JP3203047B2 - Method for producing ethylene vinyl alcohol copolymer hollow fiber membrane - Google Patents

Method for producing ethylene vinyl alcohol copolymer hollow fiber membrane

Info

Publication number
JP3203047B2
JP3203047B2 JP12814392A JP12814392A JP3203047B2 JP 3203047 B2 JP3203047 B2 JP 3203047B2 JP 12814392 A JP12814392 A JP 12814392A JP 12814392 A JP12814392 A JP 12814392A JP 3203047 B2 JP3203047 B2 JP 3203047B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
vinyl alcohol
alcohol copolymer
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12814392A
Other languages
Japanese (ja)
Other versions
JPH05293344A (en
Inventor
健 末弘
義昌 福井
健彦 岡本
善宣 神応
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP12814392A priority Critical patent/JP3203047B2/en
Publication of JPH05293344A publication Critical patent/JPH05293344A/en
Application granted granted Critical
Publication of JP3203047B2 publication Critical patent/JP3203047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は選択透過性膜、とくに人
工腎臓用血液透析膜や血液浄化用血漿成分分離膜として
有用なエチレンビニルアルコール系共重合体中空糸膜の
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ethylene vinyl alcohol copolymer hollow fiber membrane which is useful as a selectively permeable membrane, particularly a hemodialysis membrane for an artificial kidney or a plasma component separation membrane for blood purification.

【0002】[0002]

【従来の技術】従来より、エチレンビニルアルコール系
共重合体中空糸膜の製造方法として、エチレンビニルア
ルコール系(以下、エチレンビニルアルコールをEVA
と略称する)共重合体をジメチルスルホキシド等の溶媒
中に溶解し、得られた紡糸原液を溶液のポリマー濃度に
より規定される特定温度の水、を一成分とする凝固浴中
で凝固させて中空糸膜を製造する方法が知られている
(例えば特公昭56−1122号公報、特公昭63−2
5806号公報参照)。
2. Description of the Related Art Conventionally, as a method for producing an ethylene-vinyl alcohol-based copolymer hollow fiber membrane, an ethylene-vinyl alcohol-based copolymer (hereinafter referred to as EVA) has been used.
The copolymer is dissolved in a solvent such as dimethyl sulfoxide, and the resulting spinning solution is coagulated in a coagulation bath containing water at a specific temperature defined by the polymer concentration of the solution as a component. A method for producing a yarn membrane is known (for example, Japanese Patent Publication No. Sho 56-1122, Japanese Patent Publication No. Sho 63-2).
No. 5806).

【0003】また最近アルブミン、高密度リポタンパク
及び低密度リポタンパクの分離性に優れた中空糸膜の製
法として、紡糸原液をEVA系共重合体固有の熱物理定
数であるガラス転移点により規定される特定温度の、水
を一成分とする凝固浴中で凝固させ、その後特定の条件
で湿熱処理、有機溶媒置換、乾燥そして乾熱処理を行う
方法が提案されている(例えば特開平2−7187号
公報参照)。
Recently, as a method for producing a hollow fiber membrane having excellent separability between albumin, high-density lipoprotein and low-density lipoprotein, a spinning dope is defined by a glass transition point which is a thermophysical constant inherent to an EVA-based copolymer. that particular temperature, water coagulated in the coagulation bath to a component, then wet heat treatment under specific conditions, the organic solvent substitution, drying and a method of performing dry-heat treatment has been proposed (e.g., JP-a-2-718 2 No. 7).

【0004】[0004]

【発明が解決しようとする課題】上記方法、特に後者の
方法で製造された中空糸膜はアルブミン等の分画性に優
れ、特に血漿成分分離用の膜として有用であるが、上記
製法で得られた中空糸膜は、中空糸束をハウジングの中
に組み込むモジュール化工程で発生する不良のうち、す
抜け(樹脂隔壁部における樹脂未充填部)の原因となる
中空糸の膠着がしばしば発生することがある。す抜けが
発生すると収率の低下を招き、またす抜け発生防止のた
めに中空糸束を解繊して膠着をほぐそうとすると解繊作
業による工数の増加を来しモジュールの製造コストが上
昇する一つの要因となっている。したがって、本発明の
目的は中空糸膜の性能を低下させることなく、しかも膠
着のない、中空糸膜を安定に製造する方法を提供するこ
とにある。
The hollow fiber membrane produced by the above method, particularly the latter method, is excellent in the fractionability of albumin and the like, and is particularly useful as a membrane for separating plasma components. Among the defects generated in the modularization process of incorporating the hollow fiber bundle into the housing, the hollow fiber membranes often cause sticking of the hollow fibers, which cause slip-through (resin-unfilled portions in the resin partition walls). Sometimes. If slippage occurs, the yield will be reduced, and if the hollow fiber bundle is defibrated to loosen the glue to prevent the slippage, the man-hour required by the defibration operation will increase, and the module manufacturing cost will increase. This is one factor. Accordingly, an object of the present invention is to provide a method for stably producing a hollow fiber membrane without deteriorating the performance of the hollow fiber membrane and free from agglutination.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題を
解決するため、中空糸膜の製造条件について検討したと
ころ、原液温度を高くすると中空糸膜の膠着が減少する
が、逆に中空糸膜の糸径の斑が増大したり、竹の節状の
非中空糸膜が連続して発生することが判明した。本発明
者らは上記現象を徹底的に分析した結果、意外にも凝固
液と原液温度及び凝固液濃度を特定の条件に設定するこ
とにより、膠着がなく、しかも分画性に優れた中空糸膜
が安定に製造できることを見出し、本発明に到達したも
のである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors examined the manufacturing conditions of the hollow fiber membrane. As the stock solution temperature was increased, the sticking of the hollow fiber membrane was reduced. It was found that the unevenness of the diameter of the fiber membrane was increased, and the knot-shaped non-hollow fiber membrane of bamboo was continuously generated. The present inventors have conducted a thorough analysis of the above phenomena, and surprisingly, by setting the temperature of the coagulating solution and the stock solution and the concentration of the coagulating solution to specific conditions, a hollow fiber having no sticking and having excellent fractionation properties is obtained. The inventors have found that a film can be stably manufactured, and have reached the present invention.

【0006】すなわち本発明は、エチレンビニルアルコ
ール系共重合体を溶媒に溶解し、円環状ノズルより凝固
浴中に押し出し凝固させる中空糸膜の製造方法におい
て、凝固浴温度をCT℃、凝固浴濃度をC%、原液温度
をDT℃、飽和含水エチレンビニルアルコール系共重合
体のガラス転移点をTg↓1℃、乾燥エチレンビニルア
ルコール系共重合体のガラス転移点をTg↓2℃とする
とき、下記(I)〜(III)式が満足されることを特徴
とするエチレンビニルアルコール系共重合体中空糸膜の
製造法である。 Tg↓1−30<CT<Tg↓1+50 (I) C≦45−CT (II) Tg↓2−25<DT (III)
That is, the present invention relates to a method for producing a hollow fiber membrane in which an ethylene-vinyl alcohol copolymer is dissolved in a solvent and extruded and solidified from an annular nozzle into a coagulation bath. Is C%, the stock solution temperature is DT ° C, the glass transition point of the saturated water-containing ethylene vinyl alcohol-based copolymer is Tg ↓ 1 ° C, and the glass transition point of the dry ethylene-vinyl alcohol-based copolymer is Tg ↓ 2 ° C. A method for producing an ethylene-vinyl alcohol-based copolymer hollow fiber membrane characterized by satisfying the following formulas (I) to (III). Tg ↓ 1-30 <CT <Tg ↓ 1 + 50 (I) C ≦ 45-CT (II) Tg ↓ 2-25 <DT (III)

【0007】本発明において用いられるEVA系共重合
体はランダム、ブロック、グラフトいずれの共重合体で
もよいが、重合度が800未満のものでは製膜時の機械
的強度が不十分となるため800以上のものを用いるの
が好ましい。通常1000以上のものが好ましく用いら
れる。またエチレン含有量は10モル%以下のものは湿
潤時の機械的性質が十分でなく、しかも溶出物の増大が
あり、また60モル%以上のものでは透過性が低下する
ことがあるので、通常10〜60モル%のもの、なかで
も20〜45モル%のものが好ましく使用される。
The EVA-based copolymer used in the present invention may be any of random, block and graft copolymers. However, if the degree of polymerization is less than 800, the mechanical strength at the time of film formation becomes insufficient. It is preferable to use the above. Usually, those having 1000 or more are preferably used. If the ethylene content is 10 mol% or less, the mechanical properties when wet are not sufficient, and the eluate may increase. If the ethylene content is 60 mol% or more, the permeability may decrease. Those having 10 to 60 mol%, especially those having 20 to 45 mol%, are preferably used.

【0008】EVA系共重合体のケン化度としては、湿
潤時の機械的強度の点から95モル%以上が必要であ
り、通常はケン化度99モル%以上の実質的に完全ケン
化のものが用いられる。本発明に使用されるEVA系共
重合体には、例えばメタクリル酸、ビニルクロライド、
メチルメタクリレート、アクリロニトリル、ビニルピロ
リドンなどの共重合可能な重合性単量体が15モル%以
下の範囲で共重合されていてもよく、紡糸前もしくは紡
糸後においてEVA系共重合体を硼素化合物等の無機架
橋剤あるいはジイソシアネート、ジアルデヒドなどの有
機架橋剤などにより処理することにより、架橋が導入さ
れたもの、あるいはビニルアルコール単位の官能性水酸
基が30モル%以内の範囲で、ホルムアルデヒド、アセ
トアルデヒド、ブチルアルデヒド、ベンズアルデヒド等
のアルデヒドでアセタール化されているものも含まれ
る。多価アルデヒド化合物により架橋処理を行うと膜の
耐熱性と強度が大きく改善されるので好ましい。
The degree of saponification of the EVA copolymer is required to be 95 mol% or more from the viewpoint of mechanical strength when wet, and usually, the degree of saponification is 99 mol% or more. Things are used. Examples of the EVA copolymer used in the present invention include methacrylic acid, vinyl chloride,
A copolymerizable monomer such as methyl methacrylate, acrylonitrile, and vinylpyrrolidone may be copolymerized within a range of 15 mol% or less. Before or after spinning, the EVA-based copolymer is converted to a boron compound or the like. Formaldehyde, acetaldehyde, butyraldehyde, etc. in which the crosslinking has been introduced by treatment with an inorganic crosslinking agent or an organic crosslinking agent such as diisocyanate or dialdehyde, or the functional hydroxyl group of vinyl alcohol unit is within 30 mol%. And those acetalized with aldehydes such as benzaldehyde. Crosslinking with a polyhydric aldehyde compound is preferred because the heat resistance and strength of the film are greatly improved.

【0009】EVA系共重合体を溶解する溶媒として
は、メタノール、エタノールなどの1価アルコール、エ
チレングリコール、プロピレングリコール、グリセリン
などの多価アルコール、フェノール、メタクレゾール、
N−メチルピロリドン、ギ酸およびこれらの含水物など
が知られているが、本発明が目的とする望ましい分画性
を有する人工腎臓用血液透析膜や血液浄化用血漿成分分
離膜を得るためにはジメチルスルホキシド、ジメチルア
セトアミド、ピロリドン、N−メチルピロリドンまたは
これらの混合物を溶媒として用いるのが好ましい。なか
でもEVA系共重合体に対し高い溶解性を示すジメチル
スルホキシドが好ましく用いられる。EVA系共重合体
を前述の溶媒、とくにジメチルスルホキシドに溶解する
際に水またはメタノール、イソプロパノールまたはジメ
チルホルムアミドなどの他の溶媒または溶媒と混和性の
よい他の液体および無機塩を沈澱温度(EVA系共重合
体を溶媒に完全に溶解させた後、徐々に冷却し該共重合
体が沈澱をはじめる温度)以下の範囲において含くんで
いてもよい。
Solvents for dissolving the EVA copolymer include monohydric alcohols such as methanol and ethanol, polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin, phenol, meta-cresol and the like.
N-methylpyrrolidone, formic acid and their hydrates are known, but in order to obtain a blood dialysis membrane for artificial kidney or a plasma component separation membrane for blood purification having a desired fractionation aimed at by the present invention, It is preferable to use dimethylsulfoxide, dimethylacetamide, pyrrolidone, N-methylpyrrolidone or a mixture thereof as a solvent. Among them, dimethyl sulfoxide which shows high solubility in the EVA copolymer is preferably used. When the EVA-based copolymer is dissolved in the above-mentioned solvent, particularly dimethyl sulfoxide, water or another solvent such as methanol, isopropanol or dimethylformamide or another liquid and an inorganic salt which is miscible with the solvent are precipitated at the precipitation temperature (EVA-based After completely dissolving the copolymer in the solvent, the mixture may be gradually cooled and contained in the range below the temperature at which the copolymer starts to precipitate).

【0010】EVA系共重合体を溶媒に溶解するにあた
り、その濃度は任意に選択できるが、通常3〜30重量
%、好ましくは5〜20重量%の範囲で実施するのが望
ましい。
In dissolving the EVA-based copolymer in a solvent, the concentration thereof can be arbitrarily selected, but it is generally preferable to carry out the concentration in the range of 3 to 30% by weight, preferably 5 to 20% by weight.

【0011】本発明方法では、二重円環ノズルを用いて
中心部より空気、窒素等の気体又はn−ヘキサン等のポ
リマー溶液に対し非凝固性の液体を吐出しながら、ポリ
マー溶液を水を一成分とする凝固浴中に押し出し凝固さ
せて中空糸膜が製造される。二重円環ノズルの原液吐出
部分の開孔面積は通常2.1×10↑-3cm↑2/ホー
ル以下であることが好ましく、これ以上の開孔面積では
中空成形が難しくなり中空糸の均一性が失われる傾向が
ある。
In the method of the present invention, a non-coagulating liquid is discharged from a central portion of a polymer solution such as air, nitrogen or the like or a polymer solution such as n-hexane while using a double annular nozzle. The hollow fiber membrane is manufactured by extruding and solidifying into a coagulation bath as one component. The opening area of the undiluted solution discharge portion of the double annular nozzle is generally preferably 2.1 × 10 3 cm 3 / hole or less. Tend to lose sex.

【0012】凝固浴に用いられる凝固剤としては水性媒
体が用いられる。通常水とジメチルスルホキシド、ジメ
チルアセトアミド、ピロリドン、N−メチルピロリド
ン、アルコール等の水に可溶性の有機溶剤との混合溶
媒、さらには、水に可溶性のNacl,Na↓2SO↓
4,NaOH,等の無機塩等を含有する水等が挙げられ
る。好ましくはジメチルスルホキシドと水の混合溶媒を
凝固剤に用いるのがよい。
An aqueous medium is used as a coagulant used in the coagulation bath. Usually a mixed solvent of water and a water-soluble organic solvent such as dimethylsulfoxide, dimethylacetamide, pyrrolidone, N-methylpyrrolidone, alcohol, etc., and further, water-soluble NaCl, Na ↓ 2SO ↓
4, water containing an inorganic salt such as NaOH, and the like. Preferably, a mixed solvent of dimethyl sulfoxide and water is used as the coagulant.

【0013】本発明の製造方法としては、溶媒に溶解し
たEVA系共重合体の溶液を円環状ノズルより直接凝固
浴中に押し出し凝固させる湿式法、またはEVA系共重
合体の溶液を円環状ノズルから押し出し、気体雰囲気中
を通過させて凝固浴中で凝固させる乾湿式法が用いられ
るが、通常湿式法が採用される。
The production method of the present invention may be a wet method in which a solution of an EVA copolymer dissolved in a solvent is directly extruded from an annular nozzle into a coagulation bath and solidified, or a solution of the EVA copolymer is formed in an annular nozzle. A dry-wet method is used in which the material is extruded from a gas and is allowed to pass through a gaseous atmosphere and solidify in a coagulation bath.

【0014】優れた分離性能を有する中空糸膜を得るた
めには、凝固浴の温度(CT℃)は、飽和含水状態にお
けるEVA系共重合体のガラス転移点(Tg↓1℃)に
対し、 Tg↓1−30<CT<Tg↓1+50 (I) 好ましくは Tg↓1−10<CT<Tg↓1+40 の条件を満たすことが重要である。CTが上記の範囲を
外れると、本発明の対象である人工腎臓用透析膜血液
浄化用血漿成分分離膜として必要とされる性能を有する
膜は得られない。
In order to obtain a hollow fiber membrane having excellent separation performance, the temperature of the coagulation bath (CT ° C.) is determined based on the glass transition point (Tg ↓ 1 ° C.) of the EVA copolymer in a saturated water-containing state. Tg ↓ 1-30 <CT <Tg ↓ 1 + 50 (I) Preferably, it is important to satisfy the condition of Tg ↓ 1-10 <CT <Tg ↓ 1 + 40. When the CT is out of the above range, a membrane having the performance required as a dialysis membrane for an artificial kidney or a plasma component separation membrane for blood purification, which is an object of the present invention, cannot be obtained.

【0015】一般に凝固浴温度が高くなるにつれポリマ
ー溶液のゲル化が遅くなり、中空成形が難しい方向とな
り、中空糸の均一性が失われる傾向があるが、中空糸の
均一性を保つためには、凝固浴温度(CT℃)と凝固浴
濃度(C%)が、 C≦45−CT (II) 好ましくは C≦40−CT の関係を満足する必要がある。この関係を外れると中空
糸の均一性が著しく失われる。
In general, as the temperature of the coagulation bath increases, the gelation of the polymer solution becomes slower, and the hollow molding tends to be difficult, and the uniformity of the hollow fiber tends to be lost. However, in order to maintain the uniformity of the hollow fiber, The coagulation bath temperature (CT ° C.) and the coagulation bath concentration (C%) must satisfy the relationship of C ≦ 45-CT (II), preferably C ≦ 40-CT. If this relationship is not satisfied, the uniformity of the hollow fiber is significantly lost.

【0016】溶媒に溶解したEVA系共重合体の溶液の
紡糸時の温度(DT℃)は、乾燥EVA系共重合体のガ
ラス転移点(Tg↓2℃)に対し、 Tg↓2−25<DT (III) 好ましくは Tg↓2−35<DT がよい、人工腎臓用透析膜や血液浄化用血漿成分分離膜
を安定的に製造するために、ポリマーの原液温度がこれ
より低温では膠着が著しく増加する。
The temperature (DT ° C.) of the solution of the EVA copolymer dissolved in the solvent at the time of spinning is Tg ↓ 2-25 <Tg, as compared with the glass transition point (Tg ↓ 2 ° C.) of the dried EVA copolymer. DT (III) Preferably, Tg ↓ 2-35 <DT. In order to stably produce a dialysis membrane for artificial kidneys or a plasma component separation membrane for blood purification, sticking is remarkable at a polymer stock solution temperature lower than this. To increase.

【0017】ノズルドラフト(ND)は、通常3.0≧
ND≧1.0である。NDが3.0より大きいとドラフ
トと中空形成媒体の吐出線速度とのバランスが崩れ均一
な中空糸膜の成形が困難となる。また、均一な中空糸膜
成形が可能であった場合でも、高い分画性を有する膜が
得られない恐れがある。またNDが1.0より小さいと
紡糸が困難になる。凝固は一段又は多段で行うことがで
きる。凝固の後、必要に応じて30%以内の延伸を行っ
てもよい。
The nozzle draft (ND) is usually 3.0 ≧
ND ≧ 1.0. When ND is larger than 3.0, the balance between the draft and the discharge linear velocity of the hollow forming medium is lost, and it is difficult to form a uniform hollow fiber membrane. Further, even when a uniform hollow fiber membrane can be formed, there is a possibility that a membrane having a high fractionability cannot be obtained. If ND is smaller than 1.0, spinning becomes difficult. Solidification can be performed in one or more stages. After coagulation, stretching may be performed within 30% as needed.

【0018】凝固完了後、延伸を行う場合には延伸後、
湿熱処理を行う。湿熱処理が不十分な場合、後工程にお
ける工程通過性が損なわれたり、乾燥後の寸法及び性能
の保存安定性が低下する。また、湿熱処理が過剰であっ
た場合、膜構造に変化が生じ本発明の目的とする十分な
性能が得られない。湿熱処理は、通常、水洗を兼ねて水
中に中空糸膜を通過させるという方法により行われる
が、湿熱処理と水洗は必ずしも同時に行なわれる必要は
なく、例えば、飽和水蒸気雰囲気に中空糸膜を通過さ
せ、湿熱処理を行った後、必要な水洗を行うことも可能
であるし、逆に、水洗後湿熱処理を行うことも可能であ
る。しかし、連続工程においては、工程簡略化という点
から、湿熱処理と水洗は同時に行うことが好ましい。
After the solidification is completed, if stretching is performed, after stretching,
A wet heat treatment is performed. When the wet heat treatment is insufficient, the processability in the subsequent process is impaired, and the storage stability of dimensions and performance after drying is reduced. If the wet heat treatment is excessive, the film structure changes, and the desired performance of the present invention cannot be obtained. The wet heat treatment is usually performed by passing the hollow fiber membrane through water while also washing with water.However, the wet heat treatment and the water washing need not always be performed at the same time, for example, by passing the hollow fiber membrane through a saturated steam atmosphere. After performing the wet heat treatment, it is also possible to perform necessary water washing, and conversely, it is also possible to perform the wet heat treatment after water washing. However, in the continuous process, it is preferable to perform the wet heat treatment and the water washing at the same time from the viewpoint of simplifying the process.

【0019】湿潤状態の膜は水混和揮発性有機溶媒に浸
漬し、膜の表面あるいは内部に有する水を置換後、常圧
ないし減圧にて乾燥させる。この場合の有機溶媒として
は炭素数1〜5の低級脂肪族アルコールまたはケトンが
好ましく、例えばメタノール、エタノール、アミルアル
コール、アセトン、メチルエチルケトン、ジエチルケト
ンなどが用いられる。なかでもアセトンがとくに好まし
い。置換は一段もしくは多段で行うことができる。
The wet film is immersed in a water-miscible volatile organic solvent to replace water on the surface or inside of the film, and then dried at normal pressure or reduced pressure. As the organic solvent in this case, a lower aliphatic alcohol or ketone having 1 to 5 carbon atoms is preferable, and for example, methanol, ethanol, amyl alcohol, acetone, methyl ethyl ketone, diethyl ketone and the like are used. Of these, acetone is particularly preferred. The substitution can be made in one or more stages.

【0020】乾燥は、常圧ないし減圧下で行なわれる。
乾燥された中空糸膜は、主に寸法および性能の保存安定
性の向上を目的として、乾熱処理を行う。乾熱処理後、
EVA系共重合体中空糸膜は、ボビン、枠または綛等に
巻き取るか、一定長さに切断後一定本数を束ねて中空糸
束を成形する。
The drying is performed under normal pressure or reduced pressure.
The dried hollow fiber membrane is subjected to dry heat treatment mainly for the purpose of improving the storage stability of dimensions and performance. After dry heat treatment,
The EVA copolymer hollow fiber membrane is wound into a bobbin, a frame, a skein, or the like, or cut into a certain length and then bundled into a certain number to form a hollow fiber bundle.

【0021】かくして得られた中空糸膜は乾燥状態にお
ける寸法安定性に優れ、ボビン、枠または綛等に巻いた
まま保存が可能であるし、中空糸束の状態においても経
時変化は起こらないため、保存に有利である。また、乾
燥させているため輸送等にも便利である。乾燥中空糸膜
は使用前に水又は生理食塩水で再湿潤させることにより
乾燥前の性能を再現することができる。
The hollow fiber membrane thus obtained has excellent dimensional stability in a dry state, can be stored while being wound on a bobbin, frame, skein, or the like, and does not change with time even in the state of a hollow fiber bundle. Advantageous for storage. Moreover, since it is dried, it is convenient for transportation and the like. The performance before drying can be reproduced by re-wetting the dried hollow fiber membrane with water or saline before use.

【0022】[0022]

【実施例】【Example】

実施例1、2、比較例1〜4 エチレン含有33モル%、ケン化度99.9モル%、乾
燥時のガラス転移点(Tg↓2)が68℃、飽和含水時
のガラス転移点(Tg↓1)が−5℃のEVA系共重合
体をジメチルスルホキシドを溶媒として17重量%濃度
に溶解し、凝固液としてジメチルスルホキシド水溶液
を、内部注入剤として窒素を用いて、表1に示す各条件
にて中空糸膜を製造した。
Examples 1 and 2, Comparative Examples 1-4 Ethylene content 33 mol%, degree of saponification 99.9 mol%, glass transition point (Tg ↓ 2) at the time of drying 68 ° C., glass transition point at the time of saturated water content (Tg) ↓ 1) Dissolve the EVA copolymer at -5 ° C to a concentration of 17% by weight using dimethylsulfoxide as a solvent, and use an aqueous solution of dimethylsulfoxide as a coagulating liquid and nitrogen as an internal injecting agent. Produced a hollow fiber membrane.

【0023】本発明の必須条件である前述の条件(I)
〜(III)のうち凝固浴濃度(C%)が(II)式を満足
しない場合(比較例2、4)は紡糸時に非中空糸が発生
した。また溶液温度(DT℃)が(III)式を満足しな
い場合(比較例1、3)は得られた中空糸膜に膠着が多
く、これらの中空糸膜の多数を束ねてハウジングに組み
込みモジュールにしたところ、す抜けが発生し製品化で
きなかった。
The above-mentioned condition (I) which is an essential condition of the present invention.
When the coagulation bath concentration (C%) does not satisfy the formula (II) (Comparative Examples 2 and 4), non-hollow fibers were generated during spinning. When the solution temperature (DT ° C.) does not satisfy the formula (III) (Comparative Examples 1 and 3), the obtained hollow fiber membranes tend to adhere to each other, and many of these hollow fiber membranes are bundled into a housing and assembled into a module. As a result, slippage occurred and the product could not be commercialized.

【0024】また、実施例1、2の中空糸膜を用いて、
有効面積1m↑2のモジュールを組み立て、人血漿を用
いて低密度リポタンパク、高密度リポタンパク及びアル
ブミンの透過係数を測定した結果、表2に示すように本
発明方法で得られた中空糸膜は優れた分離性能を有して
いる。
Further, using the hollow fiber membranes of Examples 1 and 2,
As a result of assembling a module having an effective area of 1 m @ 2 and measuring the permeability coefficient of low-density lipoprotein, high-density lipoprotein and albumin using human plasma, the hollow fiber membrane obtained by the method of the present invention was obtained as shown in Table 2. Has excellent separation performance.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明方法により膠着のない中空糸膜を
安定に製造することができるため、モジュール化工程で
膠着をほぐすための中空糸の解繊作業が不要となり、ま
たモジュール化工程での収率が向上し、コスト削減をす
ることができるという効果を有している。
According to the present invention, a hollow fiber membrane having no sticking can be stably manufactured by the method of the present invention. This has the effect of improving the yield and reducing the cost.

フロントページの続き (56)参考文献 特開 平2−71828(JP,A) 特開 平2−71827(JP,A) 特開 昭55−148211(JP,A) 特開 昭55−148210(JP,A) 特開 昭55−148209(JP,A) 特開 昭55−110124(JP,A) 特開 昭55−110132(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 64/00 - 71/82 510 C02F 1/44 Continuation of the front page (56) References JP-A-2-71828 (JP, A) JP-A-2-71827 (JP, A) JP-A-54-148211 (JP, A) JP-A-55-148210 (JP) JP-A-55-148209 (JP, A) JP-A-55-110124 (JP, A) JP-A-55-110132 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) B01D 64/00-71/82 510 C02F 1/44

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エチレンビニルアルコール系共重合体を
溶媒に溶解し、円環状ノズルより凝固浴中に押し出し凝
固させる中空糸膜の製造方法において、凝固浴温度をC
T℃、凝固浴濃度をC%、原液温度をDT℃、飽和含水
エチレンビニルアルコール系共重合体のガラス転移点を
Tg↓1℃、乾燥エチレンビニルアルコール系共重合体
のガラス転移点をTg↓2℃とするとき、下記(I)〜
(III)式が満足されることを特徴とするエチレンビニ
ルアルコール系共重合体中空糸膜の製造法。 Tg↓1−30<CT<Tg↓1+50 (I) C≦45−CT (II) Tg↓2−25<DT (III)
1. A method for producing a hollow fiber membrane in which an ethylene-vinyl alcohol copolymer is dissolved in a solvent and extruded from an annular nozzle into a coagulation bath and coagulated.
T ° C, coagulation bath concentration C%, stock solution temperature DT ° C, glass transition point of saturated hydrous ethylene vinyl alcohol copolymer Tg ↓ 1 ° C, glass transition point of dry ethylene vinyl alcohol copolymer Tg ↓ When the temperature is 2 ° C., the following (I) to
A process for producing an ethylene-vinyl alcohol-based copolymer hollow fiber membrane characterized by satisfying the formula (III). Tg ↓ 1-30 <CT <Tg ↓ 1 + 50 (I) C ≦ 45-CT (II) Tg ↓ 2-25 <DT (III)
JP12814392A 1992-04-20 1992-04-20 Method for producing ethylene vinyl alcohol copolymer hollow fiber membrane Expired - Lifetime JP3203047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12814392A JP3203047B2 (en) 1992-04-20 1992-04-20 Method for producing ethylene vinyl alcohol copolymer hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12814392A JP3203047B2 (en) 1992-04-20 1992-04-20 Method for producing ethylene vinyl alcohol copolymer hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH05293344A JPH05293344A (en) 1993-11-09
JP3203047B2 true JP3203047B2 (en) 2001-08-27

Family

ID=14977460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12814392A Expired - Lifetime JP3203047B2 (en) 1992-04-20 1992-04-20 Method for producing ethylene vinyl alcohol copolymer hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP3203047B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11058795B2 (en) 2016-01-19 2021-07-13 Kuraray Co., Ltd. Semipermeable membrane and method of manufacturing the same
JP2021082375A (en) * 2018-03-13 2021-05-27 株式会社クラレ Separator for nonaqueous electrolyte battery and method for manufacturing the same

Also Published As

Publication number Publication date
JPH05293344A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US4342711A (en) Method of manufacturing hollow fiber
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
US5976433A (en) Polyvinyl alcohol-based hollow fiber membrane and process for producing the same
US4780205A (en) Permselective hollow fiber membrane, process for the preparation thereof, method and apparatus for plasma components separation
US4362677A (en) Method of producing ethylene-vinyl alcohol copolymer hollow fiber membranes
JP3203047B2 (en) Method for producing ethylene vinyl alcohol copolymer hollow fiber membrane
GB2086798A (en) Microporous cellulose membrane
JP2003010654A (en) Method for producing hollow yarn membrane
WO1989005876A1 (en) Production of hollow nylon fibers
JP3053266B2 (en) Ethylene-vinyl alcohol copolymer hollow fiber membrane
JPS62102801A (en) Selective permeable hollow composite fiber
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
JPH07185278A (en) Production of separation membrane
JPH0578372B2 (en)
JP3032618B2 (en) Hollow fiber membrane for hemodialysis and method for producing the same
JP4794716B2 (en) Hollow fiber membrane and method for producing the same
JPH0578373B2 (en)
JPH0360530B2 (en)
JP2000176259A (en) Polyvinyl alcohol-based hollow fiber membrane and its production
JP2000237558A (en) High performance selectively permeable hollow fiber membrane
JP2003080040A (en) Method for manufacturing hollow fiber membrane
JP2001259387A (en) Hollow fiber membrane manufacturing method
JPH0938473A (en) Production of polysulfone-base porous hollow fiber membrane
JP2002143654A (en) Hollow fiber membrane and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

EXPY Cancellation because of completion of term