JP3207773B2 - Compound semiconductor light emitting device and method of manufacturing the same - Google Patents

Compound semiconductor light emitting device and method of manufacturing the same

Info

Publication number
JP3207773B2
JP3207773B2 JP32855896A JP32855896A JP3207773B2 JP 3207773 B2 JP3207773 B2 JP 3207773B2 JP 32855896 A JP32855896 A JP 32855896A JP 32855896 A JP32855896 A JP 32855896A JP 3207773 B2 JP3207773 B2 JP 3207773B2
Authority
JP
Japan
Prior art keywords
layer
conductivity type
electrode
forming
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32855896A
Other languages
Japanese (ja)
Other versions
JPH10173224A (en
Inventor
治彦 岡崎
幸雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32855896A priority Critical patent/JP3207773B2/en
Priority to US08/871,401 priority patent/US5977566A/en
Publication of JPH10173224A publication Critical patent/JPH10173224A/en
Priority to US09/309,598 priority patent/US6316792B1/en
Application granted granted Critical
Publication of JP3207773B2 publication Critical patent/JP3207773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体層か
ら光を取り出す化合物半導体発光素子に関し、特に透明
電極を利用した化合物半導体発光素子及びその製造方法
に関する。
The present invention relates to a compound semiconductor light emitting device for extracting light from a compound semiconductor layer, and more particularly to a compound semiconductor light emitting device using a transparent electrode and a method for manufacturing the same.

【0002】[0002]

【従来の技術】以前より、半導体発光素子の開発が盛ん
に行われているが、青色や緑色などの発光強度の高い色
を発光させるのがなかなか困難であった。そこで最近、
GaN、InGaN、GaAlN等のGaN系化合物半
導体材料を用いた発光素子が、青色発光ダイオード(L
ED)やレーザダイオード(LD)として注目されてき
た。
2. Description of the Related Art Semiconductor light emitting devices have been actively developed for some time, but it has been very difficult to emit light having a high light emission intensity such as blue or green. So recently,
A light-emitting element using a GaN-based compound semiconductor material such as GaN, InGaN, and GaAlN is a blue light-emitting diode (L
ED) and laser diodes (LD).

【0003】このGaN系化合物半導体発光素子は、サ
ファイア基板上に化合物半導体層を成長させる。サファ
イア基板は絶縁性基板であるため、GaAs等を用いた
発光素子のように基板側に電極を設けることができな
い。そこで、化合物半導体成長層側にP側電極、N側電
極を共に形成する必要がある。さらに、サファイア基板
が発光波長に対して透光性があるため、サファイア基板
を上、電極側を下にしてマウントし、サファイア基板側
から光を取り出すことが多い。
In this GaN-based compound semiconductor light emitting device, a compound semiconductor layer is grown on a sapphire substrate. Since the sapphire substrate is an insulating substrate, an electrode cannot be provided on the substrate side unlike a light emitting element using GaAs or the like. Therefore, it is necessary to form both the P-side electrode and the N-side electrode on the compound semiconductor growth layer side. Furthermore, since the sapphire substrate has a light-transmitting property with respect to the emission wavelength, the sapphire substrate is often mounted with the electrode side down and light is extracted from the sapphire substrate side.

【0004】図12は、従来のGaN系化合物半導体発
光素子の断面構造図である。サファイア基板1の上に、
電極9,17が下に向けられている。サファイア基板1
の下にはGaNバッファ層3、n型GaN層5、p型G
aN層7が結晶成長している。p型GaN層7の一部が
エッチング除去されて露出したn型GaN層5にN側電
極9が、p型GaN層7にP側電極17が形成されてい
る。これらP側電極17とN側電極9が、リードフレー
ム53の上に銀ペースト等の導電性接着剤料55でマウ
ントされている。
FIG. 12 is a sectional structural view of a conventional GaN-based compound semiconductor light emitting device. On the sapphire substrate 1,
The electrodes 9, 17 are facing down. Sapphire substrate 1
Below the GaN buffer layer 3, the n-type GaN layer 5, the p-type G
The aN layer 7 has grown. An N-side electrode 9 is formed on the n-type GaN layer 5, which is exposed by partially removing the p-type GaN layer 7, and a P-side electrode 17 is formed on the p-type GaN layer 7. The P-side electrode 17 and the N-side electrode 9 are mounted on a lead frame 53 with a conductive adhesive material 55 such as a silver paste.

【0005】このような構造のGaN系化合物半導体発
光素子では、図のようにn型GaN層5を介してp型G
aN層7からN側電極9へ向けて電流が流れ、n型Ga
N層5とp型GaN層7との接合面で発光した光が、サ
ファイア基板1を通して取り出される。
In a GaN-based compound semiconductor light-emitting device having such a structure, as shown in FIG.
A current flows from the aN layer 7 to the N-side electrode 9 and the n-type Ga
Light emitted at the junction between the N layer 5 and the p-type GaN layer 7 is extracted through the sapphire substrate 1.

【0006】一方、GaAs、AlGaAs、AlGa
InP等のGaAs系化合物半導体材料を用いた発光素
子も、赤色や緑色系の発光ダイオードとして多用されて
いる。このGaAs系化合物半導体発光素子は、GaA
s基板上に複数層のAlGaInP層を積層させ、P側
電極あるいはN側電極の一方をAlGaInP層側に、
他方をGaAs基板裏面に形成する。
On the other hand, GaAs, AlGaAs, AlGa
Light emitting devices using a GaAs compound semiconductor material such as InP are also widely used as red or green light emitting diodes. This GaAs-based compound semiconductor light emitting device is composed of GaAs
A plurality of AlGaInP layers are stacked on an s substrate, and one of a P-side electrode and an N-side electrode is placed on the AlGaInP layer side.
The other is formed on the back surface of the GaAs substrate.

【0007】活性層で発光した光を、電極で遮られるこ
となくAlGaInP層側から取り出すために、電流を
拡散して活性層へ注入するための電流拡散層が設けられ
ている。
In order to extract light emitted from the active layer from the AlGaInP layer side without being blocked by the electrodes, a current diffusion layer for diffusing current and injecting the current into the active layer is provided.

【0008】図13は、従来のGaAs系化合物半導体
発光素子の断面構造図である。n型GaAs基板31の
上にn型GaAsバッファ層33、n型AlGaInP
クラッド層35、AlGaInP活性層37、p型Al
GaInPクラッド層39、p型AlGaAs電流拡散
層57、p型GaAsコンタクト層43が成長してい
る。p型GaAsコンタクト層43の上にP側電極49
が、n型GaAs基板31の裏面にN側電極51が形成
されている。
FIG. 13 is a sectional view of a conventional GaAs compound semiconductor light emitting device. On an n-type GaAs substrate 31, an n-type GaAs buffer layer 33 and an n-type AlGaInP
Clad layer 35, AlGaInP active layer 37, p-type Al
A GaInP cladding layer 39, a p-type AlGaAs current diffusion layer 57, and a p-type GaAs contact layer 43 are grown. A p-side electrode 49 is formed on the p-type GaAs contact layer 43.
However, an N-side electrode 51 is formed on the back surface of the n-type GaAs substrate 31.

【0009】このような構造のGaAs系化合物半導体
発光素子では、P側電極49から流れる電流が、p型A
lGaAs電流拡散層57で拡散されてAlGaInP
活性層37に注入され、AlGaInP活性層37とp
型AlGaInPクラッド層39との接合面で発光した
光が、P側電極49の側から取り出される。
In the GaAs compound semiconductor light emitting device having such a structure, the current flowing from the P-side electrode 49 is p-type A type.
AlGaInP diffused by the lGaAs current diffusion layer 57
The AlGaInP active layer 37 is injected into the active
Light emitted at the junction surface with the AlGaInP cladding layer 39 is extracted from the P-side electrode 49 side.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、図12
で示した従来のGaN系化合物半導体発光素子では、導
電性接着剤料55がリードフレーム53の間やpn接合
59にまで広がり易く、電極間ショートあるいは接合間
ショートによる不良が生じていた。これを避けるために
素子サイズを大きくしてリードフレーム53の間隔を広
くすることが考えられるが、1枚のウエハから取れる素
子数が低下し、生産コストが高くなるという欠点があ
る。また、リードフレーム53と素子とのマウント位置
精度が高精度を要するため、量産性に欠けるという問題
もあった。
However, FIG.
In the conventional GaN-based compound semiconductor light-emitting device shown in (1), the conductive adhesive material 55 easily spreads between the lead frames 53 and the pn junction 59, and a failure due to a short between electrodes or a short between junctions has occurred. In order to avoid this, it is conceivable to increase the element size and widen the interval between the lead frames 53. However, there is a disadvantage that the number of elements that can be obtained from one wafer decreases and the production cost increases. In addition, there is a problem that mass mounting is lacking because the mounting position accuracy between the lead frame 53 and the element requires high accuracy.

【0011】一方、図13で示した従来のGaAs系化
合物半導体発光素子では、p型AlGaAs電流拡散層
57の厚さが不十分であると電流が十分に拡散されず、
P側電極49の直下のAlGaInP活性層37のみに
電流が注入され、発光した光がP側電極49に遮られて
十分に取り出せなくなる。電流拡散が不十分であると、
均一な発光が得られず、外部量子効率が著しく低下し、
十分な発光パワーが得られないという欠点があった。こ
れを防ぐにはp型AlGaAs電流拡散層57を厚くす
る必要があるため、生産性コストが高くなるという問題
があった。
On the other hand, in the conventional GaAs compound semiconductor light emitting device shown in FIG. 13, if the thickness of the p-type AlGaAs current diffusion layer 57 is insufficient, the current is not sufficiently diffused.
Current is injected only into the AlGaInP active layer 37 immediately below the P-side electrode 49, and the emitted light is blocked by the P-side electrode 49 and cannot be sufficiently extracted. If current spreading is insufficient,
Uniform light emission is not obtained, external quantum efficiency is significantly reduced,
There is a drawback that sufficient light emission power cannot be obtained. In order to prevent this, the thickness of the p-type AlGaAs current diffusion layer 57 needs to be increased, so that there is a problem that the productivity cost is increased.

【0012】さらに、従来例として特開平7−1310
70のように、オーミック接合特性を示す金属の透明導
電膜と、光の波長近傍に最大透過率を持つ透明導電膜と
の組み合わせも提案されているが、メサエッチングが必
要であり、pn接合保護が不十分で信頼性に欠ける。
Further, as a conventional example, Japanese Patent Application Laid-Open No. 7-1310
Although a combination of a metal transparent conductive film exhibiting ohmic junction characteristics and a transparent conductive film having a maximum transmittance in the vicinity of the light wavelength as in the case of 70 has also been proposed, it requires mesa etching and protects the pn junction protection. Is insufficient and unreliable.

【0013】本発明は以上のような問題に鑑みて成され
たものであり、その目的は、生産コストが低く、量産性
に適し、かつ十分な発光パワーが得られる化合物半導体
発光素子及びその製造方法を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a compound semiconductor light emitting device which has a low production cost, is suitable for mass production, and has sufficient light emission power, and its production. Is to provide a way.

【0014】[0014]

【課題を解決するための手段】上述した目的を達成する
ため、本発明の第1の発明の特徴は、GaN系化合物半
導体層から光を取り出す化合物半導体発光素子であっ
て、サファイア基板と、該サファイア基板上に成長した
第1導電型GaN層と、該第1導電型GaN層上に成長
した第2導電型GaN層と、該第2導電型GaN層と絶
縁され、前記第1導電型GaN層上に形成された第1電
極と、前記第2導電型GaN層上の一部領域に形成され
た絶縁膜と、前記第2導電型GaN層上の前記絶縁膜形
成領域以外の領域に形成された、前記第2導電型GaN
層と同一導電型ドーパントを含む金属薄膜電極と、該金
属薄膜電極上に形成された透明電極と、前記絶縁膜上に
形成され、少なくとも前記透明電極の一部と接する第2
電極とを具備したことにある。
Means for Solving the Problems To achieve the above object, a first aspect of the present invention is a compound semiconductor light emitting device for extracting light from a GaN-based compound semiconductor layer, comprising a sapphire substrate, A first conductivity type GaN layer grown on a sapphire substrate, a second conductivity type GaN layer grown on the first conductivity type GaN layer, and insulated from the second conductivity type GaN layer; A first electrode formed on the second conductive type GaN layer, an insulating film formed in a partial region on the second conductive type GaN layer, and a first electrode formed on a region other than the insulating film forming region on the second conductive type GaN layer The second conductivity type GaN
A metal thin film electrode containing a dopant of the same conductivity type as the layer, a transparent electrode formed on the metal thin film electrode, and a second electrode formed on the insulating film and in contact with at least a part of the transparent electrode.
And an electrode.

【0015】第2の発明の特徴は、GaN系化合物半導
体層から光を取り出す化合物半導体発光素子の製造方法
であって、サファイア基板上に第1導電型GaN層を成
長させる工程と、該第1導電型GaN層上に第2導電型
GaN層を成長させる工程と、前記第1導電型GaN層
上に前記第2導電型GaN層と絶縁する第1電極を形成
する工程と、前記第2導電型GaN層上の一部領域に絶
縁膜を形成する工程と、前記第2導電型GaN層上の前
記絶縁膜形成領域以外の領域に、前記第2導電型GaN
層と同一導電型ドーパントを含む金属薄膜電極を形成す
る工程と、該金属薄膜電極上に透明電極を形成する工程
と、前記絶縁膜上に、少なくとも前記透明電極の一部と
接する第2電極を形成する工程とを具備したことにあ
る。
A second aspect of the present invention is a method of manufacturing a compound semiconductor light emitting device for extracting light from a GaN-based compound semiconductor layer, comprising the steps of: growing a first conductivity type GaN layer on a sapphire substrate; Growing a second conductivity type GaN layer on the conductivity type GaN layer, forming a first electrode insulated from the second conductivity type GaN layer on the first conductivity type GaN layer, Forming an insulating film in a partial region on the second conductivity type GaN layer, and forming the second conductivity type GaN on a region other than the insulating film formation region on the second conductivity type GaN layer.
Forming a metal thin film electrode containing the same conductivity type dopant as the layer, forming a transparent electrode on the metal thin film electrode, and forming a second electrode in contact with at least a part of the transparent electrode on the insulating film. Forming step.

【0016】第1及び第2の発明によれば、サファイア
基板側から光を取り出す必要がなく、電極が形成される
GaN層側から光を取り出すことができる。第1及び第
2電極を共にGaN層側に形成できるので、マウント位
置調整が容易となり、生産性が向上する。第2電極下に
絶縁膜があるので、第2電極直下で発光することがな
く、また第2電極に対するワイアボンディング時の衝撃
が緩和され、素子歩留まりが大幅に向上する。
According to the first and second aspects, it is not necessary to extract light from the sapphire substrate side, and light can be extracted from the GaN layer side on which the electrodes are formed. Since both the first and second electrodes can be formed on the GaN layer side, the mounting position can be easily adjusted and the productivity can be improved. Since the insulating film is provided under the second electrode, light emission does not occur immediately below the second electrode, and an impact on the second electrode at the time of wire bonding is reduced, thereby greatly improving the element yield.

【0017】第3の発明の特徴は、GaN系化合物半導
体層から光を取り出す化合物半導体発光素子であって、
サファイア基板と、該サファイア基板上に成長した第1
導電型GaN層と、該第1導電型GaN層上に成長し
た、半絶縁層を有する第2導電型GaN層と、該第2導
電型GaN層と絶縁され、前記第1導電型GaN層上に
形成された第1電極と、前記第2導電型GaN層の半絶
縁層以外の層上に形成された、前記第2導電型GaN層
と同一導電型ドーパントを含む金属薄膜電極と、該金属
薄膜電極上に形成された透明電極と、前記第2導電型G
aN層の半絶縁層上に形成され、少なくとも前記透明電
極の一部と接する第2電極とを具備したことにある。
A third feature of the present invention is a compound semiconductor light emitting device for extracting light from a GaN-based compound semiconductor layer,
A sapphire substrate, and a first substrate grown on the sapphire substrate.
A conductive type GaN layer, a second conductive type GaN layer having a semi-insulating layer grown on the first conductive type GaN layer, and insulated from the second conductive type GaN layer, on the first conductive type GaN layer. A metal thin-film electrode formed on a layer other than the semi-insulating layer of the second conductivity type GaN layer and containing a dopant of the same conductivity type as the second conductivity type GaN layer; A transparent electrode formed on the thin-film electrode;
a second electrode formed on the semi-insulating layer of the aN layer and in contact with at least a part of the transparent electrode.

【0018】第4の発明の特徴は、GaN系化合物半導
体層から光を取り出す化合物半導体発光素子の製造方法
であって、サファイア基板上に第1導電型GaN層を成
長させる工程と、該第1導電型GaN層上に半絶縁層を
有する第2導電型GaN層を成長させる工程と、前記第
1導電型GaN層上に前記第2導電型GaN層と絶縁す
る第1電極を形成する工程と、前記第2導電型GaN層
の半絶縁層以外の層上に、前記第2導電型GaN層と同
一導電型ドーパントを含む金属薄膜電極を形成する工程
と、該金属薄膜電極上に透明電極を形成する工程と、前
記第2導電型GaN層の半絶縁層上に、少なくとも前記
透明電極の一部と接する第2電極を形成する工程とを具
備したことにある。
A feature of the fourth invention is a method of manufacturing a compound semiconductor light emitting device for extracting light from a GaN-based compound semiconductor layer, wherein a step of growing a first conductivity type GaN layer on a sapphire substrate, Growing a second conductivity type GaN layer having a semi-insulating layer on the conductivity type GaN layer, and forming a first electrode insulated from the second conductivity type GaN layer on the first conductivity type GaN layer; Forming a metal thin film electrode containing the same conductivity type dopant as the second conductivity type GaN layer on a layer other than the semi-insulating layer of the second conductivity type GaN layer; and forming a transparent electrode on the metal thin film electrode. Forming and forming a second electrode in contact with at least a part of the transparent electrode on the semi-insulating layer of the second conductivity type GaN layer.

【0019】第3及び第4の発明によれば、第2導電型
GaN層の第2電極下領域を半絶縁層にしているので、
第2導電型GaN層上に絶縁膜を形成する必要がないた
め、生産性が向上する。第2電極下が第2導電型GaN
層の半絶縁層となっているので、電流が透明電極と金属
薄膜電極を介して第2導電型GaN層に効率良く注入さ
れ、十分な発光が可能である。
According to the third and fourth inventions, the region under the second electrode of the second conductivity type GaN layer is a semi-insulating layer.
Since there is no need to form an insulating film on the second conductivity type GaN layer, productivity is improved. Below the second electrode is GaN of the second conductivity type
Since the layer is a semi-insulating layer, current is efficiently injected into the second conductivity type GaN layer via the transparent electrode and the metal thin film electrode, and sufficient light emission is possible.

【0020】第5の発明の特徴は、GaAs系化合物半
導体層から光を取り出す化合物半導体発光素子であっ
て、第1導電型GaAs基板と、該第1導電型GaAs
基板上に積層した複数層のAlGaInP層と、これら
AlGaInP層の最上層に形成された第2導電型Ga
As層と、該第2導電型GaAs層上の一部領域に形成
された絶縁膜と、前記第2導電型GaAs層上の前記絶
縁膜形成領域以外の領域に形成された、前記第2導電型
GaAs層と同一導電型ドーパントを含む金属薄膜電極
と、該金属薄膜電極上に形成された透明電極と、前記絶
縁膜上に形成され、少なくとも前記透明電極の一部と接
する第1電極と、前記第1導電型GaAs基板裏面に形
成された第2電極とを具備したことにある。
According to a fifth aspect of the present invention, there is provided a compound semiconductor light emitting device for extracting light from a GaAs-based compound semiconductor layer, comprising: a first conductivity type GaAs substrate;
A plurality of AlGaInP layers stacked on a substrate, and a second conductivity type Ga formed on the uppermost layer of these AlGaInP layers.
An As layer, an insulating film formed in a partial region on the second conductivity type GaAs layer, and the second conductive film formed in a region other than the insulating film forming region on the second conductivity type GaAs layer. A metal thin-film electrode containing the same conductivity type dopant as the type GaAs layer, a transparent electrode formed on the metal thin-film electrode, a first electrode formed on the insulating film and in contact with at least a part of the transparent electrode, A second electrode formed on the back surface of the GaAs substrate of the first conductivity type.

【0021】第6の発明の特徴は、GaAs系化合物半
導体層から光を取り出す化合物半導体発光素子の製造方
法であって、第1導電型GaAs基板上に複数層のAl
GaInP層を積層させる工程と、これらAlGaIn
P層の最上層に第2導電型GaAs層を形成する工程
と、該第2導電型GaAs層上の一部領域に絶縁膜を形
成する工程と、前記第2導電型GaAs層上の前記絶縁
膜形成領域以外の領域に、前記第2導電型GaAs層と
同一導電型ドーパントを含む金属薄膜電極を形成する工
程と、該金属薄膜電極上に透明電極を形成する工程と、
前記絶縁膜上に、少なくとも前記透明電極の一部と接す
る第1電極を形成する工程と、前記第1導電型GaAs
基板裏面に第2電極を形成する工程とを具備したことに
ある。
A sixth feature of the present invention is a method of manufacturing a compound semiconductor light emitting device for extracting light from a GaAs compound semiconductor layer, wherein a plurality of layers of Al are formed on a first conductivity type GaAs substrate.
A step of stacking a GaInP layer;
Forming a second conductivity type GaAs layer on the uppermost layer of the P layer, forming an insulating film in a partial region on the second conductivity type GaAs layer, and forming the insulating film on the second conductivity type GaAs layer; Forming a metal thin-film electrode containing a dopant of the same conductivity type as the second conductivity-type GaAs layer in a region other than the film-forming region; and forming a transparent electrode on the metal thin-film electrode;
Forming a first electrode in contact with at least a part of the transparent electrode on the insulating film;
Forming a second electrode on the back surface of the substrate.

【0022】第5及び第6の発明によれば、厚い電流拡
散層が不要になるので、生産性が向上し、コストが低く
なる。第1電極下に絶縁膜があるので、電流が第1電極
直下には流れず、透明電極と金属薄膜電極を介して第2
導電型GaN層に効率良く注入される。このため、第1
電極直下以外での高輝度な発光が可能である。
According to the fifth and sixth aspects of the present invention, since a thick current spreading layer is not required, productivity is improved and cost is reduced. Since there is an insulating film under the first electrode, current does not flow directly under the first electrode, and the second film passes through the transparent electrode and the metal thin film electrode.
It is efficiently injected into the conductive GaN layer. Therefore, the first
High-luminance light emission is possible except under the electrode.

【0023】第7の発明の特徴は、第5及び第6の発明
において、前記絶縁膜は、第1導電型AlGaInP膜
あるいは第1導電型GaAs膜であることにある。
A feature of the seventh invention is that in the fifth and sixth inventions, the insulating film is a first conductivity type AlGaInP film or a first conductivity type GaAs film.

【0024】第7の発明によれば、第2導電型GaAs
層上に、これとpn逆接合する第1導電型のAlGaI
nP膜あるいはGaAs膜を形成するので、同類製造方
法によって生産性が向上する。
According to the seventh aspect, GaAs of the second conductivity type is used.
On the layer, a first conductivity type AlGaI which is pn reverse junction with the layer
Since an nP film or a GaAs film is formed, productivity is improved by a similar manufacturing method.

【0025】第8の発明の特徴は、第1乃至第7の発明
において、前記金属薄膜電極は、複数の島状に配置され
ることにある。
According to an eighth aspect of the present invention, in the first to seventh aspects, the metal thin film electrodes are arranged in a plurality of islands.

【0026】第8の発明によれば、金属薄膜電極が板状
でなく、島状に分散して配置できるので、透明電極を介
して流れてきた電流を第2導電型GaAs層へ効率良く
分散することができる。
According to the eighth aspect, since the metal thin-film electrodes can be dispersed and arranged in an island shape instead of a plate shape, the current flowing through the transparent electrode can be efficiently dispersed to the GaAs layer of the second conductivity type. can do.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1〜3は、本発明の第一実施形態
に係わるGaN系化合物半導体発光素子の製造方法を示
す断面構造図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are sectional structural views showing a method for manufacturing a GaN-based compound semiconductor light emitting device according to the first embodiment of the present invention.

【0028】まず、サファイア基板1の上にGaNバッ
ファ層3、n型GaN層5、及びp型ドーパントである
Mgを含むp型GaN層7を結晶成長させる(図1
(A))。次に、p型GaN層7にPEP法によるパタ
ーニングとエッチングを行い、n型GaN層5を露出さ
せる。さらにPEP法を用いてパターニングを行い、露
出したn型GaN層5の上にTi/Au等を蒸着し、p
型GaN層7と絶縁されるN側電極9をリフトオフ法に
よって形成する。オーミック電極とするために700℃
で20分間のアニールを行う(図1(B))。
First, a GaN buffer layer 3, an n-type GaN layer 5, and a p-type GaN layer 7 containing Mg as a p-type dopant are grown on a sapphire substrate 1 (FIG. 1).
(A)). Next, the p-type GaN layer 7 is patterned and etched by the PEP method to expose the n-type GaN layer 5. Further, patterning is performed using the PEP method, and Ti / Au or the like is vapor-deposited on the exposed n-type GaN layer 5,
An N-side electrode 9 insulated from the type GaN layer 7 is formed by a lift-off method. 700 ° C to make ohmic electrode
For 20 minutes (FIG. 1B).

【0029】この後、熱CVD法により、絶縁膜となる
SiO2 膜11を形成する(図2(A))。SiO2
11を、PEP法によって一部領域を残してパターニン
グする。p型GaN層7の上のSiO2 膜11が形成さ
れていない領域に、金属薄膜電極13となるMg/Ni
=1nm/2nmを蒸着する。次いで、RFスパッタ法によ
って厚さ100nmのITO(Indium Tin Oxide)透明電
極15を形成した後、リフトオフすることによってp型
GaN層7と同一p型ドーパントであるMgを含む金属
薄膜電極13が形成される。金属薄膜電極13とp型G
aN層7との間の密着性とオーミック性を向上させるた
め、500℃、10分のアニールを行う(図2
(B))。
Thereafter, an SiO 2 film 11 serving as an insulating film is formed by a thermal CVD method (FIG. 2A). The SiO 2 film 11 is patterned by the PEP method, leaving a partial region. In a region on the p-type GaN layer 7 where the SiO 2 film 11 is not formed, a Mg / Ni
= 1 nm / 2 nm is deposited. Next, a 100 nm thick ITO (Indium Tin Oxide) transparent electrode 15 is formed by an RF sputtering method, and then lift-off is performed to form a metal thin film electrode 13 containing Mg which is the same p-type dopant as the p-type GaN layer 7. You. Metal thin film electrode 13 and p-type G
Annealing is performed at 500 ° C. for 10 minutes in order to improve the adhesion and ohmic properties with the aN layer 7 (FIG. 2).
(B)).

【0030】さらに、PEP法によるパターニングとエ
ッチングを行い、SiO2 膜11の上に、ITO透明電
極15の一部と接するボンディングパッド用P側電極1
7をTi/Au等で形成する。この時、N側電極9を覆
うSiO2 膜11も同時に除去し、Ti/Au等の金属
をオーバーコートする(図3)。
Further, patterning and etching are performed by the PEP method, and a P-side electrode 1 for a bonding pad in contact with a part of the ITO transparent electrode 15 is formed on the SiO 2 film 11.
7 is formed of Ti / Au or the like. At this time, the SiO 2 film 11 covering the N-side electrode 9 is also removed at the same time, and a metal such as Ti / Au is overcoated (FIG. 3).

【0031】このように第一実施形態では、p型ドーパ
ントであるMgを含むp型GaN層7の上の一部領域
に、絶縁膜となるSiO2 膜11が形成されている。さ
らに、p型GaN層7の上のSiO2 膜11が形成され
ていない領域に、p型GaN層7と同一のp型ドーパン
トであるMgを含む金属薄膜電極13、及びITO透明
電極15が形成されている。SiO2 膜11の上には、
ITO透明電極15の一部と接するボンディングパッド
用P側電極17が形成されている。
As described above, in the first embodiment, the SiO 2 film 11 serving as an insulating film is formed in a partial region on the p-type GaN layer 7 containing Mg as a p-type dopant. Further, a metal thin-film electrode 13 containing Mg, which is the same p-type dopant as the p-type GaN layer 7, and an ITO transparent electrode 15 are formed in a region on the p-type GaN layer 7 where the SiO 2 film 11 is not formed. Have been. On the SiO 2 film 11,
A bonding pad P-side electrode 17 that is in contact with a part of the ITO transparent electrode 15 is formed.

【0032】ITO透明電極15は、n型不純物である
Snを含むため、一般にp型GaN層7の上には形成で
きない。本発明では、p型GaN層7と比較的オーミッ
クの取りやすいMgを含む金属薄膜電極13を、発光し
た光に対して70%の透過率を有するような厚さである
2nmの厚さで形成し、さらに金属薄膜電極13のシート
抵抗を低減させるために厚さ100nmのITO透明電極
15を形成している。
Since the ITO transparent electrode 15 contains Sn which is an n-type impurity, it cannot be generally formed on the p-type GaN layer 7. In the present invention, the p-type GaN layer 7 and the metal thin-film electrode 13 containing Mg, which is relatively easy to obtain ohmic, are formed with a thickness of 2 nm, which has a transmittance of 70% for emitted light. Further, in order to further reduce the sheet resistance of the metal thin film electrode 13, an ITO transparent electrode 15 having a thickness of 100 nm is formed.

【0033】このため、Mgを含む金属薄膜電極13の
作用でオーミック性を犠牲にすること無く、容易にIT
O透明電極15を形成できる。また、ボンディングパッ
ド用P側電極17がITO透明電極15の一部と接して
形成されているので、剥がれやすいMgを含む金属薄膜
電極13は、ボンディングに対して十分な強度を持つこ
とができる。
Therefore, the operation of the metal thin film electrode 13 containing Mg can be easily performed without sacrificing ohmic properties.
The O transparent electrode 15 can be formed. Further, since the bonding pad P-side electrode 17 is formed in contact with a part of the ITO transparent electrode 15, the metal thin film electrode 13 containing Mg which is easily peeled can have sufficient strength for bonding.

【0034】図3に示すように、本発明のGaN系化合
物半導体発光素子によれば、図12で示した従来のよう
に、サファイア基板1の側から光を取り出す必要がな
く、n型GaN層5とp型GaN層7との接合面から発
光される光を、電極9,17が形成されるGaN層側か
ら取り出すことができる。
As shown in FIG. 3, according to the GaN-based compound semiconductor light emitting device of the present invention, there is no need to extract light from the sapphire substrate 1 side, unlike the conventional case shown in FIG. Light emitted from the bonding surface between the p-type GaN layer 5 and the p-type GaN layer 7 can be extracted from the GaN layer side where the electrodes 9 and 17 are formed.

【0035】これにより、図4のように、化合物半導体
発光素子をカップ型リードフレーム19に設置してN側
電極9とワイアボンディングし、ボンディングパッド用
P側電極17とP側電極端子21とをワイアボンディン
グすることによって集光性を向上させることができる。
As a result, as shown in FIG. 4, the compound semiconductor light emitting device is mounted on the cup-type lead frame 19 and wire-bonded to the N-side electrode 9 to connect the P-side electrode 17 for the bonding pad and the P-side electrode terminal 21 to each other. The light collecting property can be improved by wire bonding.

【0036】また、ボンディングパッド用P側電極17
を、ITO透明電極15の上に直接形成するのではな
く、絶縁膜となるSiO2 膜11の上にITO透明電極
15の一部と接するように形成している。この結果、電
流がP側のITO透明電極15を介して拡散され、金属
薄膜電極13を介してp型GaN層7に効率良く注入さ
れると共に、ワイアボンディング時の衝撃が緩和されて
素子歩留まりが大幅に向上する。
The bonding pad P-side electrode 17
Is not formed directly on the ITO transparent electrode 15, but is formed on the SiO 2 film 11 serving as an insulating film so as to be in contact with a part of the ITO transparent electrode 15. As a result, the current is diffused through the P-side ITO transparent electrode 15 and efficiently injected into the p-type GaN layer 7 through the metal thin-film electrode 13, and the impact at the time of wire bonding is alleviated and the element yield is reduced. Significantly improved.

【0037】n型GaN層5の同一面上にN側電極9及
びP側電極17を設けることができるため、マウント位
置調整が容易となり、生産性が向上する。さらに、IT
O透明電極15が形成されている状態でアニールするこ
とにより、金属薄膜電極13がアニールによって再度蒸
発して消失あるいは薄膜化してしまうという、電極プロ
セス上の金属膜厚の制御性の低下と、それに伴う発光素
子のI−V特性の悪化を避けることができる。
Since the N-side electrode 9 and the P-side electrode 17 can be provided on the same surface of the n-type GaN layer 5, the mounting position can be easily adjusted and the productivity can be improved. Furthermore, IT
Annealing in the state where the O transparent electrode 15 is formed lowers the controllability of the metal film thickness in the electrode process, in which the metal thin film electrode 13 evaporates again and disappears or becomes thinner due to the annealing. Accordingly, deterioration of the IV characteristics of the light emitting element can be avoided.

【0038】なお、SiO2 膜11、金属薄膜電極1
3、ITO透明電極15、及びボンディングパッド用P
側電極17の構造は、図3で示した構造に限らず、図5
(A)、(B)のように、ボンディングパッド用P側電
極17が金属薄膜電極13及びITO透明電極15の両
方に接する構造でも良く、少なくともITO透明電極1
5の一部に接していれば良いものである。また、図5
(C)のように、p型GaN層7の一部領域層を半絶縁
層23(図中、網掛け部)にし、この半絶縁層23の上
にボンディングパッド用P側電極17を形成しても良い
ものである。これによれば、SiO2 膜11を形成する
必要がないため、生産性が向上する。
The SiO 2 film 11 and the metal thin film electrode 1
3, ITO transparent electrode 15, and P for bonding pad
The structure of the side electrode 17 is not limited to the structure shown in FIG.
As shown in (A) and (B), a structure in which the bonding pad P-side electrode 17 is in contact with both the metal thin film electrode 13 and the ITO transparent electrode 15 may be used.
What is necessary is just to touch a part of No. 5. FIG.
As shown in (C), a partial region layer of the p-type GaN layer 7 is made into a semi-insulating layer 23 (shaded portion in the figure), and a bonding pad P-side electrode 17 is formed on the semi-insulating layer 23. It is a good thing. According to this, since it is not necessary to form the SiO 2 film 11, productivity is improved.

【0039】さらに、金属薄膜電極13の形状は必ずし
も板状でなくても良く、例えば図6のように、複数の島
状に配置しても良い。このように金属薄膜電極13を複
数の島状に分散して配置することにより、ITO透明電
極15を介して流れてきた電流を、p型GaN層7へ効
率良く分散することができる。
Further, the shape of the metal thin film electrodes 13 does not necessarily have to be plate-like, and may be arranged in a plurality of islands, for example, as shown in FIG. By disposing the metal thin-film electrodes 13 in a plurality of islands in this manner, the current flowing through the ITO transparent electrode 15 can be efficiently dispersed to the p-type GaN layer 7.

【0040】以下に、本発明の第二実施形態を図面に基
づいて説明する。図7〜9は、本発明の第二実施形態に
係わるGaAs系化合物半導体発光素子の製造方法を示
す断面構造図である。
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. 7 to 9 are sectional structural views showing a method for manufacturing a GaAs-based compound semiconductor light emitting device according to the second embodiment of the present invention.

【0041】まず、n型GaAs基板31の上にn型G
aAsバッファ層33、n型AlGaInPクラッド層
35、AlGaInP活性層37、p型AlGaInP
クラッド層39、及びp型ドーバントであるZnを含む
p型GaAsコンタクト層41を順次積層させる(図7
(A))。p型GaAsコンタクト層41の上の一部領
域に、n型AlGaInPあるいはn型GaAsの電流
ブロック層43を形成する(図7(B))。
First, an n-type G substrate is placed on an n-type GaAs substrate 31.
aAs buffer layer 33, n-type AlGaInP cladding layer 35, AlGaInP active layer 37, p-type AlGaInP
A cladding layer 39 and a p-type GaAs contact layer 41 containing Zn which is a p-type dopant are sequentially laminated (FIG. 7).
(A)). A current block layer 43 of n-type AlGaInP or n-type GaAs is formed in a partial region on the p-type GaAs contact layer 41 (FIG. 7B).

【0042】次に、p型GaAsコンタクト層41の上
の電流ブロック層43が形成されていない領域に、p型
GaAsコンタクト層41と同一のp型ドーパントであ
るZnを含む金属薄膜電極45を、AuZn=5nm、4
30℃、15分のシンタによって形成する(図8
(A))。さらに、電流ブロック層43と金属薄膜電極
45の上に、ITO透明電極47を形成する(図8
(B))。
Next, a metal thin-film electrode 45 containing Zn, which is the same p-type dopant as the p-type GaAs contact layer 41, is formed in a region on the p-type GaAs contact layer 41 where the current blocking layer 43 is not formed. AuZn = 5 nm, 4
Formed by sintering at 30 ° C. for 15 minutes (FIG. 8)
(A)). Further, an ITO transparent electrode 47 is formed on the current block layer 43 and the metal thin film electrode 45 (FIG. 8).
(B)).

【0043】最後に、電流ブロック層43の上のITO
透明電極47をエッチング除去した後、ITO透明電極
47の一部と接するP側電極49を形成すると同時に、
n型GaAs基板31の裏面にN側電極51を形成する
(図9)。
Finally, the ITO on the current block layer 43
After the transparent electrode 47 is removed by etching, a P-side electrode 49 that is in contact with a part of the ITO transparent electrode 47 is formed.
An N-side electrode 51 is formed on the back surface of the n-type GaAs substrate 31 (FIG. 9).

【0044】このように第二実施形態では、P側電極4
9の下にこれとpn逆接合する、n型AlGaInPあ
るいはn型GaAsの電流ブロック層43を形成し、P
側電極49の直下に電流が流れることを阻止している。
また、P側電極49がITO透明電極47の一部と接し
ているため、図9のように、電流がITO透明電極47
を介して拡散され、AlGaInP活性層37に効率良
く注入される。この結果、AlGaInP活性層37と
p型AlGaInPクラッド層39との接合面におい
て、均一な発光が得られると共に発光した光を効率良く
取り出せる。
As described above, in the second embodiment, the P-side electrode 4
9, a current blocking layer 43 of n-type AlGaInP or n-type GaAs, which is a pn reverse junction with this, is formed.
The current is prevented from flowing just below the side electrode 49.
Further, since the P-side electrode 49 is in contact with a part of the ITO transparent electrode 47, as shown in FIG.
And is efficiently injected into the AlGaInP active layer 37. As a result, uniform light emission can be obtained and the emitted light can be efficiently extracted at the joint surface between the AlGaInP active layer 37 and the p-type AlGaInP cladding layer 39.

【0045】さらに、電流ブロック層43をGaAs系
化合物半導体で形成しているので、同類製造方法で形成
可能であると共に、図13で示した厚いp型AlGaA
s電流拡散層57が不要であるため、生産性が向上し、
コストが低くなる。
Further, since the current block layer 43 is formed of a GaAs-based compound semiconductor, it can be formed by a similar manufacturing method and has a thick p-type AlGaAs shown in FIG.
Since the s current diffusion layer 57 is unnecessary, the productivity is improved,
Lower costs.

【0046】なお、電流ブロック層43、金属薄膜電極
45、ITO透明電極47、及びP側電極49の構造
は、図9で示した構造に限らず、図10(A)〜(C)
のように、P側電極49が金属薄膜電極45及びITO
透明電極47の両方に接する構造でも良く、少なくとも
ITO透明電極47の一部に接していれば良いものであ
る。
The structures of the current blocking layer 43, the metal thin-film electrode 45, the ITO transparent electrode 47, and the P-side electrode 49 are not limited to the structure shown in FIG. 9, but are shown in FIGS.
As shown in FIG.
The structure may be in contact with both of the transparent electrodes 47, and it is sufficient that the structure is in contact with at least a part of the ITO transparent electrode 47.

【0047】また、電流ブロック層43は、n型AlG
aInPあるいはn型GaAsである必要はなく、Si
2 等の絶縁膜で形成しても良いものである。この場合
は、図10(A)〜(D)で示すような構造にすること
が可能である。さらに、金属薄膜電極45の形状は必ず
しも板状でなくても良く、第一実施形態でも説明したよ
うに、図6のような複数の島状に配置しても良い。
The current blocking layer 43 is made of n-type AlG
It does not need to be aInP or n-type GaAs.
It may be formed of an insulating film such as O 2 . In this case, a structure as shown in FIGS. Further, the shape of the metal thin film electrodes 45 does not necessarily have to be a plate shape, and may be arranged in a plurality of island shapes as shown in FIG. 6 as described in the first embodiment.

【0048】以上説明してきた本発明のGaN系化合物
半導体発光素子と従来のそれとの、I−V特性、及び光
出力特性を比較したグラフを図11に示す。図中、点線
が本発明と従来のI−V特性、実線が本発明の光出力特
性、一点鎖線が従来の光出力特性を示す。20mAの電流
に対する順方向電圧は本発明、従来共に3.8V、従来
の光出力は約70μWであるのに対し、本発明のそれは
100μWという良好な特性が得られた。ウエハ面内で
のI−V特性や光出力のばらつきも非常に少なく、素子
歩留り90%以上であった。
FIG. 11 is a graph comparing the IV characteristics and the light output characteristics of the GaN-based compound semiconductor light emitting device of the present invention described above and the conventional one. In the figure, the dotted line indicates the present invention and the conventional IV characteristic, the solid line indicates the light output characteristic of the present invention, and the one-dot chain line indicates the conventional light output characteristic. The forward voltage with respect to a current of 20 mA is 3.8 V in the present invention and the conventional, and the conventional optical output is about 70 μW in the related art. In contrast, the present invention has a good characteristic of 100 μW. Variations in IV characteristics and optical output within the wafer surface were extremely small, and the element yield was 90% or more.

【0049】なお、第一及び第二実施形態では、GaN
層として説明したが、これに限定されるものでなくIn
xGayAlzN層:x+y+z=1,0≦x,y,z
≦1でよい。また、金属薄膜電極13,45の材料とし
てNiやAuZn、透明電極15,47の材料としてI
TO(Indium Tin Oxide)を用いたが、これに限るもの
ではない。例えば、金属薄膜電極13,45の材料とし
ては、AuBe、AuMg、AuGe等のp型GaN層
7あるいはp型GaAsコンタクト層41に対するドー
パントを含む材料であれば良い。また、透明電極15,
47に対する密着性向上のため、金属薄膜電極13,4
5をNi、AuZn、Ti/AuZn等の多層構造とし
ても良い。
In the first and second embodiments, GaN
Although described as a layer, the present invention is not limited to this.
xGayAlzN layer: x + y + z = 1, 0 ≦ x, y, z
It may be ≦ 1. Further, Ni or AuZn is used as a material of the metal thin film electrodes 13 and 45, and I or AuZn is used as a material of the transparent electrodes 15 and 47.
Although TO (Indium Tin Oxide) was used, the invention is not limited to this. For example, the metal thin-film electrodes 13 and 45 may be made of a material containing a dopant for the p-type GaN layer 7 or the p-type GaAs contact layer 41, such as AuBe, AuMg, or AuGe. In addition, the transparent electrode 15,
In order to improve the adhesion to 47, metal thin film electrodes 13 and 4
5 may have a multilayer structure of Ni, AuZn, Ti / AuZn or the like.

【0050】さらに、金属薄膜電極13,45をオーミ
ック電極とするためのシンタは、金属薄膜電極13,4
5を形成した後行っても良いし、ITO透明電極15,
47を形成した後行っても良い。
Further, a sinter for using the metal thin film electrodes 13 and 45 as ohmic electrodes is provided by the metal thin film electrodes 13 and 4.
5 may be formed, or the ITO transparent electrodes 15 and
47 may be performed after the formation.

【0051】[0051]

【発明の効果】以上、本発明の化合物半導体発光素子及
びその製造方法によれば、化合物半導体層の上にこれと
同一導電型ドーパントを含む金属薄膜電極を形成し、そ
の上に形成された透明電極の少なくとも一部と接する電
極を形成したので、生産コストが低く、量産性に適した
化合物半導体発光素子を提供することができる。また、
透明電極の下に絶縁膜などを設け、透明電極直下に電流
が流れないようにしたので、発光面に効率良く電流が流
れるため、十分な発光パワーの光が取り出せる。
As described above, according to the compound semiconductor light emitting device and the method of manufacturing the same of the present invention, a metal thin film electrode containing a dopant of the same conductivity type is formed on a compound semiconductor layer, and a transparent thin film formed thereon is formed. Since an electrode in contact with at least a part of the electrode is formed, a compound semiconductor light-emitting element which is low in production cost and suitable for mass productivity can be provided. Also,
An insulating film or the like is provided under the transparent electrode so that current does not flow directly under the transparent electrode, so that current can flow efficiently to the light emitting surface, so that light with sufficient emission power can be extracted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施形態に係わる製造方法を示す
断面構造図。
FIG. 1 is a sectional structural view showing a manufacturing method according to a first embodiment of the present invention.

【図2】図1に続く断面構造図。FIG. 2 is a sectional structural view following FIG. 1;

【図3】図2に続くGaN系化合物半導体発光素子の断
面構造図。
FIG. 3 is a sectional structural view of the GaN-based compound semiconductor light emitting device following FIG. 2;

【図4】第一実施形態の発光素子をカップ型リードフレ
ーム21に設置した断面図。
FIG. 4 is a sectional view in which the light emitting device of the first embodiment is installed on a cup-type lead frame 21;

【図5】第一実施形態に係わるP側電極周辺の他の構造
を示す断面構造図。
FIG. 5 is a sectional structural view showing another structure around a P-side electrode according to the first embodiment.

【図6】金属薄膜電極の他の形状を示す斜視図。FIG. 6 is a perspective view showing another shape of the metal thin film electrode.

【図7】本発明の第二実施形態に係わる製造方法を示す
断面構造図。
FIG. 7 is a sectional structural view showing a manufacturing method according to a second embodiment of the present invention.

【図8】図7に続く断面構造図。FIG. 8 is a sectional structural view following FIG. 7;

【図9】図8に続くGaAs系化合物半導体発光素子の
断面構造図。
FIG. 9 is a sectional structural view of the GaAs compound semiconductor light emitting device following FIG. 8;

【図10】第二実施形態に係わるP側電極周辺の他の構
造を示す断面構造図。
FIG. 10 is a sectional structural view showing another structure around a P-side electrode according to the second embodiment.

【図11】本発明と従来のI−V特性及び光出力特性を
比較したグラフ。
FIG. 11 is a graph comparing an IV characteristic and a light output characteristic of the present invention with a conventional one.

【図12】従来のGaN系化合物半導体発光素子の断面
構造図。
FIG. 12 is a sectional structural view of a conventional GaN-based compound semiconductor light emitting device.

【図13】従来のGaAs系化合物半導体発光素子の断
面構造図。
FIG. 13 is a sectional structural view of a conventional GaAs compound semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1 サファイア基板 3 GaNバッファ層 5 n型GaN層 7 p型GaN層 9 N側電極 11 SiO2 膜 13 金属薄膜電極 15 ITO透明電極 17 ボンディングパッド用P側電極 19 カップ型リードフレーム 21 P側電極端子 23 半絶縁層 31 n型GaAs基板 33 n型GaAsバッファ層 35 n型AlGaInPクラッド層 37 AlGaInP活性層 39 p型AlGaInPクラッド層 41 p型GaAsコンタクト層 43 電流ブロック層 45 金属薄膜電極 47 ITO透明電極 49 P側電極 51 N側電極Reference Signs List 1 sapphire substrate 3 GaN buffer layer 5 n-type GaN layer 7 p-type GaN layer 9 N-side electrode 11 SiO 2 film 13 metal thin-film electrode 15 ITO transparent electrode 17 P-side electrode for bonding pad 19 Cup-type lead frame 21 P-side electrode terminal Reference Signs List 23 semi-insulating layer 31 n-type GaAs substrate 33 n-type GaAs buffer layer 35 n-type AlGaInP clad layer 37 AlGaInP active layer 39 p-type AlGaInP clad layer 41 p-type GaAs contact layer 43 current block layer 45 metal thin film electrode 47 ITO transparent electrode 49 P-side electrode 51 N-side electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−125224(JP,A) 特開 平8−250768(JP,A) 特開 平8−250769(JP,A) 特開 平9−129933(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-8-125224 (JP, A) JP-A-8-250768 (JP, A) JP-A-8-250769 (JP, A) JP-A-9-205 129933 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 33/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 GaN系化合物半導体層から光を取り出
す化合物半導体発光素子であって、 サファイア基板と、 該サファイア基板上に成長した第1導電型InxGay
AlzN層(x+y+z=1,0≦x,y,z≦1)
と、 該第1導電型GaN層上に成長した第2導電型InxG
ayAlzN層(x+y+z=1,0≦x,y,z≦
1)と、 該第2導電型GaN層と絶縁され、前記第1導電型In
xGayAlzN層(x+y+z=1,0≦x,y,z
≦1)上に形成された第1電極と、 前記第2導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)上の一部領域に形成された絶
縁膜と、 前記第2導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)上の前記絶縁膜形成領域以外
の領域に形成された、前記第2導電型InxGayAl
zN層(x+y+z=1,0≦x,y,z≦1)と同一
導電型ドーパントを含む金属薄膜電極と、 該金属薄膜電極上に形成された透明電極と、 前記絶縁膜上に形成され、少なくとも前記透明電極の一
部と接する第2電極とを具備したことを特徴とする化合
物半導体発光素子。
1. A compound semiconductor light emitting device for extracting light from a GaN-based compound semiconductor layer, comprising: a sapphire substrate; and a first conductivity type InxGay grown on the sapphire substrate.
AlzN layer (x + y + z = 1, 0 ≦ x, y, z ≦ 1)
And a second conductivity type InxG grown on the first conductivity type GaN layer.
ayAlzN layer (x + y + z = 1, 0 ≦ x, y, z ≦
1) and the second conductivity type GaN layer is insulated from the first conductivity type GaN layer.
xGayAlzN layer (x + y + z = 1, 0 ≦ x, y, z
≦ 1), a first electrode formed on the second conductive type InxGayAlzN layer (x + y + z =
An insulating film formed in a partial region above (1, 0 ≦ x, y, z ≦ 1); and the second conductivity type InxGayAlzN layer (x + y + z =
1,0 ≦ x, y, z ≦ 1), the second conductivity type InxGayAl formed in a region other than the insulating film formation region.
a metal thin-film electrode containing the same conductivity type dopant as the zN layer (x + y + z = 1, 0 ≦ x, y, z ≦ 1); a transparent electrode formed on the metal thin-film electrode; A compound semiconductor light-emitting device, comprising: a second electrode in contact with at least a part of the transparent electrode.
【請求項2】 GaN系化合物半導体層から光を取り出
す化合物半導体発光素子の製造方法であって、 サファイア基板上に第1導電型InxGayAlzN層
(x+y+z=1,0≦x,y,z≦1)を成長させる
工程と、 該第1導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)上に第2導電型GaN層を成
長させる工程と、 前記第1導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)上に前記第2導電型GaN層
と絶縁する第1電極を形成する工程と、 前記第2導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)上の一部領域に絶縁膜を形成
する工程と、 前記第2導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)上の前記絶縁膜形成領域以外
の領域に、前記第2導電型InxGayAlzN層(x
+y+z=1,0≦x,y,z≦1)と同一導電型ドー
パントを含む金属薄膜電極を形成する工程と、 該金属薄膜電極上に透明電極を形成する工程と、 前記絶縁膜上に、少なくとも前記透明電極の一部と接す
る第2電極を形成する工程とを具備したことを特徴とす
る化合物半導体発光素子の製造方法。
2. A method of manufacturing a compound semiconductor light emitting device for extracting light from a GaN-based compound semiconductor layer, comprising: a first conductivity type InxGayAlzN layer (x + y + z = 1, 0 ≦ x, y, z ≦ 1) on a sapphire substrate. Growing the first conductivity type InxGayAlzN layer (x + y + z =
Growing a second conductivity type GaN layer on (1,0 ≦ x, y, z ≦ 1); and forming the first conductivity type InxGayAlzN layer (x + y + z =
Forming a first electrode insulated from the second conductivity type GaN layer on (1,0 ≦ x, y, z ≦ 1); and forming the second conductivity type InxGayAlzN layer (x + y + z =
Forming an insulating film in a partial region on (1, 0 ≦ x, y, z ≦ 1); and forming the second conductivity type InxGayAlzN layer (x + y + z =
1,0 ≦ x, y, z ≦ 1), in a region other than the insulating film formation region, the second conductivity type InxGayAlzN layer (x
+ Y + z = 1, 0 ≦ x, y, z ≦ 1), forming a metal thin-film electrode containing the same conductivity type dopant, forming a transparent electrode on the metal thin-film electrode, Forming a second electrode that is in contact with at least a part of the transparent electrode.
【請求項3】 GaN系化合物半導体層から光を取り出
す化合物半導体発光素子であって、 サファイア基板と、 該サファイア基板上に成長した第1導電型InxGay
AlzN層(x+y+z=1,0≦x,y,z≦1)
と、 該第1導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)上に成長した、半絶縁層を有
する第2導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)と、 該第2導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)と絶縁され、前記第1導電型
InxGayAlzN層(x+y+z=1,0≦x,
y,z≦1)上に形成された第1電極と、 前記第2導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)の半絶縁層以外の層上に形成
された、前記第2導電型InxGayAlzN層(x+
y+z=1,0≦x,y,z≦1)と同一導電型ドーパ
ントを含む金属薄膜電極と、 該金属薄膜電極上に形成された透明電極と、 前記第2導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)の半絶縁層上に形成され、少
なくとも前記透明電極の一部と接する第2電極とを具備
したことを特徴とする化合物半導体発光素子。
3. A compound semiconductor light emitting device for extracting light from a GaN-based compound semiconductor layer, comprising: a sapphire substrate; and a first conductivity type InxGay grown on the sapphire substrate.
AlzN layer (x + y + z = 1, 0 ≦ x, y, z ≦ 1)
And the first conductivity type InxGayAlzN layer (x + y + z =
1,0 ≦ x, y, z ≦ 1) and a second conductivity type InxGayAlzN layer having a semi-insulating layer (x + y + z =
1,0 ≦ x, y, z ≦ 1) and the second conductivity type InxGayAlzN layer (x + y + z =
1,0 ≦ x, y, z ≦ 1), and the first conductivity type InxGayAlzN layer (x + y + z = 1,0 ≦ x,
y, z ≦ 1) and a second conductivity type InxGayAlzN layer (x + y + z =
The second conductivity type InxGayAlzN layer (x +) formed on a layer other than the semi-insulating layer of 1,0 ≦ x, y, z ≦ 1)
y + z = 1, 0 ≦ x, y, z ≦ 1), a metal thin film electrode containing the same conductivity type dopant, a transparent electrode formed on the metal thin film electrode, and the second conductivity type InxGayAlzN layer (x + y + z =
A compound semiconductor light emitting device comprising: a second electrode formed on a semi-insulating layer (1, 0 ≦ x, y, z ≦ 1) and in contact with at least a part of the transparent electrode.
【請求項4】 GaN系化合物半導体層から光を取り出
す化合物半導体発光素子の製造方法であって、 サファイア基板上に第1導電型InxGayAlzN層
(x+y+z=1,0≦x,y,z≦1)を成長させる
工程と、 該第1導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)上に半絶縁層を有する第2導
電型InxGayAlzN層(x+y+z=1,0≦
x,y,z≦1)を成長させる工程と、 前記第1導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)上に前記第2導電型InxG
ayAlzN層(x+y+z=1,0≦x,y,z≦
1)と絶縁する第1電極を形成する工程と、 前記第2導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)の半絶縁層以外の層上に、前
記第2導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)と同一導電型ドーパントを含
む金属薄膜電極を形成する工程と、 該金属薄膜電極上に透明電極を形成する工程と、 前記第2導電型InxGayAlzN層(x+y+z=
1,0≦x,y,z≦1)の半絶縁層上に、少なくとも
前記透明電極の一部と接する第2電極を形成する工程と
を具備したことを特徴とする化合物半導体発光素子の製
造方法。
4. A method of manufacturing a compound semiconductor light emitting device for extracting light from a GaN-based compound semiconductor layer, comprising: a first conductivity type InxGayAlzN layer (x + y + z = 1, 0 ≦ x, y, z ≦ 1) on a sapphire substrate. Growing the first conductivity type InxGayAlzN layer (x + y + z =
A second conductivity type InxGayAlzN layer having a semi-insulating layer on (1,0 ≦ x, y, z ≦ 1) (x + y + z = 1,0 ≦
(x, y, z ≦ 1); and the first conductivity type InxGayAlzN layer (x + y + z = 1).
1,0 ≦ x, y, z ≦ 1) on the second conductivity type InxG
ayAlzN layer (x + y + z = 1, 0 ≦ x, y, z ≦
1) forming a first electrode that is insulated from the second conductivity type InxGayAlzN layer (x + y + z =
On the layers other than the semi-insulating layer of (1,0 ≦ x, y, z ≦ 1), the second conductivity type InxGayAlzN layer (x + y + z =
1,0 ≦ x, y, z ≦ 1) forming a metal thin film electrode containing a dopant of the same conductivity type as above, forming a transparent electrode on the metal thin film electrode, and forming the second conductivity type InxGayAlzN layer ( x + y + z =
Forming a second electrode in contact with at least a part of the transparent electrode on a semi-insulating layer (1, 0 ≦ x, y, z ≦ 1). Method.
【請求項5】 GaAs系化合物半導体層から光を取り
出す化合物半導体発光素子であって、 第1導電型GaAs基板と、 該第1導電型GaAs基板上に積層した複数層のAlG
aInP層と、 これらAlGaInP層の最上層に形成された第2導電
型GaAs層と、 該第2導電型GaAs層上の一部領域に形成された絶縁
膜と、 前記第2導電型GaAs層上の前記絶縁膜形成領域以外
の領域に形成された、前記第2導電型GaAs層と同一
導電型ドーパントを含む金属薄膜電極と、 該金属薄膜電極上に形成された透明電極と、 前記絶縁膜上に形成され、少なくとも前記透明電極の一
部と接する第1電極と、 前記第1導電型GaAs基板裏面に形成された第2電極
とを具備したことを特徴とする化合物半導体発光素子。
5. A compound semiconductor light emitting device for extracting light from a GaAs-based compound semiconductor layer, comprising: a first conductivity type GaAs substrate; and a plurality of layers of AlG laminated on the first conductivity type GaAs substrate.
an aInP layer; a second conductivity type GaAs layer formed on the uppermost layer of the AlGaInP layer; an insulating film formed in a partial region on the second conductivity type GaAs layer; A metal thin-film electrode including a dopant of the same conductivity type as that of the GaAs layer of the second conductivity type formed in a region other than the insulating film forming region; a transparent electrode formed on the metal thin-film electrode; And a second electrode formed on the back surface of the GaAs substrate of the first conductivity type, wherein the first electrode is in contact with at least a part of the transparent electrode.
【請求項6】 GaAs系化合物半導体層から光を取り
出す化合物半導体発光素子の製造方法であって、 第1導電型GaAs基板上に複数層のAlGaInP層
を積層させる工程と、 これらAlGaInP層の最上層に第2導電型GaAs
層を形成する工程と、 該第2導電型GaAs層上の一部領域に絶縁膜を形成す
る工程と、 前記第2導電型GaAs層上の前記絶縁膜形成領域以外
の領域に、前記第2導電型GaAs層と同一導電型ドー
パントを含む金属薄膜電極を形成する工程と、 該金属薄膜電極上に透明電極を形成する工程と、 前記絶縁膜上に、少なくとも前記透明電極の一部と接す
る第1電極を形成する工程と、 前記第1導電型GaAs基板裏面に第2電極を形成する
工程とを具備したことを特徴とする化合物半導体発光素
子の製造方法。
6. A method for manufacturing a compound semiconductor light emitting device for extracting light from a GaAs-based compound semiconductor layer, comprising: stacking a plurality of AlGaInP layers on a GaAs substrate of a first conductivity type; GaAs of the second conductivity type
Forming a layer; forming an insulating film in a partial region on the second conductivity type GaAs layer; forming the second conductive type GaAs layer in a region other than the insulating film forming region on the second conductivity type GaAs layer. A step of forming a metal thin-film electrode containing the same conductivity type dopant as the conductive GaAs layer; a step of forming a transparent electrode on the metal thin-film electrode; and a step of contacting at least a part of the transparent electrode on the insulating film. A method for manufacturing a compound semiconductor light emitting device, comprising: forming one electrode; and forming a second electrode on the back surface of the GaAs substrate of the first conductivity type.
【請求項7】 前記絶縁膜は、第1導電型AlGaIn
P膜あるいは第1導電型GaAs膜であることを特徴と
する請求項5及び6記載の化合物半導体発光素子及びそ
の製造方法。
7. The method according to claim 1, wherein the insulating film is formed of a first conductivity type AlGaIn.
7. The compound semiconductor light-emitting device according to claim 5, wherein the film is a P film or a GaAs film of the first conductivity type.
【請求項8】 前記金属薄膜電極は、複数の島状に配置
されることを特徴とする請求項1乃至7記載の化合物半
導体発光素子及びその製造方法。
8. The compound semiconductor light emitting device according to claim 1, wherein said metal thin film electrodes are arranged in a plurality of islands.
JP32855896A 1996-06-05 1996-12-09 Compound semiconductor light emitting device and method of manufacturing the same Expired - Lifetime JP3207773B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32855896A JP3207773B2 (en) 1996-12-09 1996-12-09 Compound semiconductor light emitting device and method of manufacturing the same
US08/871,401 US5977566A (en) 1996-06-05 1997-06-05 Compound semiconductor light emitter
US09/309,598 US6316792B1 (en) 1996-06-05 1999-05-11 Compound semiconductor light emitter and a method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32855896A JP3207773B2 (en) 1996-12-09 1996-12-09 Compound semiconductor light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10173224A JPH10173224A (en) 1998-06-26
JP3207773B2 true JP3207773B2 (en) 2001-09-10

Family

ID=18211625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32855896A Expired - Lifetime JP3207773B2 (en) 1996-06-05 1996-12-09 Compound semiconductor light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3207773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683379B2 (en) 2004-07-30 2010-03-23 Fujikura Ltd. Light emitting element and manufacturing method thereof

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036616A (en) * 1998-07-21 2000-02-02 Toshiba Corp Semiconductor light emitting element and its manufacture
US6201264B1 (en) * 1999-01-14 2001-03-13 Lumileds Lighting, U.S., Llc Advanced semiconductor devices fabricated with passivated high aluminum content III-V materials
KR100580241B1 (en) * 1999-01-23 2006-05-16 삼성전자주식회사 Surface Emitting Laser Array and Method for manufacturing it
US6512248B1 (en) 1999-10-19 2003-01-28 Showa Denko K.K. Semiconductor light-emitting device, electrode for the device, method for fabricating the electrode, LED lamp using the device, and light source using the LED lamp
JP4754711B2 (en) * 2000-06-21 2011-08-24 昭和電工株式会社 Group III nitride semiconductor light-emitting diode, light-emitting diode lamp, light source, group III nitride semiconductor light-emitting diode electrode and manufacturing method thereof
JP2002164575A (en) * 2000-11-27 2002-06-07 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2003017748A (en) * 2001-06-27 2003-01-17 Seiwa Electric Mfg Co Ltd Gallium nitride-based compound semiconductor light emitting element and manufacturing method therefor
DE10203809B4 (en) 2002-01-31 2010-05-27 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component
JP3795007B2 (en) 2002-11-27 2006-07-12 松下電器産業株式会社 Semiconductor light emitting device and manufacturing method thereof
KR20050032159A (en) 2003-10-01 2005-04-07 삼성전기주식회사 Gallium nitride based semiconductor light emitting diode and method of producing the same
JP3767863B2 (en) * 2003-12-18 2006-04-19 ローム株式会社 Semiconductor light emitting device and manufacturing method thereof
KR100590532B1 (en) * 2003-12-22 2006-06-15 삼성전자주식회사 Flip-chip light emitting diodes and method of manufacturing thereof
EP1548852B1 (en) * 2003-12-22 2013-07-10 Samsung Electronics Co., Ltd. Top-emitting nitride-based light emitting device and method of manufacturing the same
KR100580634B1 (en) * 2003-12-24 2006-05-16 삼성전자주식회사 light emitting device and method of manufacturing thereof
JP2006066892A (en) * 2004-07-30 2006-03-09 Fujikura Ltd Light emitting element and manufacturing method thereof
DE102005061797B4 (en) * 2005-12-23 2020-07-09 Osram Opto Semiconductors Gmbh Luminescence diode chip with current spreading layer and method for its production
CN102779918B (en) 2007-02-01 2015-09-02 日亚化学工业株式会社 Semiconductor light-emitting elements
US20090321775A1 (en) * 2008-06-26 2009-12-31 Ghulam Hasnain LED with Reduced Electrode Area
TWI493748B (en) 2008-08-29 2015-07-21 Nichia Corp Semiconductor light emitting elements and semiconductor light emitting devices
KR100999806B1 (en) 2009-05-21 2010-12-08 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
JP2012028381A (en) * 2010-07-20 2012-02-09 Sharp Corp Semiconductor light emitting device and method of manufacturing the same
JP2012186199A (en) * 2011-03-03 2012-09-27 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683379B2 (en) 2004-07-30 2010-03-23 Fujikura Ltd. Light emitting element and manufacturing method thereof

Also Published As

Publication number Publication date
JPH10173224A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
JP3207773B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
US6316792B1 (en) Compound semiconductor light emitter and a method for manufacturing the same
JP4091261B2 (en) Semiconductor light emitting device and manufacturing method thereof
US8679869B2 (en) Contact for a semiconductor light emitting device
JP4024994B2 (en) Semiconductor light emitting device
JP4050444B2 (en) Light emitting device and manufacturing method thereof
JPH114020A (en) Semiconductor light-emitting element, manufacture thereof and semiconductor light-emitting device
JP2007281037A (en) Semiconductor light emitting element, and its manufacturing method
JP5608589B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2005175462A (en) Semiconductor luminous element and manufacturing method of the same
JP3814151B2 (en) Light emitting element
TWI795364B (en) Light emitting device and method of forming the same
US6864514B2 (en) Light emitting diode
JP2005005557A (en) Manufacturing method of semiconductor light emitting device
JP4174581B2 (en) Method for manufacturing light emitting device
KR101032987B1 (en) Semiconductor light emitting device
KR100751632B1 (en) Light emitting device
JP2004319672A (en) Light emitting diode
JP2941743B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JP3507716B2 (en) Method for manufacturing semiconductor light emitting device
JP2006032665A (en) Light emitting diode
JPH09129933A (en) Light emitting element
JP2916424B2 (en) Semiconductor light emitting element, its electrode, and its manufacture
US20230120369A1 (en) Radiation-Emitting Semiconductor Body and Method for Producing Same
JP3536976B2 (en) Light emitting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 12

EXPY Cancellation because of completion of term