JP3205843B2 - Apparatus and method for producing zinc oxide whiskers - Google Patents

Apparatus and method for producing zinc oxide whiskers

Info

Publication number
JP3205843B2
JP3205843B2 JP24442292A JP24442292A JP3205843B2 JP 3205843 B2 JP3205843 B2 JP 3205843B2 JP 24442292 A JP24442292 A JP 24442292A JP 24442292 A JP24442292 A JP 24442292A JP 3205843 B2 JP3205843 B2 JP 3205843B2
Authority
JP
Japan
Prior art keywords
zinc
crucible
combustion gas
oxidizing atmosphere
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24442292A
Other languages
Japanese (ja)
Other versions
JPH0692797A (en
Inventor
隆重 佐藤
猛 浜辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24442292A priority Critical patent/JP3205843B2/en
Publication of JPH0692797A publication Critical patent/JPH0692797A/en
Application granted granted Critical
Publication of JP3205843B2 publication Critical patent/JP3205843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は合成樹脂などの構造材料
の補強材や複合材として有効なテトラポット形の酸化亜
鉛ウィスカを連続的かつ工業的に生成する製造装置およ
び製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a production apparatus and a production method for continuously and industrially producing tetrapot-type zinc oxide whiskers effective as a reinforcing material or a composite material for structural materials such as synthetic resins.

【0002】[0002]

【従来の技術】近年、テトラポット形酸化亜鉛ウィスカ
は合成樹脂などの構造材料の補強材や複合材として注目
され、実用化が進んでいる。
2. Description of the Related Art In recent years, tetrapod-type zinc oxide whiskers have attracted attention as reinforcing materials and composites for structural materials such as synthetic resins, and have been put to practical use.

【0003】以下に従来のテトラポット形の酸化亜鉛ウ
ィスカの製造装置および製造装置を図面を参照しながら
説明する。
A conventional tetrapot-type zinc oxide whisker manufacturing apparatus and manufacturing apparatus will be described below with reference to the drawings.

【0004】テトラポット形酸化亜鉛ウィスカを製造す
るためには、例えば特開平4−170399号公報に開
示されているように金属亜鉛を蒸気化するためのるつぼ
を縦形炉の下部に配置し、その領域を炭化水素系燃料の
還元性燃焼ガスで満たして非酸化性雰囲気領域を形成
し、上部に空気を主体とする酸化性雰囲気領域を形成
し、ノズルから噴出される亜鉛蒸気がノズル近傍で酸化
されることなく、したがって、ノズル近傍で、ノズル先
端を閉塞する酸化亜鉛集合体を生成させず、連続して亜
鉛蒸気を上部の酸化性雰囲気領域に送る方法を利用した
ものが種々に提案されている。
[0004] In order to manufacture a tetrapot type zinc oxide whisker, a crucible for vaporizing metallic zinc is arranged at the lower part of a vertical furnace as disclosed in, for example, JP-A-4-170399. The area is filled with a reducing fuel gas of hydrocarbon fuel to form a non-oxidizing atmosphere area, and an oxidizing atmosphere area mainly composed of air is formed on the upper part, and zinc vapor ejected from the nozzle is oxidized near the nozzle. Therefore, various methods have been proposed that utilize a method of continuously sending zinc vapor to an upper oxidizing atmosphere region without generating a zinc oxide aggregate that closes the nozzle tip in the vicinity of the nozzle. I have.

【0005】図3に従来のテトラポット形酸化亜鉛ウィ
スカの製造装置のるつぼ部の構成を示す。図に示すよう
に、るつぼ33の周辺は燃焼室31で燃焼して生成した
炭化水素系燃料の還元性燃焼ガスが矢印実線で示すよう
に流れ、非酸化性雰囲気領域を形成し、るつぼ33の上
部のノズル先端35が閉塞されないようにしている。
FIG. 3 shows the structure of a crucible portion of a conventional apparatus for manufacturing a tetrapot type zinc oxide whisker. As shown in the figure, around the crucible 33, the reducing combustion gas of the hydrocarbon-based fuel generated by burning in the combustion chamber 31 flows as shown by the solid line, and forms a non-oxidizing atmosphere region. The upper nozzle tip 35 is not blocked.

【0006】しかし、図3に示すように、還元性燃焼ガ
ス中には炭化水素系燃料の燃焼により生じた水分が含ま
れ、長時間にわたり亜鉛蒸気がノズルを通過する間に、
亜鉛蒸気は主に水分との反応によって酸化され、ノズル
先端35に団塊状粒子の酸化亜鉛集合体37が堆積し、
亜鉛蒸気の噴出が抑制されたり、止ったりする。
However, as shown in FIG. 3, the reducing combustion gas contains moisture generated by the combustion of the hydrocarbon fuel, and while the zinc vapor passes through the nozzle for a long time,
Zinc vapor is oxidized mainly by reaction with moisture, and a zinc oxide aggregate 37 of nodular particles is deposited at the nozzle tip 35,
The emission of zinc vapor is suppressed or stopped.

【0007】上記のような酸化亜鉛集合体の発生を防
ぎ、亜鉛蒸気の定常的な噴出時間を延長するため、図4
に示するつぼの構成が特願平3−258928号明細書
に開示されている。図に示すように、矢印実線で示す還
元性燃焼ガスを、ノズルの全外周を障壁39で包囲し、
ノズル先端35から遠ざけ、矢印一点鎖線で示す亜鉛蒸
気と還元性燃焼ガス中の水分との遭遇を障壁38の上端
部で行い、その上端部に前記の団塊状粒子の酸化亜鉛集
合体37を堆積させるようにする。ノズル先端35に
は、障壁38を越えて流れ込んだ少量の還元性燃焼ガス
中の水分との反応に伴う酸化亜鉛集合体が少し堆積する
だけで、長時間の連続亜鉛噴出が可能となる。しかし、
障壁上の酸化亜鉛集合体37は増え続け、遂にはノズル
を埋めてしまうので、工業的に連続して酸化亜鉛ウィス
カを製造するには、定期的に製造を止めて、障壁上に生
成する酸化亜鉛集合体を炉外に取除かねばならない欠点
があった。
[0007] In order to prevent the generation of the above-mentioned zinc oxide aggregates and to prolong the time during which the zinc vapor is constantly ejected, FIG.
Is disclosed in Japanese Patent Application No. 3-258929. As shown in the drawing, the reducing combustion gas indicated by the solid arrow is surrounded by a barrier 39 around the entire outer periphery of the nozzle,
At a distance from the nozzle tip 35, an encounter between the zinc vapor indicated by the dashed line and the moisture in the reducing combustion gas is performed at the upper end of the barrier 38, and the above-mentioned zinc oxide aggregate 37 of the agglomerate particles is deposited on the upper end. Let it do. At the nozzle tip 35, zinc oxide aggregates due to the reaction with a small amount of moisture in the reducing combustion gas flowing over the barrier 38 are deposited only a little, so that continuous zinc ejection can be performed for a long time. But,
Since the zinc oxide aggregates 37 on the barrier continue to increase and eventually fill the nozzle, industrially continuous production of zinc oxide whiskers requires that the production be periodically stopped and the oxidation generated on the barrier be eliminated. There was a disadvantage that the zinc aggregate had to be removed outside the furnace.

【0008】一方、図5に示す構成の酸化亜鉛ウィスカ
製造装置が日本化学会誌(Vo1.6、P.838(1
984))に記載されている。その構成は、亜鉛蒸気噴
出ノズル先端は二重構造とし、上記のような還元性燃焼
ガスを使用せず、内側には溶融亜鉛32より発生した矢
印一点鎖線で示す亜鉛蒸気を流し、外側には矢印実線で
示す保護ガスと称するアルゴンガスをアルゴンガス流入
口41より流す構成となっている。
On the other hand, a zinc oxide whisker manufacturing apparatus having the structure shown in FIG.
984)). The configuration is such that the zinc vapor jet nozzle tip has a double structure, does not use a reducing combustion gas as described above, flows zinc vapor indicated by an arrow chain line generated from the molten zinc 32 inside, and outwards Argon gas, which is referred to as a protective gas indicated by a solid arrow line, flows from the argon gas inlet 41.

【0009】上記のアルゴンガスで包み込まれた領域以
外は酸化性雰囲気領域であり、その領域で亜鉛蒸気は酸
化され、酸化亜鉛ウィスカとなる。しかし、ノズル先端
には、アルゴンガスによって周囲の酸素の進入を防ぎき
れなかった量だけの酸化亜鉛集合体37が堆積し、連続
して亜鉛蒸気を噴出できず、10〜20gの連続生成で
装置を停止する結果が示されている。
The region other than the region surrounded by the argon gas is an oxidizing atmosphere region, in which zinc vapor is oxidized to become zinc oxide whiskers. However, at the nozzle tip, an amount of zinc oxide aggregate 37 that could not completely prevent the invasion of surrounding oxygen by the argon gas was deposited, and the zinc vapor could not be continuously ejected, and the apparatus was continuously produced at 10 to 20 g. The result of stopping is shown.

【0010】[0010]

【発明が解決しようとする課題】上記のような従来の装
置および方法では、テトラポット形の酸化亜鉛ウィスカ
を工業的に連続して生産しようとすると、亜鉛蒸気噴出
口35に団塊状粒子の酸化亜鉛集合体37が堆積し、亜
鉛蒸気を連続して噴出し続け亜鉛蒸気を酸化性雰囲気領
域に導き、酸化反応を起させることが困難であるという
問題があった。
In the conventional apparatus and method as described above, in order to continuously produce tetrapot-type zinc oxide whiskers industrially, the oxidation of agglomerate particles to the zinc vapor jet port 35 is performed. There has been a problem that it is difficult to cause the zinc aggregate 37 to accumulate, continuously eject zinc vapor, guide the zinc vapor to the oxidizing atmosphere region, and cause an oxidation reaction.

【0011】本発明はこのような課題を解決するもの
で、亜鉛蒸気噴出口が常に原形を保ち、亜鉛蒸気が連続
して噴出し続け、工業的にテトラポット形の酸化亜鉛ウ
ィスカを連続して生成することができるテトラポット形
酸化亜鉛ウィスカの製造装置および製造方法を提供する
ことを目的とするものである。
The present invention solves such a problem, and the zinc vapor jet outlet always keeps its original shape, the zinc vapor continues to be jetted continuously, and industrially a tetrapot type zinc oxide whisker is continuously formed. An object of the present invention is to provide a manufacturing apparatus and a manufacturing method of a tetrapot type zinc oxide whisker that can be produced.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
めに本発明は、るつぼ周辺を炭化水素系燃料の還元性燃
焼ガスで満たして非酸化性雰囲気領域としつつ、るつぼ
上部の亜鉛蒸気排出ノズルの全外周に同心円状のスリッ
トを設け、このスリットから、外部で、炭化水素系の燃
料を空気不足で燃焼させた還元性燃焼ガスから水分除去
器で水分を除去した乾燥還元性燃焼ガスを流し、亜鉛蒸
気とのるつぼ周辺の燃焼ガスとを分離するようにしたも
のである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a non-oxidizing atmosphere region in which the periphery of a crucible is filled with a reducing combustion gas of a hydrocarbon-based fuel while discharging zinc vapor from the upper portion of the crucible. A concentric slit is provided on the entire outer periphery of the nozzle, and from this slit, a dry reducing combustion gas obtained by removing water with a moisture remover from a reducing combustion gas obtained by burning hydrocarbon-based fuel with insufficient air outside. This is to separate zinc gas from the combustion gas around the crucible with the zinc vapor.

【0013】[0013]

【作用】上記の構成および方法によれば、乾燥還元性燃
焼ガスの内側に亜鉛蒸気、外側にるつぼ周辺を非酸化性
雰囲気領域にするための燃焼ガスが流れるように、構成
され、亜鉛蒸気と水分との遭遇がほとんどなくなり、わ
ずかの遭遇による酸化亜鉛集合体も乾燥還元性燃焼ガス
の還元力により還元され、再び亜鉛蒸気となって上昇
し、上部の酸化性雰囲気領域に到達し、テトラポット形
酸化亜鉛ウィスカとなる。すなわち、図5で説明した従
来のアルゴンガスを流す構成では、亜鉛蒸気周辺への酸
素の進入を防止する保護ガスを流しているが、それでも
防止しきれず、わずかに進入した酸素によって、ノズル
先端に酸化亜鉛集合体を生成し続け、連続して長時間テ
トラポット形結晶の酸化亜鉛ウィスカを生成できなかっ
た。本発明の乾燥還元性燃焼ガスを流す構成では、保護
ガスとしての働きに加えて、ノズル先端に生成したわず
かの酸化亜鉛集合体を還元して再び亜鉛蒸気とし、上部
の酸化領域でテトラポット形結晶の酸化亜鉛ウィスカを
生成する作用を有する。このため、ノズル先端に酸化亜
鉛集合体を生成することが防止でき、亜鉛蒸気を連続し
て噴出し続け、保守・清掃を行わずに長時間、連続して
テトラポット酸化亜鉛ウィスカを製造することができる
こととなる。
According to the above configuration and method, zinc vapor is flowed inside the dry reducing combustion gas, and combustion gas for making the periphery of the crucible a non-oxidizing atmosphere region is flown outside, so that the zinc vapor and the zinc vapor are discharged. The encounter with moisture almost disappears, and the zinc oxide aggregates caused by the slight encounter are reduced by the reducing power of the dry reducing combustion gas, rise again as zinc vapor, reach the upper oxidizing atmosphere region, and It becomes a zinc oxide whisker. That is, in the configuration in which the conventional argon gas is supplied as described with reference to FIG. 5, a protective gas for preventing oxygen from entering around the zinc vapor is supplied. Zinc oxide aggregates continued to be generated, and zinc oxide whiskers of tetrapot type crystals could not be continuously generated for a long time. In the configuration of flowing the dry reducing combustion gas of the present invention, in addition to the function as a protective gas, a small amount of zinc oxide aggregate generated at the nozzle tip is reduced again to zinc vapor, and a tetrapot type is formed in the upper oxidation region. It has the effect of producing crystalline zinc oxide whiskers. For this reason, it is possible to prevent the formation of zinc oxide aggregates at the nozzle tip, to continuously emit zinc vapor, and to continuously manufacture tetrapot zinc oxide whiskers for a long time without performing maintenance and cleaning. Can be done.

【0014】[0014]

【実施例】以下に本発明の一実施例の酸化亜鉛ウィスカ
の製造装置および製造方法について、図面を参照しなが
ら説明する。図1に本実施例の酸化亜鉛ウィスカの製造
装置の全体構成を、図2にそのるつぼを主体とする亜鉛
蒸気発生部の構成を示す。図1、図2の装置を用いるこ
とにより、炭化水素系燃料を用いて、針状部が長い巨大
なテトラポット状結晶からなる酸化亜鉛ウィスカを工業
的かつ連続的に生成することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A zinc oxide whisker manufacturing apparatus and a manufacturing method according to one embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the overall configuration of a zinc oxide whisker manufacturing apparatus of the present embodiment, and FIG. 2 shows the configuration of a zinc vapor generating section mainly including the crucible. The use of the apparatus shown in FIGS. 1 and 2 makes it possible to industrially and continuously produce zinc oxide whiskers composed of giant tetrapod-like crystals having long needle-like portions, using a hydrocarbon-based fuel.

【0015】図1、図2において、1は炭化水素系燃料
の燃焼室、2は燃焼バーナ、3は燃焼ガスの排出口であ
る。
In FIGS. 1 and 2, reference numeral 1 denotes a combustion chamber for a hydrocarbon fuel, reference numeral 2 denotes a combustion burner, and reference numeral 3 denotes a combustion gas outlet.

【0016】4はSiC系のセラミック製るつぼで、6
は亜鉛蒸気排出ノズル、7は亜鉛蒸気排出ノズルの開口
端、8は乾燥還元性燃焼ガス排出器、9は乾燥還元性燃
焼ガスを排出するスリット状開口部、10は乾燥還元性
燃焼ガスを外部から供給するための供給管、11は原料
の亜鉛インゴットをるつぼ内に外部から供給する供給管
で亜鉛インゴットと共に空気が混入しないように脱気装
置を内蔵し、るつぼ内で融解した亜鉛は溶融亜鉛6とな
る。
Reference numeral 4 denotes a SiC-based ceramic crucible.
Is a zinc vapor discharge nozzle, 7 is an opening end of the zinc vapor discharge nozzle, 8 is a dry reducing combustion gas discharger, 9 is a slit-shaped opening for discharging the dry reduction combustion gas, and 10 is an outside of the dry reduction combustion gas. Is a supply pipe for supplying a raw material zinc ingot into the crucible from outside, and has a built-in deaerator to prevent air from being mixed with the zinc ingot, and the zinc melted in the crucible is molten zinc. It becomes 6.

【0017】12は反応炉で、電熱ヒータ13により所
定温度に保つよう制御されている。14は燃焼ガス雰囲
気領域、15は空気を主体とする酸化性雰囲気領域であ
る。
Reference numeral 12 denotes a reaction furnace, which is controlled by an electric heater 13 so as to maintain a predetermined temperature. 14 is a combustion gas atmosphere region, and 15 is an oxidizing atmosphere region mainly composed of air.

【0018】反応炉12は頂部が絞られており、連結管
19により酸化亜鉛ウィスカ捕集室18と接続されてい
る。バグフィルタ20および排気ブロア21により、反
応炉12で生成した酸化亜鉛ウィスカが捕集室18に送
り込まれ、回収ボックス22に収集される。
The reactor 12 has a narrowed top, and is connected to a zinc oxide whisker collecting chamber 18 by a connecting pipe 19. The zinc oxide whiskers generated in the reaction furnace 12 are sent to the collection chamber 18 by the bag filter 20 and the exhaust blower 21 and collected in the collection box 22.

【0019】燃焼室1に送り込まれた炭化水素系燃料が
不完全燃焼した時に発生する燃焼ガスを構成するCO2
とH2 OとCOとは、燃焼ガス排出口3から排出され、
その燃焼熱によりるつぼ4内の溶融亜鉛5を加熱しなが
ら、るつぼ4と燃焼室1との隙間16、るつぼ4と反応
炉12の内壁との間隙17を通り、るつぼ4および乾燥
還元性燃焼ガス排出器8の外周を包み込みながら、矢印
実線で示されるように上昇し、燃焼ガス雰囲気領域14
を反応炉12の下部に形成する。るつぼ4内で発生した
亜鉛蒸気は、るつぼ上部のノズル6から、るつぼの加熱
状態を制御して得られる任意の速度で噴出させ、燃焼ガ
スとともに混合ガスとなって上昇して、反応炉12上部
の酸化性雰囲気領域15に到達して酸化され、テトラポ
ット状の酸化亜鉛ウィスカを生成する。このとき、るつ
ぼ4から発生する矢印一点鎖線で示される亜鉛蒸気と矢
印実線で示される燃焼ガスとの間で、亜鉛蒸気の全外周
から矢印点線で示される乾燥還元性ガスをスリット状開
口部9から噴出させ、亜鉛蒸気と燃焼ガスとがノズル6
近傍で遭遇できないようにする。
CO 2 constituting the combustion gas generated when the hydrocarbon fuel fed into the combustion chamber 1 is incompletely burned
, H 2 O and CO are discharged from the combustion gas outlet 3,
While the molten zinc 5 in the crucible 4 is heated by the combustion heat, the molten zinc 5 passes through the gap 16 between the crucible 4 and the combustion chamber 1 and the gap 17 between the crucible 4 and the inner wall of the reaction furnace 12 and passes through the crucible 4 and the dry reducing combustion gas. While wrapping around the outer periphery of the discharger 8, it rises as shown by the solid arrow line, and
Is formed in the lower part of the reaction furnace 12. The zinc vapor generated in the crucible 4 is ejected from the nozzle 6 at the top of the crucible at an arbitrary speed obtained by controlling the heating state of the crucible, rises as a mixed gas with the combustion gas, and rises. Reaches the oxidizing atmosphere region 15 and is oxidized to generate tetrapod-shaped zinc oxide whiskers. At this time, between the zinc vapor generated by the crucible 4 indicated by the dashed line and the combustion gas indicated by the solid line, the dry reducing gas indicated by the dotted line from the entire outer periphery of the zinc vapor is passed through the slit opening 9. From the nozzle 6 and the zinc vapor and the combustion gas
Avoid encountering nearby.

【0020】本実施例において、ノズル6から排出され
る亜鉛蒸気の速度を亜鉛インゴットの重量換算で24〜
270g/cm2 ・minとし、乾燥還元性燃焼ガスを
スリット幅1.0〜2.0mm(図2のS寸法)のスリ
ット状開口部9から40〜120リットル/minで噴
出したところ、図2のh寸法が+20〜−10mmの範
囲であれば、ノズル開口端7を閉塞する酸化亜鉛集合体
は発生しなかった。乾燥還元性燃焼ガスの濃度は、完全
燃焼するのに必要な酸素量を±CO/2と表示するO2
濃度計(日本ガイシ製、型番AS−110)で測定して
−5〜−9%が好適であった。測定値が正数域にある濃
度では短時間にノズル開口端7が閉塞され、0%に近い
負数域である−1〜−2%の濃度においては、実験に使
用した亜鉛重量の3〜5%の酸化亜鉛集合体がノズル開
口端7に堆積し、数時間で連続生成に影響があった。こ
のことから、乾燥還元性ガスは亜鉛蒸気と燃焼ガスとの
ノズル近傍での遭遇を完全に防止できないことから生成
した酸化亜鉛集合体を−5〜−9%の強い還元性能で還
元し、再び亜鉛蒸気とし、上部の酸化性雰囲気領域に送
る作用があったことになる。
In the present embodiment, the velocity of the zinc vapor discharged from the nozzle 6 is 24 to 24 in terms of the weight of the zinc ingot.
270 g / cm 2 · min, and the dry reducing combustion gas was ejected from the slit-shaped opening 9 having a slit width of 1.0 to 2.0 mm (S dimension in FIG. 2) at 40 to 120 L / min. When the h dimension of the sample was in the range of +20 to -10 mm, no zinc oxide aggregate closing the nozzle opening end 7 was generated. The concentration of the dry-reducing combustible gas is expressed by O 2 which indicates the amount of oxygen required for complete combustion as ± CO / 2.
As measured by a densitometer (manufactured by NGK, model number AS-110), -5% to -9% was suitable. At a concentration where the measured value is in the positive range, the nozzle opening end 7 is closed in a short time, and at a concentration of -1 to -2%, which is a negative range close to 0%, 3 to 5% of the zinc weight used in the experiment. % Of the zinc oxide aggregates was deposited on the nozzle opening end 7, which affected continuous production in several hours. From this, the dry reducing gas cannot completely prevent the encounter of the zinc vapor and the combustion gas near the nozzle, thereby reducing the zinc oxide aggregate generated with a strong reduction performance of -5 to -9%, and again. This means that there was an action of sending the zinc vapor to the upper oxidizing atmosphere region.

【0021】一方、乾燥還元性ガスは、反応炉外の別の
燃焼器で炭水水素系の燃料を空気不足で燃焼させ、その
燃焼ガスを市販の水冷式(冷却温度10℃)の冷却器を
通して、水分除去率98%以上として用いた。
On the other hand, the dry reducing gas is produced by burning a carbohydrate-based fuel in a separate combustor outside the reactor in a state of insufficient air, and the combustion gas is cooled by a commercially available water-cooled (cooling temperature of 10 ° C.) cooler. , And used as a water removal rate of 98% or more.

【0022】さらに、本実施例は反応炉内径500〜1
000mm、炉長2000〜7000mmの工業的生産
炉において実施確認を行った。その結果、テトラポット
状の酸化亜鉛ウィスカを連続して、大量に生成できた。
Further, in this embodiment, the inner diameter of the reactor is 500 to 1
The operation was confirmed in an industrial production furnace having a furnace length of 2000 mm and a length of 2000 to 7000 mm. As a result, a large amount of zinc oxide whiskers in the form of tetrapots could be continuously produced.

【0023】なお、本実施例では乾燥還元性ガスとして
炭化水素系燃料を空気不足で燃焼させて得られる燃焼ガ
スを用いた例について説明したが、本発明はこれに限定
されるものではなく、他の燃料、例えば水素や炭素燃料
などの燃料を用いても同様の効果が得られる。
In this embodiment, an example is described in which a combustion gas obtained by burning a hydrocarbon-based fuel with insufficient air is used as the dry reducing gas. However, the present invention is not limited to this. Similar effects can be obtained by using other fuels such as hydrogen and carbon fuels.

【0024】[0024]

【発明の効果】以上の実施例の説明から明らかなように
本発明によれば、炭化水素系燃料を使用し、その燃焼熱
を亜鉛蒸気を発生させるために利用するとともに、燃焼
ガスによりるつぼなどからなる亜鉛蒸気発生部を包み込
んで、空気を含む酸化性雰囲気から隔離する。さらに、
亜鉛蒸気排出ノズルの全外周から乾燥還元性燃焼ガスを
噴出させて、るつぼから発生する亜鉛蒸気と燃焼ガスと
をノズル開口端近傍で遭遇するのを防止するとともに、
乱流により亜鉛蒸気に接触して生じた僅かの酸化亜鉛集
合体を還元して再び亜鉛蒸気に戻す。このため、亜鉛蒸
気を噴出するノズル開口端には長時間にわたり酸化亜鉛
集合体が発生せず、テトラポット形結晶の酸化亜鉛ウィ
スカを効率よく、連続生産できる、製造装置および製造
方法を提供することができる。
As is apparent from the above description of the embodiment, according to the present invention, a hydrocarbon-based fuel is used, its combustion heat is used to generate zinc vapor, and a crucible such as Enclosing the zinc vapor generating portion made of, and isolated from an oxidizing atmosphere containing air. further,
Spraying dry reducing combustion gas from the entire outer periphery of the zinc vapor discharge nozzle prevents zinc vapor and combustion gas generated from the crucible from being encountered near the nozzle opening end,
A small amount of the zinc oxide aggregate generated by contact with the zinc vapor due to the turbulence is reduced and returned to the zinc vapor. Therefore, a manufacturing apparatus and a manufacturing method are provided in which zinc oxide aggregates are not generated for a long time at a nozzle opening end for ejecting zinc vapor and zinc oxide whiskers of a tetrapod-shaped crystal can be efficiently and continuously produced. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の酸化亜鉛ウィスカ製造装置
の構成を示す縦断面図
FIG. 1 is a longitudinal sectional view showing a configuration of a zinc oxide whisker manufacturing apparatus according to one embodiment of the present invention.

【図2】同亜鉛蒸気発生部の構成を示す断面図FIG. 2 is a cross-sectional view showing the configuration of the zinc vapor generating unit.

【図3】従来の亜鉛蒸気発生部の構成を示す断面図FIG. 3 is a cross-sectional view showing a configuration of a conventional zinc vapor generating unit.

【図4】同ノズル開口端保護障壁を備えた亜鉛蒸気発生
部の構成を示す断面図
FIG. 4 is a cross-sectional view showing a configuration of a zinc vapor generation unit having the nozzle opening end protection barrier.

【図5】同保護ガスとしてアルゴンガスを流す亜鉛蒸気
発生部の構成を示す断面図
FIG. 5 is a cross-sectional view showing a configuration of a zinc vapor generating unit in which an argon gas flows as the protective gas.

【符号の説明】[Explanation of symbols]

1 燃焼室 2 燃焼バーナ 3 排出口 4 るつぼ 5 溶融亜鉛 6 ノズル 7 ノズル開口端 8 乾燥還元性ガス排出器 9 スリット状開口部 10 乾燥還元性ガス供給管 11 インゴット供給管 12 反応炉 13 電熱ヒータ 14 燃焼ガス領域 15 酸化性ガス領域 DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Combustion burner 3 Discharge port 4 Crucible 5 Molten zinc 6 Nozzle 7 Nozzle opening end 8 Dry reducing gas discharger 9 Slit opening 10 Dry reducing gas supply pipe 11 Ingot supply pipe 12 Reactor 13 Electric heater 14 Combustion gas area 15 Oxidizing gas area

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−170399(JP,A) 特開 平4−144995(JP,A) 特開 平4−132700(JP,A) 特開 平2−192499(JP,A) 特開 平2−192498(JP,A) 特開 平6−97597(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-170399 (JP, A) JP-A-4-144955 (JP, A) JP-A-4-132700 (JP, A) JP-A-2- 192499 (JP, A) JP-A-2-192498 (JP, A) JP-A-6-97597 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35 / 00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】縦型反応炉の下部に炭化水素系燃料を空気
不足の状態で燃焼させて得た還元性燃焼ガスを主体とし
て形成した非酸化性雰囲気領域を、前記縦型反応炉の上
部に空気を主体として形成した酸化性雰囲気領域を設
け、前記非酸化性雰囲気領域内に、前記燃焼ガスで加熱
して金属亜鉛を蒸発させるるつぼを配置し、前記るつぼ
の上方に、前記るつぼから発生した亜鉛蒸気を噴出させ
るためのノズルと、前記ノズルの全外周に乾燥還元性燃
焼ガスを排出する同心円状のスリットを備えたテトラポ
ット形の酸化亜鉛ウィスカの製造装置。
1. A non-oxidizing atmosphere region mainly formed of a reducing combustion gas obtained by burning a hydrocarbon-based fuel in a state of insufficient air at a lower portion of the vertical reactor, and an upper portion of the vertical reactor. An oxidizing atmosphere region formed mainly of air is provided in the non-oxidizing atmosphere region, and a crucible for evaporating metal zinc by heating with the combustion gas is disposed in the non-oxidizing atmosphere region. The crucible is generated above the crucible above the crucible. And a nozzle for ejecting the discharged zinc vapor, and a tetrapot-type zinc oxide whisker manufacturing apparatus provided with a concentric slit for discharging a dry reducing combustion gas on the entire outer periphery of the nozzle.
【請求項2】縦型反応炉の下部に炭化水素系燃料を空気
不足の状態で燃焼させて得た還元性燃焼ガスを主体とし
て形成した非酸化性雰囲気領域を、前記縦型反応炉の上
部に空気を主体として形成した酸化性雰囲気領域を設
け、前記非酸化性雰囲気領域内に、前記燃焼ガスで加熱
して金属亜鉛を蒸発させるるつぼを配置し、前記るつぼ
の上方に、前記るつぼから発生した亜鉛蒸気を噴出させ
るためのノズルと、前記ノズルの全外周に乾燥還元性燃
焼ガスを排出する同心円状のスリットを備え、前記同心
円状のスリットから乾燥還元性燃焼ガスを排出して、前
記ノズルを還元性雰囲気に保ちつつ前記ノズルから亜鉛
蒸気を噴出させ、前記縦型反応炉の上部に形成した酸化
性雰囲気領域で亜鉛蒸気を酸化して酸化亜鉛を生成する
テトラポット形の酸化亜鉛ウィスカの製造方法。
2. A non-oxidizing atmosphere region mainly formed of a reducing combustion gas obtained by burning a hydrocarbon-based fuel in a state of air shortage in a lower portion of the vertical reactor, and an upper portion of the vertical reactor. An oxidizing atmosphere region formed mainly of air is provided in the non-oxidizing atmosphere region, and a crucible for evaporating metal zinc by heating with the combustion gas is disposed in the non-oxidizing atmosphere region. The crucible is generated above the crucible above the crucible. A nozzle for ejecting the discharged zinc vapor, and a concentric slit for discharging a dry-reducing combustion gas on the entire outer periphery of the nozzle, and discharging the dry-reducing combustion gas from the concentric slit. While maintaining the atmosphere in a reducing atmosphere, a zinc vapor is ejected from the nozzle, and a zinc-oxidized atmosphere formed in the upper part of the vertical reactor oxidizes the zinc vapor to generate zinc oxide. Method for producing a zinc whiskers.
JP24442292A 1992-09-14 1992-09-14 Apparatus and method for producing zinc oxide whiskers Expired - Lifetime JP3205843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24442292A JP3205843B2 (en) 1992-09-14 1992-09-14 Apparatus and method for producing zinc oxide whiskers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24442292A JP3205843B2 (en) 1992-09-14 1992-09-14 Apparatus and method for producing zinc oxide whiskers

Publications (2)

Publication Number Publication Date
JPH0692797A JPH0692797A (en) 1994-04-05
JP3205843B2 true JP3205843B2 (en) 2001-09-04

Family

ID=17118425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24442292A Expired - Lifetime JP3205843B2 (en) 1992-09-14 1992-09-14 Apparatus and method for producing zinc oxide whiskers

Country Status (1)

Country Link
JP (1) JP3205843B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854617B2 (en) * 2007-07-13 2012-01-18 パナソニック株式会社 Tetrapod-shaped zinc oxide manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JPH0692797A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
JP3249816B2 (en) Tip submerged injection with shrouded lance
JPS62500010A (en) Flame generation method and device
US5269236A (en) Method and apparatus for preventing the adhesion of dust in an incinerator or melting furnace
JP3205843B2 (en) Apparatus and method for producing zinc oxide whiskers
JPS6154355B2 (en)
WO2020235579A1 (en) Melting furnace
CN103539122A (en) Silicon carbide preparation method
JPH0249072A (en) Production of carbon black
US4238228A (en) Non-ferrous metal treatment
JPH10501610A (en) Method for melting metal input in rotary furnace and rotary furnace for implementing the method
JPH11237007A (en) Combustion furnace for combustion or flame hydrolysis and combustion method
JP3390648B2 (en) Furnace wall structure of electric melting furnace and furnace body cooling method
JPH04143047A (en) Method for heating molten metal vessel
JP4231283B2 (en) High purity magnesium oxide fine powder production apparatus and high purity magnesium oxide fine powder production method using the same
US4917866A (en) Production process of silicon carbide short fibers
CN109019668A (en) A kind of hot-bulb mill oxidation prepares the method and production system of superfine active zinc oxide powder
JP3048012B2 (en) Method for blackening stainless steel strip surface and blackening furnace
JP3739940B2 (en) Waste melting furnace
JP2723572B2 (en) Flash smelting furnace
JPS5611989A (en) Temperature control of jet layer heat exchanger
JP2699778B2 (en) Thermal spray repair equipment
JPH04144995A (en) Device for producting zinc oxide whisker
JP2922108B2 (en) Hollow cylindrical copper electrode plasma torch and method of operating the same
JPS6234272B2 (en)
USRE32234E (en) Non-ferrous metal treatment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 12