JP3208737B2 - Multilayer printed wiring board and method of manufacturing the same - Google Patents

Multilayer printed wiring board and method of manufacturing the same

Info

Publication number
JP3208737B2
JP3208737B2 JP16285792A JP16285792A JP3208737B2 JP 3208737 B2 JP3208737 B2 JP 3208737B2 JP 16285792 A JP16285792 A JP 16285792A JP 16285792 A JP16285792 A JP 16285792A JP 3208737 B2 JP3208737 B2 JP 3208737B2
Authority
JP
Japan
Prior art keywords
wiring board
dielectric
printed wiring
frequency
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16285792A
Other languages
Japanese (ja)
Other versions
JPH065998A (en
Inventor
信夫 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16285792A priority Critical patent/JP3208737B2/en
Publication of JPH065998A publication Critical patent/JPH065998A/en
Application granted granted Critical
Publication of JP3208737B2 publication Critical patent/JP3208737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Waveguides (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高周波用回路と低周波
用回路が混在する多層プリント配線板及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer printed wiring board in which high-frequency circuits and low-frequency circuits coexist and a method of manufacturing the same.

【0002】[0002]

【従来の技術】情報通信の手段として、有線通信と無線
通信がある。有線通信では、光ファイバー等の技術によ
り進展している。一方、無線通信では、使用周波数帯が
益々高周波帯域に移行している。これは、現状の周波数
帯域では容量不足で通信サービスのサービス数やチャン
ネル数の増加に対して十分対応できないことによる。
2. Description of the Related Art As information communication means, there are wired communication and wireless communication. Wired communication has been developed using technologies such as optical fibers. On the other hand, in wireless communication, the used frequency band is increasingly shifting to a high frequency band. This is because the current frequency band cannot sufficiently cope with an increase in the number of communication services and the number of channels due to insufficient capacity in the current frequency band.

【0003】無線メディアは益々活発に開発されてお
り、その需要も高い伸び率で予想されている。特に発展
が期待されている衛星放送、衛星通信、移動体無線で
は、GHz帯の高周波が使用されるため、送受信機に使
用されるプリント配線板材料は、1GHz〜15GHz
帯での優れた高周波特性を有することが求められてい
る。
[0003] Wireless media is being developed more and more actively, and its demand is expected to grow at a high rate. Particularly in satellite broadcasting, satellite communication, and mobile radio, which are expected to be developed, a high frequency in the GHz band is used. Therefore, a printed wiring board material used for a transceiver is 1 GHz to 15 GHz.
It is required to have excellent high frequency characteristics in a band.

【0004】このような用途に用いられる多層プリント
配線板であるが、従来、この多層プリント配線板の絶縁
材には、通常、寸法安定性や接着性およびドリル加工性
に優れたガラス布基材エポキシ樹脂が用いられている。
このガラス布基材エポキシ樹脂は、価格も比較的安価な
ため、ロジック回路やアナログ回路の形成に広く用いら
れている。しかし、一般にガラス布基材エポキシ樹脂
は、周波数が1GHz〜15GHzの高周波領域で誘電
率が4.5〜5.0で、誘電正接は0.01〜0.03
程度であり、高周波領域で使用するには、その誘電特性
は必ずしも十分なものではない。
[0004] The multilayer printed wiring board used for such an application has been conventionally used as an insulating material of the multilayer printed wiring board. Usually, a glass cloth base material having excellent dimensional stability, adhesiveness and drillability is usually used. Epoxy resin is used.
Since the glass cloth base epoxy resin is relatively inexpensive, it is widely used for forming logic circuits and analog circuits. However, in general, a glass cloth base epoxy resin has a dielectric constant of 4.5 to 5.0 and a dielectric loss tangent of 0.01 to 0.03 in a high frequency range of 1 GHz to 15 GHz.
And its dielectric properties are not always sufficient for use in the high frequency range.

【0005】他方、周波数が1GHz〜15GHzの高
周波領域において、フッ素樹脂やビスマレイミドトリア
ジン樹脂やポリフェニレンエーテル等の誘電特性のよい
樹脂をガラス布に含浸させて、絶縁層とする高周波用基
板が用いられている。しかし、この高周波用基板では、
一般にドリルの摩耗が早い等加工性が悪い。また、プリ
プレグの積層温度が高く、時間も長い。特に、フッ素樹
脂は、導体銅箔との密着性が十分でなく、かつ、スルー
ホールを形成する際、通常の工程の他に、メッキの密着
性を向上するため、テトラエッチ処理というフッ素樹脂
表面の粗化が必要となる。また、材料も比較的高価であ
るため、高周波と低周波が混在する回路をセットの小型
化の目的で1枚の基板で作成すると、高価なものとなっ
てしまう。
On the other hand, in a high frequency range of 1 GHz to 15 GHz, a high frequency substrate is used as an insulating layer by impregnating a glass cloth with a resin having a good dielectric property such as a fluororesin, a bismaleimide triazine resin or a polyphenylene ether. ing. However, in this high frequency substrate,
In general, the workability is poor, such as rapid drill wear. Further, the lamination temperature of the prepreg is high and the time is long. In particular, the fluororesin does not have sufficient adhesion with the conductive copper foil, and when forming a through hole, in addition to the normal process, to improve the adhesion of plating, the fluororesin surface called tetraetch treatment is used. Need to be roughened. In addition, since the material is relatively expensive, if a circuit in which high-frequency and low-frequency are mixed is formed on one substrate for the purpose of downsizing the set, it becomes expensive.

【0006】[0006]

【発明が解決しようとする課題】以上のように、高周波
用回路と低周波用回路が混在する回路をセットの小型化
の目的で、1枚の基板で作成する際、ドリル摩耗性等作
業性が良好で、かつ、比較的安価で、しかも、高周波回
路のマイクロストリップ線路で優れた誘電特性を示す多
層プリント配線板が望まれている。
As described above, when a circuit in which a high-frequency circuit and a low-frequency circuit are mixed is formed on a single substrate for the purpose of reducing the size of a set, workability such as drill abrasion is required. There is a demand for a multi-layer printed wiring board which has a good performance, is relatively inexpensive, and exhibits excellent dielectric characteristics in a microstrip line of a high-frequency circuit.

【0007】[0007]

【課題を解決するための手段】本発明は、 (1)高周波回路を誘電特性のよい樹脂で形成し、低周
波部分を、寸法安定性、接着性、ドリル加工性の優れた
エポキシ樹脂で形成することを特徴とする組合せで、多
層プリント配線板を作成することにより、作業性が良好
でかつ比較的安価な配線板を提供すること。
According to the present invention, (1) a high-frequency circuit is formed of a resin having good dielectric properties, and a low-frequency portion is formed of an epoxy resin having excellent dimensional stability, adhesiveness, and drillability. To provide a relatively inexpensive wiring board with good workability by producing a multilayer printed wiring board with a combination characterized by the following.

【0008】(2)前記高周波回路のマイクロストリッ
プ線路を両面銅張積層板(コア材)を用いて形成するこ
とにより、プリプレグを用いるよりも誘電体厚さ(絶縁
層)が安定し、それにより、回路安定化のキーポイント
となる特性インピーダンスが安定化でき、プレス成形温
度が高く、時間も長い樹脂を使わず、エポキシ樹脂のみ
で積層プレスが出来るため、比較的低温、短時間で行え
ることを見いだした。
(2) By forming the microstrip line of the high-frequency circuit using a double-sided copper-clad laminate (core material), the dielectric thickness (insulating layer) is more stable than using a prepreg, thereby Characteristic impedance, which is a key point for circuit stabilization, can be stabilized, and high press forming temperature and long time can be used. I found it.

【0009】以下、本発明の多層プリント配線板を図面
に基づいて、5層板の製造方法の例によって詳細に説明
する。図1乃至図5は、本発明の多層プリント配線板の
製造方法を示す工程図である。まず、図1において、マ
イクロストリップ線路を形成する高周波用両面銅張積層
板(コア材)Aを用意する。この両面銅張積層板Aの高
周波絶縁層1は、周波数が1GHz〜15GHzで誘電
率ε≦3.5、誘電正接tanδ≦0.005の誘電体
が適しており、具体的にはガラス布基材ビスマレイミド
トリアジン樹脂やガラス布基材ポリフェニレンエーテル
が寸法安定性、誘電特性とも優れており好適である。2
は銅箔である。
Hereinafter, the multilayer printed wiring board of the present invention will be described in detail by way of an example of a method for manufacturing a five-layer board with reference to the drawings. 1 to 5 are process diagrams showing a method for manufacturing a multilayer printed wiring board according to the present invention. First, in FIG. 1, a high-frequency double-sided copper-clad laminate (core material) A for forming a microstrip line is prepared. The high-frequency insulating layer 1 of the double-sided copper-clad laminate A is preferably made of a dielectric material having a frequency of 1 GHz to 15 GHz, a dielectric constant ε ≦ 3.5, and a dielectric loss tangent tan δ ≦ 0.005. Bismaleimide triazine resin and polyphenylene ether based on glass cloth are preferable because they have excellent dimensional stability and dielectric properties. 2
Is a copper foil.

【0010】高周波絶縁層1として、特にガラス布基材
ポリフェニレンエーテルは温度の影響を受けにくく、高
温加湿の条件下でも、誘電率、誘電正接は、ほとんど変
化せず安定しており、安定したマイクロストリップ線路
を形成するのに最も適している。
As the high-frequency insulating layer 1, a glass cloth-based polyphenylene ether, in particular, is hardly affected by temperature. Even under high-temperature humidification conditions, the dielectric constant and the dielectric loss tangent hardly change, and are stable. Most suitable for forming a strip line.

【0011】前記誘電率ε≦3.5、誘電正接tanδ
≦0.005の誘電体の樹脂成分であるビスマレイミド
トリアジン樹脂およびその誘導体とは、ビスマレイミド
とトリアジンとを主成分として、さらにエポキシ化合
物、アクル化合物、アクリル化合物、ビニル化合物など
を加えた熱硬化性樹脂をいう。
The dielectric constant ε ≦ 3.5, the dielectric loss tangent tan δ
Bismaleimide triazine resin and its derivative, which is a resin component of a dielectric material of ≦ 0.005, are thermosetting obtained by adding bismaleimide and triazine as main components and further adding an epoxy compound, an acrylic compound, an acrylic compound, a vinyl compound, and the like. Resin.

【0012】また、前記ポリフェニレンエーテル樹脂と
は、一般式
The polyphenylene ether resin has a general formula

【化1】 で表され、(R1 、R2 、R3 、R4 は、水素原子、ア
ルキル基、アリール基、アルコキシ基、ハロフェノキシ
基、ベルゾル基およびそれらを反応して得られる構造の
もの)、例えばR1 が他のR2 、R3 、R4 を結合して
網目状硬化物を形成してもよい。また、エポキシ樹脂、
アクリル樹脂、ビニル樹脂等を架橋密度を上げる目的で
配合されてもよい。
Embedded image (R 1 , R 2 , R 3 , and R 4 are each a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a halophenoxy group, a velsol group, and a structure obtained by reacting them). R 1 may combine with other R 2 , R 3 and R 4 to form a network cured product. Also, epoxy resin,
An acrylic resin, a vinyl resin, or the like may be blended for the purpose of increasing the crosslink density.

【0013】ガラス布は、一般の電気用ガラス布(Eガ
ラス、Tガラス、Rガラス、Dガラス、Qガラス)を用
いる事ができるが、誘電率、ドリル摩耗性、コスト等の
バランスを考慮して選択するのがよい。誘電率εが3.
5を超え、誘電正接tanδが0.005を超えると、
十分な誘電特性が得られず、回路が動作しない等問題が
ある。
As the glass cloth, a general electric glass cloth (E glass, T glass, R glass, D glass, Q glass) can be used, but in consideration of the balance between dielectric constant, drill abrasion, cost and the like. It is better to select. 2. The dielectric constant ε is 3.
5 and the dielectric loss tangent tan δ exceeds 0.005,
There is a problem that sufficient dielectric characteristics cannot be obtained and the circuit does not operate.

【0014】例えば、近い将来実用化されるデジタルセ
ルラーでは、周波数帯域が2GHz付近が予定されてい
るが、2GHzでの長さ50mmあたりの伝播損失は、
Eガラス布基材ポリフェニレンエーテルで0.16d
B、Eガラス布基材エポキシ樹脂で0.33dBで、前
者は回路動作上問題ないが、後者は問題となる。
For example, in a digital cellular phone to be put into practical use in the near future, the frequency band is expected to be around 2 GHz, but the propagation loss per 50 mm length at 2 GHz is as follows.
0.16 d with polyphenylene ether based on E glass cloth
B, E: 0.33 dB with glass cloth base epoxy resin, the former has no problem in circuit operation, but the latter has a problem.

【0015】[0015]

【表1】 [Table 1]

【0016】絶縁材としては、板厚精度を出すため両面
銅張積層板を用いる。板厚精度を多少無視した多層板の
作製方法は、一例として図7のとおり、最外層銅箔2
(L1)と次の層の銅箔2(L2)は、誘電率ε≦3.
5、誘電正接tanδ≦0.005のプリプレグ5を介
して形成されるため、L2のパターン形状等に絶縁層の
厚みは大きく影響されるため、精度よく板厚を制御する
ことは困難である。
As the insulating material, a double-sided copper-clad laminate is used in order to increase the thickness accuracy. As an example, as shown in FIG. 7, a method of manufacturing a multilayer board in which the thickness accuracy is somewhat ignored is described in FIG.
(L1) and the next layer of copper foil 2 (L2) have a dielectric constant ε ≦ 3.
5. Since the insulating layer is formed via the prepreg 5 having a dielectric loss tangent tan δ ≦ 0.005, the thickness of the insulating layer is greatly affected by the L2 pattern shape and the like, and thus it is difficult to control the thickness accurately.

【0017】通常、マイクロストリップ線路を形成する
際、板厚精度は一般に±10%が必要である。板厚精度
が悪く、プリント配線板個々の板厚精度の「ばらつき」
が大きい場合は、プリント配線板毎に回路調整を行え
ば、正常に動作させる事ができる。しかし、プリント配
線板毎の調整は、測定、トリミング加工といったプロセ
スの追加が必要であるため、コスト、生産効率の上か
ら、板厚精度が要求され、±10%以内が望ましい。
In general, when forming a microstrip line, the thickness accuracy is generally required to be ± 10%. Poor board thickness accuracy, "variation" in board thickness accuracy of each printed wiring board
Is large, normal operation can be achieved by adjusting the circuit for each printed wiring board. However, since adjustment for each printed wiring board requires additional processes such as measurement and trimming, plate thickness accuracy is required in view of cost and production efficiency, and is preferably within ± 10%.

【0018】本発明の両面銅張積層板(コア材)を用い
る方法では、十分可能だが、図7のプリプレグ5を用い
る通常の方法では、±10%の板厚精度を得る事は困難
である。絶縁材の板厚は、0.05mm〜1.2mmが
適しており、0.2mm〜0.6mmが好適である。
0.05mmより薄い場合は、両面銅張積層板といえど
も板厚精度±10%に入れるのは難しい。
Although the method using the double-sided copper-clad laminate (core material) of the present invention is sufficient, it is difficult to obtain ± 10% thickness accuracy by the usual method using the prepreg 5 of FIG. . The board thickness of the insulating material is suitably 0.05 mm to 1.2 mm, and preferably 0.2 mm to 0.6 mm.
If the thickness is less than 0.05 mm, it is difficult to achieve a thickness accuracy of ± 10% even for a double-sided copper-clad laminate.

【0019】また、1.2mmより厚い場合は、完成し
たプリント配線板が厚くなりすぎ、かつ、パターン幅が
広くなりすぎ、本発明の目的である高密度化に支障が出
てくる。マイクロストリップ線路の場合、パターン幅ω
と、板厚hの関係は、
On the other hand, when the thickness is larger than 1.2 mm, the completed printed wiring board becomes too thick and the pattern width becomes too wide, which hinders the high density as the object of the present invention. In the case of a microstrip line, the pattern width ω
And the thickness h

【0020】[0020]

【数1】 で近似される。(Equation 1) Is approximated by

【0021】銅箔の厚さは、通常に用いられる12〜7
0μmの厚みのものが適している。一方、L1とL3、
L4、L5のいずれかの層とをL2を介在せずに、スル
ーホールにより結線する必要がある場合は、図7のよう
に予めL2のみのパターン形成した両面積層板を用いて
もよい。
The thickness of the copper foil is usually 12 to 7
Those having a thickness of 0 μm are suitable. On the other hand, L1 and L3,
When it is necessary to connect to any of the layers L4 and L5 by through holes without interposing L2, a double-sided laminated plate in which only L2 is formed in advance as shown in FIG. 7 may be used.

【0022】次に、ロジック回路やアナログ回路の低周
波回路や電源となる部分L3、L4を通常のガラス布基
材エポキシ樹脂両面銅張積層板C(図1)で形成する。
この両面積層板Cは、通常一般に用いられるものを用い
る事ができ、寸法安定性や接着性およびドリル加工性が
優れている事が重要である。
Next, parts L3 and L4 serving as a low frequency circuit and a power supply of a logic circuit and an analog circuit are formed by a normal glass cloth base epoxy resin double-sided copper-clad laminate C (FIG. 1).
As this double-sided laminated board C, a commonly used one can be used, and it is important that the dimensional stability, adhesiveness, and drill workability are excellent.

【0023】次に、高周波用両面銅張積層板Aと、低周
波用両面銅張積層板Cと、低周波用プリプレグ3と、銅
箔2とを図1に示すように積層し、加熱加圧し、図2に
示すす積層体6を得た。
Next, the high-frequency double-sided copper-clad laminate A, the low-frequency double-sided copper-clad laminate C, the low-frequency prepreg 3 and the copper foil 2 are laminated as shown in FIG. Then, a laminate 6 shown in FIG. 2 was obtained.

【0024】次に、この積層体6にスルーホール孔を明
け、図3に示す孔明けした積層体7を得る。次いで、ス
ルーホールメッキを施し、図4に示すメッキを行った積
層体8を得る。このメッキ層の形成は、通常の方法によ
る無電解メッキにより行うか、無電解メッキと電解メッ
キを併用して行う。
Next, through-holes are formed in the laminate 6 to obtain a perforated laminate 7 shown in FIG. Next, through-hole plating is performed to obtain a laminated body 8 plated as shown in FIG. This plating layer is formed by electroless plating by a usual method, or by using both electroless plating and electrolytic plating.

【0025】メッキ層を形成した後、更に、外層回路を
形成して、後加工(NC孔明け、外径加工、導通チェッ
ク、銅箔表面処理、出荷検査、梱包)を経て、製品とす
る。この製品は図5に示すように高周波回路9aと低周
波回路9cからなる本発明の5層プリント配線板9であ
る。なお、以上のようにプリント配線板を製造するにあ
たり、その製造設備は既存のプリント配線板設備で足
り、特殊な設備は不要である。
After the plating layer is formed, an outer layer circuit is further formed, and post-processing (NC drilling, outer diameter processing, continuity check, copper foil surface treatment, shipping inspection, packing) is performed to obtain a product. This product is a five-layer printed wiring board 9 of the present invention comprising a high frequency circuit 9a and a low frequency circuit 9c as shown in FIG. In manufacturing the printed wiring board as described above, the manufacturing equipment is sufficient for the existing printed wiring board equipment, and no special equipment is required.

【0026】[0026]

【作用】本発明は、このように、高周波用回路を誘電特
性のよい樹脂で形成し、低周波用回路部分を、寸法安定
性、接着性、ドリル加工性に優れたエポキシ樹脂で形成
し、多層プリント配線板を作成することにより、作業性
が良好で、かつ、比較的安価な配線板を提供することが
出来る。しかも、上記高周波用回路のマイクロストリッ
プ線路を両面銅張板(コア材)を用いて形成することに
より、プリプレグを用いるよりも誘電体厚さ(絶縁層)
が安定し、それにより回路安定化のキーポイントとなる
特性インピーダンスが安定化でき、プレス成形温度が高
く時間も長い樹脂を使わず、エポキシ樹脂のみで積層プ
レスが出来るため、比較的低温、短時間で積層プレスが
出来る。
According to the present invention, the high-frequency circuit is formed of a resin having good dielectric properties, and the low-frequency circuit is formed of an epoxy resin having excellent dimensional stability, adhesiveness, and drillability. By producing a multilayer printed wiring board, it is possible to provide a wiring board with good workability and relatively low cost. Moreover, by forming the microstrip line of the circuit for high frequency using a double-sided copper-clad board (core material), the dielectric thickness (insulating layer) is higher than using a prepreg.
The characteristic impedance, which is a key point for circuit stabilization, can be stabilized, and the lamination press can be performed using only epoxy resin without using a resin that has a high press molding temperature and a long time. Can be used for laminating press.

【0027】[0027]

【実施例】以下、本発明の多層プリント配線板の実施例
を図面に基づいて説明するが、本発明はこの実施例に限
定されるものでない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the multilayer printed wiring board of the present invention will be described below with reference to the drawings, but the present invention is not limited to these embodiments.

【0028】〔実施例1〕実施例1としては、まず、図
1において、高周波両面銅張積層板Aは、高周波用絶縁
層1と銅箔2がビスマレイミドトリアジン樹脂を主成分
とする三菱ガス化学製の両面銅張積層板CCL−HL8
70(板厚0.3mm、銅箔厚35/35μm)「誘電
率3.3、誘電正接0.002at1GHz」を使用し
た。
[Example 1] In Example 1, first, in FIG. 1, a high-frequency double-sided copper-clad laminate A was manufactured by using Mitsubishi Gas having a high-frequency insulating layer 1 and a copper foil 2 mainly composed of a bismaleimide triazine resin. Chemical double-sided copper-clad laminate CCL-HL8
70 (plate thickness 0.3 mm, copper foil thickness 35/35 μm) “dielectric constant 3.3, dielectric loss tangent 0.002 at 1 GHz” was used.

【0029】また、低周波用のガラス布基材エポキシ樹
脂絶縁層4を持つ両面銅張積層板、低周波用絶縁層Cと
して、東芝ケミカル社製、TLC−W−551、厚さ
0.3mm、銅箔厚さL3/L4=35μm/35μm
を使用し、写真法により所望のパターンを形成した。
Further, a double-sided copper-clad laminate having a low-frequency glass cloth base epoxy resin insulating layer 4 and a low-frequency insulating layer C manufactured by Toshiba Chemical Company, TLC-W-551, 0.3 mm thick , Copper foil thickness L3 / L4 = 35 μm / 35 μm
And a desired pattern was formed by a photographic method.

【0030】即ち、低周波用絶縁層CのL3とL4を形
成する銅箔2の表面を、5%硫酸処理とブラシ掛けによ
り整面し、L3とL4の銅箔2の全面にそれぞれドライ
フィルム(旭化成工業製、サンフォートAQ5044)
を貼り合わせた。次に、パターンフィルムを介して露光
し(オーク社製、露光機、HMW−551D)、3%炭
酸ソーダで現像し、塩化第2鉄溶液でエッチングし、3
%炭酸ソーダでドライフィルムを剥離して、L3とL4
のパターンを形成した。次に図2に示す積層体6を熱圧
着により形成した。
That is, the surface of the copper foil 2 forming the layers L3 and L4 of the low-frequency insulating layer C is adjusted by 5% sulfuric acid treatment and brushing, and a dry film is formed on the entire surface of the copper foil 2 of L3 and L4. (Asahi Kasei Kogyo, Sunfort AQ5044)
Were pasted together. Next, exposure was performed through a pattern film (Oak Co., Ltd., exposure machine, HMW-551D), developed with 3% sodium carbonate, and etched with a ferric chloride solution.
The dry film is peeled off with LCO and L4
Was formed. Next, the laminate 6 shown in FIG. 2 was formed by thermocompression bonding.

【0031】この場合、ガラス布基材エポキシ樹脂プリ
プレグ、低周波用プリプレグ3としては、東芝ケミカル
社製、TLP551(厚さ0.1mm)を使用し、銅箔
2は18μmのものを使用した。
In this case, as the glass cloth base epoxy resin prepreg and the low frequency prepreg 3, TLP551 (0.1 mm thick) manufactured by Toshiba Chemical Co., Ltd. was used, and the copper foil 2 was 18 μm thick.

【0032】また、高周波両面銅張積層板A、と低周波
用絶縁層Cの銅箔面は、積層プレス前に、ブラックオキ
サイド処理を行った。次いで、積層プレス(北川精機
製、真空積層プレス装置VH2−1315)を使用し
て、全体を180℃、40kg/cm2 、100分で加
熱圧着し、図2に示す積層体6を得た。
The copper foil surfaces of the high-frequency double-sided copper-clad laminate A and the low-frequency insulating layer C were subjected to black oxide treatment before the laminating press. Next, the whole was heat-pressed at 180 ° C., 40 kg / cm 2 for 100 minutes using a laminating press (manufactured by Kitagawa Seiki, vacuum laminating press apparatus VH2-1315) to obtain a laminate 6 shown in FIG.

【0033】この積層体6に、図3に示すように、スル
ーホール孔をNCドリルマシン(日立精工社製、H─M
ARK90J)、ドリル径0.3mmのドリルを装着し
て孔を明け、積層体7となした。
As shown in FIG. 3, a through-hole hole is formed in this laminate 6 by an NC drill machine (HTM, manufactured by Hitachi Seiko Co., Ltd.).
ARK90J), and a drill having a drill diameter of 0.3 mm was attached to form a hole.

【0034】その後、図4に示すように、この積層体7
をメッキし、メッキを行った積層体8となした。この場
合、まず、無電解メッキにより積層体全体に薄くメッキ
を行い、つづいて、電解メッキにより厚さ25μmのメ
ッキを形成した。
Thereafter, as shown in FIG.
To obtain a plated laminate 8. In this case, first, the entire laminated body was thinly plated by electroless plating, and subsequently, 25 μm thick plating was formed by electrolytic plating.

【0035】最外層となっている銅箔L1とL5にパタ
ーンを形成し、図5に示す積層体9を得た。最後に、外
形を切断し、表面に保護膜塗料を塗布し、本発明の多層
のプリント配線板を得る。
A pattern was formed on the outermost copper foils L1 and L5 to obtain a laminate 9 shown in FIG. Finally, the outer shape is cut, and a protective film paint is applied to the surface to obtain a multilayer printed wiring board of the present invention.

【0036】得られたプリント配線板の銅箔L1/L2
間の誘電体の厚さは10枚の測定で、0.28mmから
0.32mmで、厚さ精度は±10%を満たしていた。
測定は、プリント配線板の断面を顕微鏡観察により測定
した。
The copper foil L1 / L2 of the obtained printed wiring board
The thickness of the dielectric between them was 0.28 mm to 0.32 mm in ten measurements, and the thickness accuracy satisfied ± 10%.
The measurement was performed by observing a cross section of the printed wiring board with a microscope.

【0037】〔実施例2〕実施例2は、高周波用両面銅
張積層板Aとして、高周波絶縁層1がポリフェニレンエ
ーテルである旭苛性工業製の両面銅張積層板 PPE基
板(Eガラス)、板厚(銅箔2込み)0.3mm、銅箔
2の厚さ18μm/18μm)「誘電率2.9、誘電正
接0.003at2GHz」を用い、図6に示す銅箔L
2を写真法でパターン形成した。
Example 2 In Example 2, a double-sided copper-clad laminate made by Asahi Kasei Kogyo Co., Ltd., in which the high-frequency insulating layer 1 was made of polyphenylene ether, a PPE substrate (E glass), The thickness (including the copper foil 2) 0.3 mm, the thickness of the copper foil 2 18 μm / 18 μm) Using “dielectric constant 2.9, dielectric loss tangent 0.003 at 2 GHz”, the copper foil L shown in FIG.
2 was patterned by photographic method.

【0038】以下は、実施例1と同様な方法でプリント
配線板を得た。銅箔L1/L2間の誘電体厚みは0.2
7mm〜0.30mmで、厚み精度は±10%を満たし
てした。
Thereafter, a printed wiring board was obtained in the same manner as in Example 1. The dielectric thickness between the copper foils L1 / L2 is 0.2
It was 7 mm to 0.30 mm, and the thickness accuracy satisfied ± 10%.

【0039】〔実施例3〕実施例3は、図7に沿って説
明する。高周波用プリプレグ5として、三菱ガス化学社
製、ビスマレイミドトリアジン主成分のプリプレグGH
PL870、厚さ0.1mmのものを3枚使用し、積
層、プレス温度200℃にした他は、他の材料、方法は
実施例1と同様に、この実施例3のプリント配線板を作
成した。
Third Embodiment A third embodiment will be described with reference to FIG. As a high frequency prepreg 5, a prepreg GH composed mainly of bismaleimide triazine manufactured by Mitsubishi Gas Chemical Company, Inc.
A printed wiring board of Example 3 was prepared in the same manner as in Example 1 except that three sheets of PL870 having a thickness of 0.1 mm were used, and the stacking and pressing temperature were set to 200 ° C. .

【0040】出来あがったプリント配線板の銅箔L1/
L2間の厚みは0.2mm〜0.28mmで±10%の
精度は得られず、無調整では、回路動作は困難である
が、調整すれば、動作する板厚精度である。
The finished printed circuit board copper foil L1 /
Since the thickness between L2 is 0.2 mm to 0.28 mm, the accuracy of ± 10% cannot be obtained, and it is difficult to operate the circuit without adjustment.

【0041】〔比較例1〕従来の低周波用プリント配線
板として、絶縁層が全てガラス布基材エポキシ樹脂から
なる図8に示す構成の比較例1を作成した。
Comparative Example 1 As a conventional low frequency printed wiring board, Comparative Example 1 having a structure shown in FIG. 8 in which the insulating layer was entirely made of a glass cloth base epoxy resin was prepared.

【0042】低周波用絶縁層Cとして、東芝ケミカル社
製、TLC−W−551(厚さ0.3mm、銅箔2の厚
さ35μm/35μm)を使用し、低周波用プリプレグ
3として東芝ケミカル社製、TLP551(厚さ0.1
mm)を使用し、銅箔2は18μmのものを使用した。
As the low-frequency insulating layer C, TLC-W-551 (thickness 0.3 mm, copper foil 2 thickness 35 μm / 35 μm) manufactured by Toshiba Chemical Co., Ltd. was used, and the low-frequency prepreg 3 was used as the low-frequency prepreg 3. Manufactured by TLP551 (0.1
mm), and the copper foil 2 used was 18 μm.

【0043】実施例1と同様に熱圧着、スルーホール孔
明け、銅メッキ、外層パターン形成、外形切断、表面保
護塗料処理を行い、全ての絶縁層がガラス布基材エポキ
シ樹脂からなる比較例1を作成した。
In the same manner as in Example 1, thermocompression bonding, through-hole drilling, copper plating, outer layer pattern formation, outer shape cutting, surface protection coating treatment were performed, and all insulating layers were made of glass cloth base epoxy resin. It was created.

【0044】〔比較例2〕従来の高周波用プリント配線
板として、絶縁層が全てガラス布基材ポリフェニレンエ
ーテル樹脂からなる図9に示す構成の比較例2を作成し
た。
Comparative Example 2 As a conventional high-frequency printed wiring board, Comparative Example 2 having a structure shown in FIG. 9 in which the insulating layer was entirely made of a glass cloth base material polyphenylene ether resin was prepared.

【0045】高周波用絶縁層Aとして、旭化成工業製の
両面銅張積層板、PPE基板(Eガラス)(板厚0.3
mm、銅箔2の厚さ18μm/18μm)「誘電率2.
9、誘電正接0.003at2GHz」を用い、高周波
用プリプレグ5として、旭化成製のガラス布基材ポリフ
ェニレンエーテル樹脂からなる板厚0.1mmのプリプ
レグを用い、銅箔2は18μmのものを用いた。
As the high-frequency insulating layer A, a double-sided copper-clad laminate manufactured by Asahi Kasei Corporation, a PPE substrate (E glass) (thickness 0.3
mm, thickness of copper foil 2 18 μm / 18 μm) “Dielectric constant 2.
9, a dielectric tangent of 0.003 at 2 GHz ", a 0.1 mm thick prepreg made of a glass cloth base material polyphenylene ether resin manufactured by Asahi Kasei Corporation and a copper foil 2 having a thickness of 18 μm were used as the high frequency prepreg 5.

【0046】実施例1と同様に熱圧着、スルーホール孔
明け、銅メッキ、外層パターン形成、外形切断、表面保
護塗料処理を行い、全ての絶縁層がガラス布基材ポリフ
ェニレンエーテルからなる比較例2を作成した。
In the same manner as in Example 1, thermocompression bonding, through-hole drilling, copper plating, outer layer pattern formation, outer shape cutting, surface protection paint treatment were performed, and Comparative Example 2 in which all insulating layers were made of a glass cloth base material polyphenylene ether. It was created.

【0047】〔評価〕実施例1〜3、比較例1、2につ
いて、 (1)ドリル加工性 (2)L1/L2間の高周波特性 (3)熱衝撃試験 を行い、各特性の評価を行った。
[Evaluation] For Examples 1 to 3 and Comparative Examples 1 and 2, (1) drill workability (2) High frequency characteristics between L1 / L2 (3) Thermal shock test was performed to evaluate each characteristic. Was.

【0048】[0048]

【表2】 [Table 2]

【0049】以上より実施例3は回路上の調整が必要で
あるが、実施例1〜3はドリル加工性、高周波特性とし
ても優れていることが分かった。また、比較例1は誘電
特性そのものが1GHz〜3GHzの高周波用途には不
向きなため、回路上の調整を行っても動作が困難であ
る。
From the above, it has been found that Example 3 requires adjustment on the circuit, but Examples 1 to 3 are also excellent in drilling workability and high-frequency characteristics. Further, Comparative Example 1 is not suitable for high-frequency applications in which the dielectric property itself is 1 GHz to 3 GHz, so that it is difficult to operate even if adjustments are made on the circuit.

【0050】以下に評価方法を示す。 (1)ドリル加工性 実施例1で説明した図3のスルーホール孔明け時に、1
000ヒート後のにげ面の摩耗量を測定し、評価した。
The evaluation method will be described below. (1) Drillability When drilling the through hole shown in FIG.
The wear amount of the bald surface after 000 heats was measured and evaluated.

【0051】評価基準は、 ◎ にげ面の摩耗量が20μm以内。 ○ 20μmを超え30μm以内。 △ 30μmを超え40μm以内。 × 40μmを超えたもの。The evaluation criteria are as follows: 摩 耗 The wear amount of the buffed surface is within 20 μm. ○ More than 20 μm and less than 30 μm. Δ: More than 30 μm and less than 40 μm. ×: More than 40 μm.

【0052】孔明け条件は以下の通りである。 孔明け機 日立精工社性90J ドリル 東芝タンガロイ性MD20、径φ0.4m
m 基板 実施例1の基板 2枚重ね 当て板 アルミニウム板(0.15mm) 捨て板 ベークライト板(1.5mm) 回転数 8万rpm、送り 2m/min
The drilling conditions are as follows. Drilling machine Hitachi Seikosha 90J drill Toshiba Tungaloy MD20, diameter φ0.4m
m Substrate Two substrates of Example 1 Laminated plate Aluminum plate (0.15 mm) Discard plate Bakelite plate (1.5 mm) Rotation speed 80,000 rpm, feed 2 m / min

【0053】実施例2、実施例3、比較例1、比較例2
についても同様な測定、評価を行った。
Example 2, Example 3, Comparative Example 1, Comparative Example 2
The same measurements and evaluations were performed for.

【0054】(2)L1/L2の誘電特性 実施例1のL1/L2間の誘電特性を、特性インピーダ
ンスZ0 =50Ωとなる幅で長さ50mmで1.5GH
zで測定した。
(2) Dielectric properties of L1 / L2 The dielectric properties between L1 / L2 in the first embodiment are set to 1.5 GHz with a width of 50 mm, a characteristic impedance Z 0 = 50Ω, and a length of 50 GHz.
Measured in z.

【0055】評価基準は、 ○ 誘電率3.5以下かつ誘電正接0.005以下の
もの × 誘電率4.0以上かつ誘電正接0.01以上のも
の △ それ以外のもの 実施例2、実施例3、比較例1、比較例2についても同
様な測定、評価を行った。
The evaluation criteria were as follows: ○ Dielectric constant of 3.5 or less and dielectric loss tangent of 0.005 or less × Dielectric constant of 4.0 or more and dielectric loss tangent of 0.01 or more △ Others Example 2, Example 3, the same measurement and evaluation were performed for Comparative Examples 1 and 2.

【0056】(3)L1/L2間の板厚精度 実施例1のプリント配線板の断面を顕微鏡で観察し、L
1/L2間の誘電体の厚さを測定し、板厚の「ばらつ
き」を評価した。プリント配線板10枚で各10点径1
00点を測定した。
(3) Plate Thickness Accuracy between L1 / L2 The cross section of the printed wiring board of Example 1 was observed with a microscope, and
The thickness of the dielectric between 1 / L2 was measured and the "variation" of the plate thickness was evaluated. 10 printed circuit boards each with 10 points diameter 1
00 points were measured.

【0057】 ○ 板厚の「ばらつき」が10%以内のもの △ 板厚の「ばらつき」が10%を超え30%以内の
もの × それ以外のもの 実施例2、実施例3、比較例1、比較例2についても同
様な測定、評価を行った。
○ The “variation” of the plate thickness is within 10% △ The “variation” of the plate thickness is more than 10% and within 30% × Others Example 2, Example 3, Comparative Example 1, The same measurement and evaluation were performed for Comparative Example 2.

【0058】(4)熱衝撃試験 実施例1のプリント配線板10枚に対し、JIS C5
012に従って熱衝撃試験20サイクル行い、目視で観
察を行った。 ○ 異常のないもの × 異常のあるもの 実施例2、実施例3、比較例1、比較例2についても同
様な測定、評価を行った。
(4) Thermal shock test JIS C5 was applied to 10 printed wiring boards of Example 1.
According to 012, a thermal shock test was performed for 20 cycles and observed visually.も の No abnormality × Abnormal one The same measurement and evaluation were performed for Example 2, Example 3, Comparative Example 1, and Comparative Example 2.

【0059】[0059]

【発明の効果】以上の説明からも明らかなように本発明
のプリント配線板では、高周波と低周波が混在する回路
を、セットの小型化のため1つの基板上におさめる際、
次の利点がある。 (1)高周波部分は誘電特性の良い絶縁材を用い、か
つ、板厚精度のよい両面銅張積層板を用いることによ
り、安定したマイクロストリップ線路を形成できる。 (2)その他のロジック回路、アナログ回路等の低周波
部分および電源層をガラス布基材エポキシ樹脂で形成す
ることにより、出来あがった多層プリント配線板は寸法
安定性、接着性やドリル加工性が優れた多層プリント配
線板が得られる。 (3)高周波と低周波の回路を1つの基板におさめるた
め、コストパフォーマンスに優れ、かつ、回路の小型化
が実現できる。
As is clear from the above description, in the printed wiring board of the present invention, when a circuit in which a high frequency and a low frequency are mixed is put on one substrate for downsizing a set.
There are the following advantages: (1) A stable microstrip line can be formed by using an insulating material having a good dielectric property and a double-sided copper-clad laminate having a good thickness accuracy for a high-frequency portion. (2) By forming the low-frequency parts of other logic circuits and analog circuits and the power supply layer with glass cloth base epoxy resin, the completed multilayer printed wiring board has dimensional stability, adhesiveness and drillability. An excellent multilayer printed wiring board can be obtained. (3) Since high-frequency and low-frequency circuits are accommodated on one substrate, cost performance is excellent and the circuit can be downsized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多層プリント配線板の製造方法を示す
工程図で、各部材を分解した断面図である。
FIG. 1 is a process diagram illustrating a method for manufacturing a multilayer printed wiring board according to the present invention, and is a cross-sectional view in which each member is exploded.

【図2】本発明の多層プリント配線板の製造方法を示す
工程図で、積層プレス後の積層体を示す断面図である。
FIG. 2 is a process diagram illustrating a method for manufacturing a multilayer printed wiring board according to the present invention, and is a cross-sectional view illustrating a laminate after a lamination press.

【図3】本発明の多層プリント配線板の製造方法を示す
工程図で、スルーホール孔明けした積層体を示す断面図
である。
FIG. 3 is a process diagram showing a method for manufacturing a multilayer printed wiring board according to the present invention, and is a cross-sectional view showing a laminate in which through holes are formed.

【図4】本発明の多層プリント配線板の製造方法を示す
工程図で、メッキを行った積層体を示す断面図である。
FIG. 4 is a process diagram showing a method for manufacturing a multilayer printed wiring board according to the present invention, and is a cross-sectional view showing a plated laminate.

【図5】本発明の多層プリント配線板の製造方法を示す
工程図で、外層パターン形成を行った積層体を示す断面
図である。
FIG. 5 is a process diagram illustrating a method for manufacturing a multilayer printed wiring board according to the present invention, and is a cross-sectional view illustrating a laminate on which an outer layer pattern is formed.

【図6】本発明の実施例2のL1、L2を含む両面銅張
積層板を示す断面図である。
FIG. 6 is a cross-sectional view illustrating a double-sided copper-clad laminate including L1 and L2 according to a second embodiment of the present invention.

【図7】本発明の実施例3の多層プリント配線板を示す
断面図である。
FIG. 7 is a sectional view showing a multilayer printed wiring board according to Embodiment 3 of the present invention.

【図8】従来の低周波用のものを用いた多層プリント配
線板を示す断面図である。
FIG. 8 is a cross-sectional view showing a conventional multilayer printed wiring board using a low-frequency printed circuit board.

【図9】従来の高周波用のものを用いた多層プリント配
線板を示す断面図である。
FIG. 9 is a cross-sectional view showing a conventional multilayer printed wiring board using a high-frequency printed circuit board.

【符号の説明】[Explanation of symbols]

A 高周波用両面銅張積層板(コア材) 1 ε≦3.5、tanδ≦0.005の高周波絶縁
層 2 銅箔 3 低周波用プリプレグ C 低周波用両面銅張積層板 4 低周波用絶縁層 5 ε≦3.5、tanδ≦0.005の高周波用プ
リプレグ 6 積層体 7 孔明けした積層体 8 メッキを行った積層体 9 本発明の5層プリント配線板 9a 高周波回路 9b 低周波回路
A High-frequency double-sided copper-clad laminate (core material) 1 High-frequency insulating layer with ε ≦ 3.5, tanδ ≦ 0.005 2 Copper foil 3 Low-frequency prepreg C Low-frequency double-sided copper-clad laminate 4 Low-frequency insulation Layer 5 High frequency prepreg with ε ≦ 3.5, tan δ ≦ 0.005 6 Laminated body 7 Perforated laminated body 8 Plated laminated body 9 Five-layer printed wiring board of the present invention 9a High frequency circuit 9b Low frequency circuit

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H05K 3/46 H01P 3/08 H01P 11/00 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) H05K 3/46 H01P 3/08 H01P 11/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも一方の最外層にマイクロストリ
ップ線路が形成される高周波回路と低周波回路が混在す
る多層プリント配線板において、前記高周波回路は、両面銅張積層板の一方の主面に形成
されており、 前記最外層のマイクロストリップ線路の信号線と前記最
外層の次の層の基準面導体の間の誘電体が、周波数が1
GHz 以上15GHz 以下で、誘電率が3.5以下、誘
電正接が0.005以下、厚さが基準値に対して±10
%以内であり、 前記低周波回路を構成する 内層部分の誘電体がガラス布
基材エポキシ樹脂からなることを特徴とする多層プリン
ト配線板。
(1) A microstrip is formed on at least one outermost layer.
High circumference where the top line is formedWave timesRoad and low lapWave timesRoads are mixed
Multi-layer printed wiring boardThe high-frequency circuit is formed on one main surface of the double-sided copper-clad laminate
Has been  The signal line of the outermost microstrip line and the
The dielectric between the reference plane conductor of the next layer of the outer layer has a frequency of 1
GHzthat's all15GHzLess thanWith a dielectric constant of 3.5 or less,
Electric tangent is 0.005 or less,Thickness ± 10 with respect to the reference value
% Construct the low frequency circuit The inner dielectric is glass cloth
Multi-layer pudding characterized by comprising an epoxy resin base material
Wiring board.
【請求項2】周波数が1GHz 以上15GHz 以下で、
誘電率が3.5以下、誘電正接が0.005以下の誘電
体の樹脂成分が、ビスマレイミドトリアジン樹脂、ポリ
フェニレンエーテル及びその誘導体が主成分である請求
項1記載の多層プリント配線板。
In 2. The following frequencies above 1 GHz 15 GHz,
2. The multilayer printed wiring board according to claim 1, wherein the resin component of the dielectric having a dielectric constant of 3.5 or less and a dielectric tangent of 0.005 or less is a bismaleimide triazine resin, polyphenylene ether or a derivative thereof as a main component.
【請求項3】少なくとも一方の最外層にマイクロストリ
ップ線路が形成される高周波回路と低周波回路が混在す
る多層プリント配線板の製造方法において、 前記高周波回路は両面銅張積層板の一方の主面に形成さ
れた後、前記低周波回路を構成する内層回路基板が積層
されたことを特徴とする多層プリント配線板の製造方
法。
(3)At least one outermost layer
High frequency circuit and low frequency circuit where
In a method for manufacturing a multilayer printed wiring board, The high frequency circuit is formed on one main surface of the double-sided copper-clad laminate.
After that, the inner circuit boards constituting the low-frequency circuit are laminated.
Of manufacturing a multilayer printed wiring board characterized by the following.
Law.
【請求項4】(4) 前記最外層のマイクロストリップ線路の信The signal of the outermost microstrip line
号線と前記最外層の次の層の基準面導体の間の誘電体Dielectric between the line and the reference plane conductor of the layer next to the outermost layer
が、周波数が1GHz 以上15GHz 以下で、誘電率がHowever, when the frequency is 1 GHz or more and 15 GHz or less and the dielectric constant is
3.5以下、誘電正接が0.005以下、厚さが基準値3.5 or less, dielectric loss tangent is 0.005 or less, thickness is the standard value
に対して±10%以内、かつ、前記低周波回路を構成すWithin ± 10% of the low-frequency circuit
る内層部分の誘電体がガラス布基材エポキシ樹脂からなThe inner dielectric layer is made of glass cloth epoxy resin.
ることを特徴とする請求項3記載の多層プリント配線板4. The multilayer printed wiring board according to claim 3, wherein
の製造方法。Manufacturing method.
【請求項5】(5) 周波数が1GHz 以上15GHz 以下で、If the frequency is between 1 GHz and 15 GHz,
誘電率が3.5以下、誘電正接が0Dielectric constant is 3.5 or less, dielectric loss tangent is 0 .005以下の誘電. 005 or less dielectric
体の樹脂成分が、ビスマレイミドトリアジン樹脂、ポリThe resin component of the body is bismaleimide triazine resin, poly
フェニレンエーテル及びその誘導体が主成分である請求The main component is phenylene ether and its derivatives
項3記載の多層プリント配線板の製造方法。Item 4. The method for producing a multilayer printed wiring board according to Item 3.
JP16285792A 1992-06-22 1992-06-22 Multilayer printed wiring board and method of manufacturing the same Expired - Fee Related JP3208737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16285792A JP3208737B2 (en) 1992-06-22 1992-06-22 Multilayer printed wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16285792A JP3208737B2 (en) 1992-06-22 1992-06-22 Multilayer printed wiring board and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH065998A JPH065998A (en) 1994-01-14
JP3208737B2 true JP3208737B2 (en) 2001-09-17

Family

ID=15762572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16285792A Expired - Fee Related JP3208737B2 (en) 1992-06-22 1992-06-22 Multilayer printed wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3208737B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005093948A1 (en) * 2004-03-26 2008-02-14 株式会社日立国際電気 amplifier
KR102043733B1 (en) 2012-05-10 2019-11-12 히타치가세이가부시끼가이샤 Multilayer wiring board
JP5950683B2 (en) * 2012-05-14 2016-07-13 三菱電機株式会社 Multilayer substrate, printed circuit board, semiconductor package substrate, semiconductor package, semiconductor chip, semiconductor device, information processing apparatus and communication apparatus
JP6444651B2 (en) * 2014-08-12 2018-12-26 日本シイエムケイ株式会社 Multilayer printed wiring board
JP2018018935A (en) * 2016-07-27 2018-02-01 イビデン株式会社 Printed wiring board and manufacturing method of the same
JP6973667B2 (en) 2018-12-18 2021-12-01 株式会社村田製作所 Circuit boards and electronic devices
KR102507550B1 (en) * 2021-04-19 2023-03-09 주식회사 디에이피 Printed circuit board and its manufacturing method
JP2023044528A (en) * 2021-09-17 2023-03-30 京セラ株式会社 circuit board

Also Published As

Publication number Publication date
JPH065998A (en) 1994-01-14

Similar Documents

Publication Publication Date Title
JP2777747B2 (en) Multilayer printed circuit board with built-in printed resistor having electromagnetic wave shielding layer
US8242380B2 (en) Printed circuit board substrate and method for constructing same
WO2003063238A1 (en) High-frequency module and its manufacturing method
EP2413674B1 (en) Method of manufacturing a printed circuit board
JP3208737B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP2004007006A (en) Multilayer wiring board
JP4363947B2 (en) Multilayer wiring circuit board and method for manufacturing the same
US20030178388A1 (en) Inverted micro-vias
JPH08181458A (en) Multilayer printed circuit board and manufacture thereof
JP4061137B2 (en) Multilayer resin wiring board and manufacturing method thereof
JP2000165052A (en) Multilayer wiring board
JP2003046247A (en) Multilayer printed wiring board and its manufacturing method
CN112689383A (en) High-frequency low-loss multilayer FPC and production process thereof
JPH0897564A (en) Multilayer wiring board and its manufacturing method
JP2003273509A (en) Wiring board and its manufacturing method
KR100649683B1 (en) Printed circuit board and method for manufacturing the same
CN213880404U (en) High-frequency low-loss multilayer FPC
JP4126753B2 (en) Multilayer board
KR20030057998A (en) Multilayer inductor made of ltcc
JP4248827B2 (en) Multilayer wiring board and manufacturing method thereof
Daigle Printed circuit board material and design considerations for wireless applications
JP2002271028A (en) Coil-incorporated multi-layer substrate and its manufacturing method, and manufacturing method for laminated coil
JP2002232147A (en) Multilayer wiring board and its producing method
JP2002290046A (en) Wiring board and manufacturing method thereof
JPH0541580A (en) Multilayer circuit board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees