回路1200に結合することができる。
図15は、本教示の実施形態によるモータ2300の例示的な図を示す。モータ2300は、図14のモータ1202と同様のものとすることができる。実施形態において、モータ2300は、固定子と、固定子の周りを回転する回転子M1とを含む、同期モータである。固定子は、固定子鉄心M2と、固定子鉄心M2の周りに巻き回された単相巻線M3とを含む。固定子鉄心M2は、純鉄、鋳鉄、鋳鋼、電気鋼、ケイ素鋼、又は他のいずれかの軟磁性材料を含むことができる。回転子M1は、永久磁石を含む。固定子巻線M3がAC電源1610に直列に結合されている場合、回転子M1は、定常相の間、均一な回転数60f/p rpm(回転/分)で動作することができ、ここでfはAC電源1610の周波数を表し、pは回転子M1の極対の数を表す。固定子鉄心M2は、2つの逆の極性を有し、その各々が磁極弧(pole arc)(例えば、M4、M5)を有する。回転子M1の外面は、磁極弧(例えば、M4、M5)に対向し、これにより外面と磁極弧との間に不均一なギャップが形成される。固定子磁極の磁極弧(例えば、M4、M5)には、凹溝が埋め込まれている。凹溝以外の磁極弧の部分は、回転子M1と同じ中心軸線を有する。
上記構成において不均一磁界を形成することができ、これにより、回転子M1が静止しているときに回転子M1の極線が固定子極の中心軸線に対して角度を成すことが保証される。この角度は、磁気センサ1105の影響下でモータMが通電されるたびに回転子M1に対する始動トルクを保証する。回転子M1の極線は、回転子M1の反対磁極間の境界とすることができる。固定子の中心軸線は、固定子の極の中心を通る線とすることができる。実施形態において、固定子及び回転子M1の両方が、2つの磁極性を有する。実施形態において、固定子及び回転子M1は、より多くの数の磁極性、例えば、4又は6磁極性を有することができる。
図14に戻ると、磁気センサ1105が所定条件を満たしている場合、磁気センサ1105は、AC電源1610からの信号及び永久磁石回転子M1の極性に応じて、第1の状態又は第2の状態のいずれかで動作することができる。詳細には、AC電源1610からの信号が正の半周期にあり、磁界検出回路1130が、永久磁石回転子M1が第1の極性を有することを検出した場合、出力制御回路1120は、磁気センサ1105を制御して第1の状態で動作させる。すなわち、電流は、磁気センサ1105から制御可能な双方向ACスイッチ1300へ流れることができる。あるいは、AC電源1610からの信号が負の半周期にあり、磁界検出回路1130が、永久磁石回転子M1が第1の極性とは反対の第2の極性を有することを検出した場合、出力制御回路1120は、磁気センサ1105を制御して第2の状態で動作させ、この場合、電流は、制御可能な双方向ACスイッチ1300から磁気センサ1105へ流れることができる。
磁気センサ1105が所定条件を満たさない場合、磁気センサ1105は、第3の条件で動作し、この場合、制御可能な双方向ACスイッチ1300と磁気センサ1105との間で流れる電流は存在しない(又は制御可能な双方向ACスイッチ1300と磁気センサ1105との間には少量の電流しか流れない)。
実施形態において、磁気センサ1105は、図9に示すような整流器1150及び図6に示すような出力制御回路1120を含む。上述のように、図6において、出力制御回路1120は、高電圧伝導スイッチである第1のスイッチK1 1410と、低電圧伝導スイッチである第2のスイッチK2 1420と、第3のスイッチK3 1430とを含む。所定条件が満たされた場合、第3のスイッチK3 1430がオンになる。さらに、AC電源1610からの信号が正の半周期にあり、磁気誘導信号が高電圧である場合、第1のスイッチK1 1410はオンになり、第2のスイッチK2 1420はオフになる。結果として、磁気センサ1105は、第1の状態で動作し、この場合、電流はAC電源1610から、モータM1202、電圧低減回路1200、磁気センサ1105の第1の入力ポート、全波整流器ブリッジの第2のダイオードD2の電圧出力ポート、出力制御回路1120の第1のスイッチK1 1410、出力ポートB1106、次に制御可能な双方向ACスイッチ1300を通って流れ、最後にAC電源1610に戻る。あるいは、AC電源1610からの信号が負の半周期にあり、磁気誘導信号が低電圧である場合、第1のスイッチK1 1410はオフになり、第2のスイッチK2 1420がオンになる。結果として、磁気センサ1105は、第2の状態で動作し、この場合、電流は、AC電源1610から、制御可能な双方向ACスイッチ1300、出力ポートB1106、第2のスイッチK2 1420、全波整流器ブリッジの接地ポート、第1のダイオードD1 1710、磁気センサ1105の第1の入力ポート、電圧低減回路1105、モータ1202を通って流れ、最後にAC電源1610に戻る。
AC電源1610からの信号が正の半周期にあり、磁界検出回路1130が低電圧を出力する場合、又はAC電源1610からの信号が負の半周期にあり、磁界検出回路1130が高電圧を出力する場合、第1のスイッチK1 1410も第2のスイッチK2 1420もオンになることはできない。したがって、出力制御回路1120は、制御可能な双方向ACスイッチ1300を、所定の方式「オン」と「オフ」との間で交互に動作させる。出力制御回路1120は、さらに、AC電源1610の極性の変動及び磁気検出信号に基づいて磁気センサ1105イネーブルにして固定子巻線が通電される方式を制御し、固定子によって発生される変化する磁界が、回転子と共に回転子の磁界の位置に従って単一方向に回転するようにさせることができる。これは、モータ1202が通電されるたびに回転子M1が一定方向に回転することを可能にする。
他方、磁気センサ1105が所定条件を満たさない場合、第3のスイッチK3 1430がオフになる。結果として、磁気センサ1105は、第3の状態で動作し、この場合、上記の電流と比べて、モータ組立体2200内を流れる電流は存在せず(又は少量の無視できる量の電流がモータ組立体2200の中を流れる)、例えば電流の強度は、前記電流の4分の1未満である。
図16は、本教示の実施形態によるAC電源1610及び整流器ブリッジ1150からの出力電圧の波形をそれぞれ示す。詳細には、図16の上部は、AC電源1610の出力電圧の波形を示し、図24の下部は、整流器ブリッジ1150の出力電圧の波形を示す。図示されるように、整流器ブリッジの出力電圧の周波数は、AC電源1610の2倍である。
整流器ブリッジ1150の出力電圧の波形が上昇するとき、出力制御回路1120は、出力制御回路1120が第1の状態又は第2の状態で動作する前に、第3の状態で動作することができる。従って、AC電源1610の出力電圧の波形が正の半周期にある場合、磁気センサ1105は第1の状態で動作することができる。AC電源1610の出力電圧の波形が負の半周期にある場合、磁気センサ1105は、第2の状態で動作することができる。したがって、第3の状態の動作周波数は、第1の状態又は第2の状態の動作周波数と正比例し、AC電源1610の電圧の周波数とも比例する。実施形態において、第3の状態の動作周波数は、第1の状態又は第2の状態の動作周波数の2倍であり、これはAC電源1610の周波数の2倍である。
上述の例は例証のみを目的としたものであることを認識されたい。本教示は、限定を意図したものではない。磁気センサ1105は、上述のようなモータ組立体2200以外の用途に用いることができる。
当業者は、本教示には種々の修正及び/又は拡張を受ける余地があることを認識するであろう。例えば、上述の種々の構成要素の実装は、ハードウェア装置として具体化することができるが、ソフトウェアのみの解決策、例えば既存サーバ上の組込みとして実装することもできる。さらに、本明細書で開示されるホスト及びクライアント・ノードのユニットは、ファームウェア、ファームウェア/ソフトウェアの組合せ、ファームウェア/ハードウェアの組合せ、又はハードウェア/ファームウェア/ソフトウェアの組合せとして実装することができる。別の実施形態に関して、モータと制御可能な双方向ACスイッチが互いに直列に結合して第1の分岐を形成することができる。直列接続された電圧低減回路と磁気センサとが第2の分岐を形成する。第1の分岐は、外部AC電源の2つの端子間で第2の分岐と並列に結合する。
上記は、最良の形態及び/又はその他の例とみなされるものを説明したものであるが、そこに種々の修正を施すことができること、及び本明細書で開示される主題は種々の形態及び例で実装することができること、並びにこれらの教示を多数の用途に適用することができ、そのうちの幾つかを説明したに過ぎないことが理解される。以下の実用新案登録請求の範囲は、本教示の真の範囲内に入る、いずれかの及び全ての用途、修正及び変形に対する権利を主張するものであることが意図される。
1100:電子回路
1102:第1の入力
1104:第2の入力
1105:磁気センサ
1106:出力ポート
1110:制御信号生成回路
1120:出力制御回路
1130:磁界検出回路
1140:状態制御回路
1150:整流器
1202:モータ
1610:外部AC電源
2200:モータ組立体

Claims (10)

  1. ハウジングと、
    入力ポートが外部交流(AC)電源に接続される、両方とも前記ハウジングから延びた入力ポート及び出力ポートと、
    電気回路と、
    を備えた磁気センサであって、前記電気回路は、
    外部磁界を検出し、前記外部磁界の少なくとも1つの特性を示す磁気誘導信号を出力するように構成された、磁界検出回路と、
    前記出力ポートに結合された出力制御回路と、
    を備え、前記出力制御回路は、
    所定条件が満たされている場合、前記磁気センサを制御して第1の状態及び第2の状態の少なくとも一方で動作させ、
    前記第1の状態において、負荷電流は、第1の方向で前記出力ポートから前記磁気センサの外部へ流出し、
    前記第2の状態において、負荷電流は、前記第1の方向とは反対の第2の方向で前記磁気センサの外部から前記出力ポートを介して前記磁気センサ内へ流入し、
    前記所定条件が満たされていない場合、前記磁気センサを制御して第3の状態で動作させる
    ように構成され、
    前記磁気センサの動作周波数は、前記外部AC電源の周波数に正比例する
    ことを特徴とする磁気センサ。
  2. 前記磁気センサの前記第3の状態における動作周波数が、前記外部AC電源の周波数の2倍であることを特徴とする、請求項1に記載の磁気センサ。
  3. 前記出力制御回路は、前記所定条件が満たされた場合、前記磁気センサを制御して、前記外部AC電源の極性及び前記磁気誘導信号に応じて前記第1の状態と前記第2の状態との間で交互に動作させるように構成されることを特徴とする、請求項1〜請求項2のいずれかに記載の磁気センサ。
  4. 前記出力制御回路は、前記所定条件が満たされた場合、前記磁気センサを制御して、
    前記磁気誘導信号が、前記外部磁界が第1の磁気極性を有することを示し、かつ前記外部AC電源が第1の極性を有する場合、負荷電流が前記第1の方向に流れることを可能にすることによって前記第1の状態で動作させ、
    前記磁気誘導信号が、前記外部磁界が前記第1の磁気極性とは逆の第2の磁気極性を有することを示し、かつ前記外部AC電源が前記第1の極性とは逆の第2の極性を有する場合、負荷電流が前記第2の方向に流れることを可能にすることによって前記第2の状態で動作させる
    ように構成されることを特徴とする、請求項1〜請求項3のいずれかに記載の磁気センサ。
  5. 前記磁気センサが前記第3の状態にある場合、前記出力ポートを通って流れる負荷電流は無視できる量であるか、又は前記出力ポートを通って流れる電流は存在しないことを特徴とする、請求項1〜請求項4のいずれかに記載の磁気センサ。
  6. 前記電気回路が、前記外部AC電源に対して全波整流を行うように構成された整流器をさらに備え、
    前記磁気センサの前記第3の状態における動作周波数が、前記整流器の出力電圧の周波数と同じであることを特徴とする、請求項1〜請求項5のいずれかに記載の磁気センサ。
  7. 前記電気回路が、
    特定の電圧を検出し、前記特定の電圧が所定の電圧閾値に等しいか又はそれを上回ったときにトリガ信号を出力するように構成された電圧検出回路と、
    前記トリガ信号を受け取ると、前記特定の電圧が前記所定の電圧閾値に等しいか又はそれを上回っている時間の長さを計時するように構成された、遅延回路と、
    前記遅延回路に結合された論理回路と、
    をさらに備え、前記論理回路は、
    前記時間の長さが所定の時間の長さを超えた場合に、前記所定条件が満たされたとの信号を送り、
    前記時間の長さが前記所定の時間の長さを超えなかった場合に、前記所定条件が満たされなかったとの信号を送る
    ように構成されることを特徴とする、請求項1〜請求項6のいずれかに記載の磁気センサ。
  8. 交流(AC)電源に基づいて動作するように構成されたモータと、
    前記モータによって発生した磁界を検出し、検出された磁界に基づいて決定された動作状態で動作するように構成された磁気センサと、
    前記モータと直列に結合し、前記磁気センサの動作状態に基づいて前記モータを制御するように構成された双方向ACスイッチと、
    を備えたモータ組立体であって、
    前記磁気センサは、
    前記AC電源に結合された入力ポートと、前記双方向ACスイッチの制御端子に結合された出力ポートと、
    電気回路と、
    を備え、前記電気回路は、
    前記検出された磁界の少なくとも1つの特性を示す磁気誘導信号に応答し、前記磁気センサを制御して、所定条件が満たされている場合、第1の状態及び第2の状態の少なくとも一方で動作させ、前記所定条件が満たされていない場合、第3の状態で動作させる
    ように構成された出力制御回路を備え、
    前記第1の状態において、負荷電流は、第1の方向で前記出力ポートから前記磁気センサの外部へ流出し、
    前記第2の状態において、負荷電流は、前記第1の方向とは反対の第2の方向で前記磁気センサの外部から前記出力ポートを介して前記磁気センサ内へ流入し、
    前記磁気センサの動作周波数は、前記外部AC電源の周波数に正比例する、
    ことを特徴とする、モータ組立体。
  9. 固定子及び永久磁石回転子をさらに備え、前記双方向ACスイッチは、前記第1の状態及び前記第2の状態にそれぞれ応答して前記固定子の伝導状態を制御するように構成され、その結果、前記固定子は、前記固定子に対する前記永久磁石回転子の磁気位置と一致するように動作して、所定方向で回転するように前記永久磁石回転子を駆動することを特徴とする、請求項8に記載のモータ組立体。
  10. 半導体基板と、
    入力ポートが外部交流電源に結合される、入力ポート及び出力ポートと、
    前記半導体基板上の電気回路と、
    を備えた集積回路であって、前記電気回路は、
    前記出力ポートに結合された出力制御回路であって、検出された信号に応答して前記集積回路を制御して、所定条件が満たされている場合、負荷電流が前記出力ポートを通って流れる状態で動作させ、前記所定状態が満たされていない場合、別の状態で動作させるように構成された出力制御回路を備え、
    前記集積回路の動作周波数は、前記外部AC電源の周波数に正比例する、
    ことを特徴とする、集積回路。
JP2016006004U 2015-08-07 2016-12-15 磁気センサ、集積回路及びモータ組立体 Expired - Fee Related JP3209222U (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
WOPCT/CN2015/086422 2015-08-07
PCT/CN2015/086422 WO2016019921A1 (zh) 2014-08-08 2015-08-07 电机组件及用于电机驱动的集成电路
CN201610203624 2016-04-01
CN201610203624.2 2016-04-01
CN201610392395.3A CN106443513A (zh) 2015-08-07 2016-06-02 集成电路、电机组件及应用设备
CN201610392395.3 2016-06-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016236815 Continuation 2016-08-08

Publications (1)

Publication Number Publication Date
JP3209222U true JP3209222U (ja) 2017-03-09

Family

ID=57853971

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016155741A Pending JP2017075931A (ja) 2015-08-07 2016-08-08 磁気センサ、集積回路及びモータ組立体
JP2016006004U Expired - Fee Related JP3209222U (ja) 2015-08-07 2016-12-15 磁気センサ、集積回路及びモータ組立体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016155741A Pending JP2017075931A (ja) 2015-08-07 2016-08-08 磁気センサ、集積回路及びモータ組立体

Country Status (5)

Country Link
JP (2) JP2017075931A (ja)
KR (1) KR20170017818A (ja)
BR (1) BR102016018244A2 (ja)
DE (1) DE102016114495A1 (ja)
TW (1) TWM542232U (ja)

Also Published As

Publication number Publication date
DE102016114495A1 (de) 2017-02-09
BR102016018244A2 (pt) 2017-02-14
JP2017075931A (ja) 2017-04-20
TWM542232U (zh) 2017-05-21
KR20170017818A (ko) 2017-02-15

Similar Documents

Publication Publication Date Title
US10469005B2 (en) Magnetic sensor and an integrated circuit
US9696182B2 (en) Magnetic sensor and an integrated circuit
CN107315149B (zh) 磁传感器集成电路、电机组件及应用设备
US20180234041A1 (en) Magnetic sensor and an integrated circuit
JP2016082735A (ja) ブラシレスdcモータ
US10483830B2 (en) Magnetic sensor integrated circuit and motor component
US10763766B2 (en) Magnetic sensor and an integrated circuit
US9692329B2 (en) Magnetic sensor and an integrated circuit
JP3211277U (ja) 磁気センサ及びその動作段階の制御方法
US9954469B2 (en) Magnetic sensor and an integrated circuit
US20160352267A1 (en) Motor driving circuit and motor component
JP3209222U (ja) 磁気センサ、集積回路及びモータ組立体
JP3209223U (ja) 磁気センサ、モータ組立体及び集積回路
CN107342661B (zh) 磁传感器集成电路、电机组件及应用设备
US10637374B2 (en) Magnetic sensor integrated circuit, motor component and application apparatus
JP2017053844A (ja) 磁気センサ集積回路及びモータ組立体
JP6311112B2 (ja) ブラシレスdcモータ
JP3207074U (ja) 磁気センサ集積回路及びモータ構成要素
JP3207073U (ja) 磁気センサ集積回路及びモータ組立体
TWM539091U (zh) 電機組件、應用設備及感測器積體電路
JP2011244573A (ja) モータ制御装置

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3209222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees