JP3202982B1 - Sewage denitrification and dephosphorization biological reaction tank equipment - Google Patents

Sewage denitrification and dephosphorization biological reaction tank equipment

Info

Publication number
JP3202982B1
JP3202982B1 JP2000303521A JP2000303521A JP3202982B1 JP 3202982 B1 JP3202982 B1 JP 3202982B1 JP 2000303521 A JP2000303521 A JP 2000303521A JP 2000303521 A JP2000303521 A JP 2000303521A JP 3202982 B1 JP3202982 B1 JP 3202982B1
Authority
JP
Japan
Prior art keywords
tank
air
biological reaction
anaerobic
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000303521A
Other languages
Japanese (ja)
Other versions
JP2002102879A (en
Inventor
誠 粕谷
昭憲 古賀
清昭 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshin Engineering Co Ltd
Original Assignee
Hanshin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18784709&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3202982(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hanshin Engineering Co Ltd filed Critical Hanshin Engineering Co Ltd
Priority to JP2000303521A priority Critical patent/JP3202982B1/en
Application granted granted Critical
Publication of JP3202982B1 publication Critical patent/JP3202982B1/en
Publication of JP2002102879A publication Critical patent/JP2002102879A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

【要約】 【課題】嫌気槽、無酸素槽、好気槽の3槽を機能分けし
たA2O生物反応タンク構成では、アンモニア性窒素濃
度が増えた場合、硝化処理能力が低下し、それに対処す
ることができなかった。このA2O法の生物反応タンク
装置の欠点を解消し、処理水の水質の安定化と運転管理
の作業効率を向上させる。 【解決手段】A2O法の生物反応タンク装置において、
無酸素槽に、エアレーションすることによって前記無酸
素槽を嫌気・好気槽として兼用するための流量計および
空気調整弁を備えた空気導入管を設けた。 流量計がピ
トー管式差圧流量計、空気調整弁がグローブ弁である。
Abstract: [PROBLEMS] In an A2O biological reaction tank configuration in which three tanks of an anaerobic tank, an anoxic tank, and an aerobic tank are divided into functions, when the ammonia nitrogen concentration increases, the nitrification treatment capacity decreases, and it is necessary to cope with it. Could not. The disadvantages of the biological reaction tank device of the A2O method are solved, and the quality of treated water is stabilized and the operation efficiency of operation management is improved. In a biological reaction tank device of the A2O method,
An air introducing pipe provided with a flow meter and an air regulating valve for using the anoxic tank as an anaerobic / aerobic tank by aeration was provided in the anoxic tank. The flow meter is a pitot tube type differential pressure flow meter, and the air regulating valve is a globe valve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水の窒素・リン
の同時除去を行う脱窒・脱リン生物反応タンク装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitrification / dephosphorization biological reaction tank device for simultaneously removing nitrogen and phosphorus from sewage.

【0002】[0002]

【従来の技術】人間は1日に約1リットルのし尿を排出
する。そのうち約1割が糞便で、その他が尿である。水
中のアンモニアは硝化細菌により酸化されて、亜硝酸や
硝酸になる。一方、工場排水や一般家庭で使用する洗剤
あるいは農業用の化学肥料の中にはリンが含まれてい
て、糞尿と同様に下水に流れ込む。リンや窒素は植物プ
ランクトンの栄養源であり、海、湖あるいは川に直接流
れ込むことにより、大量のプランクトンが発生した場
合、生態系に悪影響を及ぼすことがある。海で発生する
赤潮は、赤潮プランクトンとよばれる植物プランクトン
が家庭や工場から排出される下水に含まれる窒素やリン
を栄養にして大量発生し、2週間ほどで死滅して赤潮と
なって海面を漂う現象である。赤潮は海中の酸素濃度を
下げるだけでなく、魚の鰓や貝などに付着して多くの海
中生物を死滅させる。
2. Description of the Related Art Humans discharge about one liter of human waste each day. About 10% of them are feces, and the others are urine. Ammonia in water is oxidized by nitrifying bacteria to become nitrous acid and nitric acid. On the other hand, phosphorus is contained in industrial wastewater, detergents used in ordinary households, or chemical fertilizers for agriculture, and flows into sewage as well as manure. Phosphorus and nitrogen are nutrients for phytoplankton and can cause adverse effects on ecosystems when large amounts of plankton are generated by flowing directly into the sea, lake or river. Red tides that occur in the sea are caused by phytoplankton, called red tide plankton, which is generated by feeding on nitrogen and phosphorus contained in sewage discharged from homes and factories. It is a floating phenomenon. The red tide not only lowers the oxygen concentration in the sea, but also attaches to fish gills and shells, killing many marine organisms.

【0003】工場排水や家庭排水(し尿も含む)を直接
海や川に流さないために、下水道の整備が推進されてい
る。下水処理場では、汚濁物の除去だけでなく、リンや
窒素を取り除くために、様々な処理方法がとられてい
る。その一つとして、A2O法がある。A2O法は嫌
気、無酸素、好気の3段階の生物反応を用いて脱窒(脱
窒素)、脱リンを行う方法であり、嫌気-無酸素-好気法
(Anaerobic/Anoxic/Oxic法)とよばれている。
[0003] In order to prevent industrial wastewater and domestic wastewater (including human waste) from flowing directly into the sea or river, sewerage systems are being promoted. In a sewage treatment plant, various treatment methods are taken not only to remove pollutants but also to remove phosphorus and nitrogen. One of them is the A2O method. The A2O method is a method of performing denitrification (denitrification) and dephosphorization using a three-stage biological reaction of anaerobic, anaerobic, and aerobic.
(Anaerobic / Anoxic / Oxic method).

【0004】図1に示すように、嫌気槽1、無酸素槽2、
好気槽3の生物反応タンク(槽)を通過させて脱窒、脱
リンを行い、最終的に沈澱池4で汚泥と浄化水(処理
水)とに分離し、汚泥6は嫌気槽に戻して、処理水は系
外に排出される。生物学的な窒素・リンの除去原理は次
の通りである。流入下水中のアンモニア性窒素は酸素の
存在する好気条件下で酸化され硝酸性窒素になる。硝酸
性窒素は無酸素条件下で脱窒され、最終的に窒素ガスと
なる。流入中のリンについては、嫌気条件下で汚泥内の
リンが放出され、好気条件下ではリンは活性汚泥内に過
剰に取り込まれる。この原理に基づいて、図1の各工程
は以下の処理を行っている。
As shown in FIG. 1, an anaerobic tank 1, an anoxic tank 2,
Denitrification and dephosphorization are performed by passing through the biological reaction tank (tank) in the aerobic tank 3, and finally separated into sludge and purified water (treated water) in the sedimentation basin 4, and the sludge 6 is returned to the anaerobic tank. Thus, the treated water is discharged out of the system. The principle of biological nitrogen and phosphorus removal is as follows. Ammoniacal nitrogen in the incoming sewage is oxidized to nitrate nitrogen under aerobic conditions in the presence of oxygen. Nitrate nitrogen is denitrified under oxygen-free conditions, and finally becomes nitrogen gas. As for the phosphorus in the inflow, the phosphorus in the sludge is released under the anaerobic condition, and the phosphorus is excessively taken into the activated sludge under the aerobic condition. Based on this principle, each step in FIG. 1 performs the following processing.

【0005】・下水を沈殿池よりの返送汚泥とともに嫌
気槽1において嫌気処理してリンの吐き出する(汚水内
のリンの放出)。 ・無酸素槽2で脱窒素処理を行う(硝化液の脱窒<硝酸
→窒素>)。 ・好気槽3で汚泥へのリンの取り込みとBOD(生物化
学的酸素要求量)を下げるために有機物の分解を行う。
また、硝化を行わせ硝化液の一部を無酸素槽へ循環させ
る(活性汚泥へのリンの過剰摂取とアンモニア性窒素の
酸化<アンモニア→硝酸>)。 ・残部を沈殿池4で固液分離して上澄水を処理水として
取り出す。
The sewage is anaerobically treated in the anaerobic tank 1 together with the sludge returned from the sedimentation basin to discharge phosphorus (release of phosphorus in the sewage).・ Denitrification treatment is performed in the oxygen-free tank 2 (denitrification of nitrification liquid <nitric acid → nitrogen>). -In the aerobic tank 3, organic matter is decomposed to take in phosphorus into sludge and reduce BOD (biochemical oxygen demand).
In addition, nitrification is performed, and a part of the nitrification liquid is circulated to the anoxic tank (excessive intake of phosphorus into activated sludge and oxidation of ammonia nitrogen (ammonia → nitric acid)). -The remainder is separated into solid and liquid in the sedimentation basin 4 and the supernatant water is taken out as treated water.

【0006】この方法は従来の標準活性汚泥法に比べよ
り複雑な微生物群が処理にかかわるため、運転管理が難
しく、末端区画の無酸素槽をエアレーションすることで
リンや窒素の除去率の向上を計ったり、窒素、リンなど
の負荷変動に対応することが検討されている。たとえ
ば、末端区画の無酸素槽の水中撹拌機の取り付け枠に空
気導入管を設けた生物反応タンク装置が稼働している。
[0006] In this method, operation control is difficult because a more complicated microorganism group is involved in the treatment than the conventional standard activated sludge method, and the removal rate of phosphorus and nitrogen can be improved by aeration of the oxygen-free tank in the terminal compartment. It is being studied to measure and respond to load fluctuations such as nitrogen and phosphorus. For example, a biological reaction tank device in which an air introduction pipe is provided in a mounting frame of a submersible agitator in an oxygen-free tank in an end section is operating.

【0007】生物反応タンク装置に酸素を送り込む装置
が散気(曝気)装置である。これには微細気泡型や粗大
気泡型などがあるが、「エアレーターS-1」という散
気装置は、前記の装置と異なり、空気配管と撹拌装置が
独立したパーツとなっている。図2は「エアレーターS
-1」の構造を示したもので、槽底に沿って設置された
空気配管を通して空気が送られ、槽の中心部に設けられ
て筒を通して放出される。このとき、空気は超微細気泡
となって撹拌混合する。撹拌と空気配管を独立した構造
にしているため、従来型の曝気装置に比べて効率のよい
装置となっている。
A device for feeding oxygen to a biological reaction tank device is an aeration device. There are a fine bubble type, a coarse bubble type, and the like, but an air diffuser called “Aerator S-1” is different from the above-described device in that an air pipe and a stirring device are independent parts. FIG. 2 shows “Aerator S
In this case, air is sent through an air pipe installed along the bottom of the tank, and is discharged through a cylinder provided at the center of the tank. At this time, the air becomes ultra-fine bubbles and is stirred and mixed. Since the agitation and the air piping have independent structures, the device is more efficient than a conventional aeration device.

【0008】生物反応タンク装置による下水(汚水)処
理に関する特許出願としていくつかあるが、そのうち
『生物学的水処理装置の制御』(特開平8-241992)で
は、生物反応タンク装置に流入する排水の流量、水温お
よび水処理装置の運転条件に応じて得られる処理水質を
用いて、流入流量、水温および目標とする処理水質を予
め作成しておいたニューラルネットワークモデルに供
し、水処理処理装置の運転条件を決定している。
There are several patent applications relating to the treatment of sewage (sewage) by a biological reaction tank device. Among them, “Control of biological water treatment device” (Japanese Patent Application Laid-Open No. 8-241992) discloses a wastewater flowing into a biological reaction tank device. Using the treated water quality obtained according to the flow rate, the water temperature and the operating conditions of the water treatment apparatus, the inflow flow rate, the water temperature and the target treated water quality are supplied to a previously created neural network model, and the water treatment apparatus Operating conditions are determined.

【0009】「下水処理プロセスの制御方法」(特開平
5-220495)では、排水を直列に接続した2槽の曝気槽に
連続的に流入させ、曝気を行う好気状態、曝気を停止し
て撹拌を行う嫌気状態を交互に繰り返して処理を行い、
最終沈澱池から処理水を放出する間欠曝気法を用いてい
る。排水が流入する第1曝気槽にはDO計、ORP計
を、排水が流出する第2曝気槽にはORP計を取り付
け、曝気は一定時間に設定し、DO制御により第1曝気
槽のORPを第2曝気槽のORPよりも低く保たせる。
リンの吐き出しを主として第1曝気槽で行い、第2曝気
槽では脱窒終了後、リンの吐き出しが始まる前に曝気を
開始する。
"Method for controlling sewage treatment process"
In 5-220495), the wastewater is continuously flown into two aeration tanks connected in series, and a treatment is performed by alternately repeating an aerobic state in which aeration is performed and an anaerobic state in which aeration is stopped and stirring is performed.
An intermittent aeration method that releases treated water from the final sedimentation basin is used. A DO meter and an ORP meter are attached to the first aeration tank into which the wastewater flows, and an ORP meter is attached to the second aeration tank to which the wastewater flows out. It is kept lower than the ORP of the second aeration tank.
The discharge of phosphorus is mainly performed in the first aeration tank, and the aeration is started in the second aeration tank after the end of denitrification and before the discharge of phosphorus starts.

【0010】その結果、処理水へのリンの混入をなく
し、効率的な硝化、脱窒、脱リン処理を実現している。
なお、DOは溶存酸素飽和率(Sat%)を表し、1気圧
下の酸素分圧で空気中の酸素ガスが水中に溶け込み、空
気中と水中の酸素分圧が等しい状態を溶存酸素飽和とい
い、飽和率100%で表す。ORPは酸化還元電位のこと
で、水質の検査の重要な指標となっている。たとえば、
硝化反応(NH4→NO2→NO3)、溶存酸素の制御等
にも酸化還元反応が関与しているので、ORPを測定す
ることによって、窒素、リン、COD等の挙動を知るこ
とができる。
[0010] As a result, mixing of phosphorus into the treated water is eliminated, and efficient nitrification, denitrification, and dephosphorization are realized.
DO represents the dissolved oxygen saturation rate (Sat%), and the oxygen gas in the air is dissolved in water at an oxygen partial pressure of 1 atm, and the state in which the oxygen and the water have the same oxygen partial pressure is called dissolved oxygen saturation. , Expressed as a saturation rate of 100%. ORP is an oxidation-reduction potential and is an important index for water quality inspection. For example,
Since the oxidation-reduction reaction is involved in the nitrification reaction (NH 4 → NO 2 → NO 3 ) and the control of dissolved oxygen, the behavior of nitrogen, phosphorus, COD, etc. can be known by measuring ORP. .

【0011】「下水処理場、その計測装置およびその支
援装置」(特開平9-215351)では、下水処理場における
処理水の各種濃度を測定する装置が提案されている。こ
こで提案されている各種の装置で処理水のイオン濃度、
pH、NO2ガス濃度、DOなどを測定し、曝気装置、
返送ポンプ、各槽をつなぐ配管の開閉弁等の制御を行っ
ている。またここでは、反応タンクの水質反応モデルを
用いて、水質に関するシミュレーションを行い、曝気装
置および返送ポンプの最適制御を行っている。
An apparatus for measuring various concentrations of treated water in a sewage treatment plant is proposed in "Sewage Treatment Plant, Measuring Apparatus and Supporting Apparatus" (JP-A-9-215351). Ion concentration of treated water with various devices proposed here,
Measure pH, NO 2 gas concentration, DO, etc.
Controls return pumps, on-off valves for pipes connecting the tanks, etc. Further, here, a simulation relating to water quality is performed using a water quality reaction model of the reaction tank, and optimal control of the aeration device and the return pump is performed.

【0012】[0012]

【発明が解決しようとする課題】従来技術で見てきた特
許出願では、効率的に下水処理を行うために、水槽内
(タンク内)の下水の検査と、その検査結果に従って各
装置を制御することが目的の中心になっている。きめ細
かな装置制御が行える反面、いずれも制御系統が複雑で
あり、高価なシステムとなるなどの問題点を抱えてい
る。また、必ずしもA2O法を対象にしているものでは
なく、本発明が扱う課題に直接あてはめることはできな
い。
In the patent application which has been seen in the prior art, in order to efficiently perform sewage treatment, inspection of sewage in a water tank (in a tank) and control of each device according to the inspection result are performed. That is central to the purpose. Although fine device control can be performed, there are problems such as complicated control systems and expensive systems. Further, the present invention is not necessarily directed to the A2O method, and cannot be directly applied to the problems addressed by the present invention.

【0013】一方、A2O法で用いられる空気導入管に
従来のバタフライ弁を設けた場合、開度の微調整すなわ
ち送風量の微調整が困難であり、降雨による負荷変動や
季節変動によって刻々と変化する状況に対して、常に最
適な制御は困難なために、送風量の安定制御が課題とな
っている。
On the other hand, when a conventional butterfly valve is provided in the air introduction pipe used in the A2O method, it is difficult to finely adjust the opening degree, that is, finely adjust the air flow rate, and the air flow changes every moment due to load fluctuation and seasonal fluctuation due to rainfall. In such situations, it is difficult to always perform optimal control.

【0014】また従来の嫌気槽、無酸素槽、好気槽の3
槽を機能分けしたA2O生物反応タンク構成では、アン
モニア性窒素濃度が増えた場合、硝化処理能力が低下
し、それに対処することができなかった。以上の点に鑑
み、本発明が解決しようとする課題は、上記のA2O法
の生物反応タンク装置の欠点を解消し、処理水の水質の
安定化と運転管理の作業効率を向上させることである。
The conventional anaerobic tank, anoxic tank, and aerobic tank
In the A2O biological reaction tank configuration in which the tanks are divided into functions, when the ammonia nitrogen concentration increases, the nitrification treatment capacity decreases, and it is not possible to cope with the decrease. In view of the above points, the problem to be solved by the present invention is to solve the above-mentioned drawbacks of the biological reaction tank device of the A2O method, and to stabilize the quality of treated water and improve the operation efficiency of operation management. .

【0015】[0015]

【課題を解決するための手段】本発明は上記課題を解決
するために、請求項1に記載された発明は、下水を嫌気
処理・無酸素処理・好気処理を順次行うA2O法の生物
反応タンク装置において、無酸素槽に、エアレーション
することによって前記無酸素槽を嫌気・好気槽として兼
用するための流量計および空気調整弁を備えた空気導入
管を設けた下水の脱窒・脱リン生物反応タンク装置とす
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention is directed to a biological reaction of the A2O method in which sewage is sequentially subjected to anaerobic treatment, anoxic treatment, and aerobic treatment. In the tank device, denitrification and dephosphorization of sewage provided with an air introduction pipe equipped with a flow meter and an air regulating valve for aerating the oxygen-free tank as an anaerobic / aerobic tank by aerating the oxygen-free tank. Biological reaction tank device.

【0016】請求項2に記載された発明は、前記流量計
がピトー管式差圧流量計である請求項1の下水の脱窒・
脱リン生物反応タンク装置である。請求項3に記載され
た発明は前記空気調整弁がグローブ弁である請求項1の
下水の脱窒・脱リン生物反応タンク装置である。
According to a second aspect of the present invention, the flowmeter is a pitot tube type differential pressure flowmeter.
It is a phosphorus removal biological reaction tank device. The invention described in claim 3 is the sewage denitrification / dephosphorization biological reaction tank device in which the air regulating valve is a globe valve.

【0017】本発明では、下水のA2O法の生物反応タ
ンク装置において、末端区画無酸素槽の水中撹拌機に空
気導入管を設けるとともに、空気導入管に流量計および
空気調整弁を設け、末端区画無酸素槽でエアレーション
できるようにし、水中撹拌機の一部と散気装置とを同時
に稼働させ、無酸素槽と好気槽とで好気処理する。
According to the present invention, in the biological reaction tank apparatus of the A2O method for sewage, an air introduction pipe is provided in a submerged stirrer of an oxygen free tank in a terminal section, and a flow meter and an air regulating valve are provided in the air introduction pipe to provide a terminal section. Aeration is performed in the anoxic tank, and a part of the underwater agitator and the air diffuser are simultaneously operated to perform aerobic treatment in the anoxic tank and the aerobic tank.

【0018】無酸素槽を好気槽として利用する条件とし
ては、以下の場合である。すなわち、アンモニア性窒素
の負荷が増大すると硝化能力が低下し、一定の好気槽で
は処理しきれない場合がある。このような場合、無酸素
槽の水中攪拌機につながる空気導入管に挿入した流量計
を見ながら、空気調整弁を開閉し、無酸素槽を好気槽に
変えて使う。一方、アンモニア性窒素の負荷が低下した
場合は、無酸素槽を従来の嫌気槽として利用する。この
場合も、流量計と空気調整弁で空気の供給量を調整す
る。
The conditions for using the oxygen-free tank as the aerobic tank are as follows. That is, when the load of ammonia nitrogen is increased, the nitrification capacity is reduced, and there is a case where the treatment cannot be performed in a certain aerobic tank. In such a case, the air-conditioning valve is opened and closed while watching the flow meter inserted into the air introduction pipe connected to the underwater agitator of the oxygen-free tank, and the oxygen-free tank is used as an aerobic tank. On the other hand, when the load of ammonia nitrogen decreases, the oxygen-free tank is used as a conventional anaerobic tank. Also in this case, the supply amount of air is adjusted by the flow meter and the air adjustment valve.

【0019】上記の空気の供給をきめ細かく供給するた
めの調整には従来のバタフライ弁は向かない。そこで、
また、本発明では上記の空気調整弁としてグローブ弁を
用いる。グローブ弁は電動型でも、空気圧型のいずれで
もよい。これによって、バタフライ弁の欠点を解消し、
流量計を見ながら空気調整弁を微調整することができ、
供給空気を微細することができる。
A conventional butterfly valve is not suitable for the above-mentioned adjustment for supplying air in a fine manner. Therefore,
In the present invention, a globe valve is used as the air regulating valve. The globe valve may be either an electric type or a pneumatic type. This eliminates the disadvantages of the butterfly valve,
The air adjustment valve can be fine-tuned while looking at the flow meter,
The supply air can be fine.

【0020】[0020]

【発明の実施の形態】本発明で使用する空気調整弁とし
ては、電動あるいは空気圧のグローブ弁を使用する。こ
の調整弁は空気導入管内の流量を流量計で計測し調整す
るものである。また、本発明の流量計としてはピトー管
式差圧流量計を使用する。
BEST MODE FOR CARRYING OUT THE INVENTION As an air regulating valve used in the present invention, an electric or pneumatic globe valve is used. This regulating valve measures and adjusts the flow rate in the air introduction pipe with a flow meter. A Pitot tube differential pressure flow meter is used as the flow meter of the present invention.

【0021】以下に本発明を図を用いて詳細に説明す
る。まず生物反応タンク装置の構成を図1、図3および
図4で説明する。図1は従来技術で説明したA2O法の
生物反応タンク装置の構成を概念的に示した図であり、
図3は生物反応タンク装置の具体的な構造を上面から見
た図であり、図4は図3の生物反応タンク装置部分を拡
大した詳細図である。
Hereinafter, the present invention will be described in detail with reference to the drawings. First, the configuration of the biological reaction tank device will be described with reference to FIGS. FIG. 1 is a diagram conceptually showing the configuration of the biological reaction tank device of the A2O method described in the prior art,
FIG. 3 is a view of the specific structure of the biological reaction tank device as viewed from above, and FIG. 4 is an enlarged detailed view of the biological reaction tank device portion of FIG.

【0022】生物反応タンク装置は、嫌気槽1、無酸素
槽2、好気槽3は直列に接続した構成となっている。原水
が一次沈殿池(図示せず)より先ずこの嫌気槽1へ流入
し、汚泥内のリンを放出する。次に汚泥は無酸素槽2に
送られて脱窒処理をし、そののち、好気槽3で汚泥内へ
のリンの過剰摂取とアンモニア性窒素の硝化を行い、処
理済みの汚泥を沈殿池4に送り、固液分離を行う。好気
槽3と無酸素槽2との間に設けられた硝化液の循環ライン
5は、好気槽3で硝化された液を無酸素槽2に戻して繰り
返し脱窒処理するための配管である。一方、 沈殿池4と
嫌気槽1との間に設けられた汚泥返送ライン6は、好気槽
3からの流出水を沈殿池4において固液分離し、分離され
た汚泥を嫌気槽1へ返送するために設けられた配管であ
る。
The biological reaction tank device has a configuration in which an anaerobic tank 1, an anoxic tank 2, and an aerobic tank 3 are connected in series. Raw water first flows into the anaerobic tank 1 from a primary sedimentation basin (not shown), and releases phosphorus in the sludge. Next, the sludge is sent to the anoxic tank 2 for denitrification, and then, in the aerobic tank 3, excessive intake of phosphorus into the sludge and nitrification of ammonia nitrogen are performed. 4 to perform solid-liquid separation. A nitrification liquid circulation line provided between the aerobic tank 3 and the anoxic tank 2
Reference numeral 5 denotes a pipe for returning the liquid nitrified in the aerobic tank 3 to the anoxic tank 2 to repeatedly perform the denitrification treatment. On the other hand, the sludge return line 6 provided between the sedimentation tank 4 and the anaerobic tank 1
This is a pipe provided for separating the effluent from 3 into solid and liquid in the settling basin 4 and returning the separated sludge to the anaerobic tank 1.

【0023】この嫌気槽1と無酸素槽2には水中撹拌機8
が設けられており、好気槽3には散気装置9が設けられて
いる。末端区画の無酸素槽2に設けた水中撹拌機8は、撹
拌機の取り付け枠に空気導入管を設けている。なお末端
区画とは、図中の無酸素槽2の内の、好気槽3に近いの無
酸素槽2のことである。
The anaerobic tank 1 and the oxygen-free tank 2 have a submersible stirrer 8
The aerobic tank 3 is provided with an air diffuser 9. The underwater stirrer 8 provided in the anoxic tank 2 at the end section has an air introduction pipe provided in a mounting frame of the stirrer. In addition, the end section is the anoxic tank 2 near the aerobic tank 3 in the anoxic tank 2 in the figure.

【0024】図5は、空気配管の配置を示した断面図で
ある(図3におけるN-O断面)。水中攪拌機8に通じる
空気導入管11は、散気装置9の空気導入管12とともに槽
壁上部のパラペット13の空気管14より分岐し各槽へと連
通している。水中撹拌機8に通じる空気導入管11には、
空気調整弁10を付け、この空気調整弁10で空気導入管11
の流量を流量計15で検知し開度を調整して空気量を調整
し、無酸素槽2でエアレーションする。水中撹拌装置は
通常汚泥を攪拌する装置であるが、本発明では空気流量
を増やすことによって、好気槽としての働きを持たせ
る。
FIG. 5 is a cross-sectional view showing the arrangement of the air piping (NO cross section in FIG. 3). The air introduction pipe 11 leading to the underwater agitator 8 branches off from the air pipe 14 of the parapet 13 at the upper part of the tank wall together with the air introduction pipe 12 of the air diffuser 9 and communicates with each tank. In the air introduction pipe 11 leading to the underwater agitator 8,
Attach the air control valve 10 and use the air control valve 10 to
The flow rate is detected by the flow meter 15 and the opening is adjusted to adjust the amount of air. The underwater stirring device is usually a device for stirring sludge, but in the present invention, the function as an aerobic tank is provided by increasing the air flow rate.

【0025】図6は、ピトー管式差圧流量計の構造を示
している。流量計15の先端部の管16は空気導入管11また
は12に挿入され、空気導入管内の空気の流れの速さに応
じて外気圧との差がインジケーター18に表示される。空
気導入管内の空気の流速が速くなればなるほど、空洞室
17の圧力は下がり、差圧は大きくなる。すなわち、流量
は流速と空気導入管の断面積の積であるから、流速と流
量計の値(流量)は比例し、無酸素槽の水中攪拌機への
空気流量がこれで読み取れる。流量の微調整も流量計を
見ながら行えばよいために、無酸素槽を嫌気・好気の両
用することが可能となる。
FIG. 6 shows the structure of a pitot tube type differential pressure flow meter. The tube 16 at the tip of the flow meter 15 is inserted into the air introduction tube 11 or 12, and the difference from the outside air pressure is displayed on the indicator 18 according to the speed of air flow in the air introduction tube. The higher the air velocity in the air inlet tube, the more the cavity
The pressure at 17 drops and the differential pressure increases. That is, since the flow rate is the product of the flow rate and the cross-sectional area of the air introduction pipe, the flow rate is proportional to the value (flow rate) of the flow meter, and the air flow rate to the underwater agitator in the oxygen-free tank can be read. Since the fine adjustment of the flow rate may be performed while watching the flow meter, the anaerobic tank can be used for both anaerobic and aerobic.

【0026】次に処理プロセスについて説明する。原水
はまず嫌気槽1に流入し、汚泥返送ライン6を経由して
返送されてきた返送汚泥とともに嫌気状態で攪拌され
る。これにより、返送汚泥中のリンを水側に十分に吐出
させる。
Next, the processing process will be described. The raw water first flows into the anaerobic tank 1 and is anaerobically stirred with the returned sludge returned via the sludge return line 6. Thereby, the phosphorus in the returned sludge is sufficiently discharged to the water side.

【0027】無酸素槽(脱窒槽)2では、硝化液循環ラ
イン5を経由して循環されてきた硝化液の脱窒が行われ
る。
In the anoxic tank (denitrification tank) 2, the nitrification liquid circulated through the nitrification liquid circulation line 5 is denitrified.

【0028】好気槽3では、曝気することによって、汚
泥へのリンの取込み、BODを低下させるために汚泥内
の有機物の分解、水中のアンモニア性窒素の硝化を行
う。硝化液は、硝化液循環ラインを通じて無酸素槽へ送
る。
In the aerobic tank 3, by aeration, phosphorus is taken into sludge, organic matter in sludge is decomposed in order to reduce BOD, and nitrification of ammonia nitrogen in water is performed. The nitrification liquid is sent to the anoxic tank through the nitrification liquid circulation line.

【0029】最後に沈殿池4において固液分離が行わ
れ、上澄水は処理水として取り出される。汚泥の一部は
汚泥返送ライン6を経由して嫌気槽1に返送され、残部
は系外へ取り出される。
Finally, solid-liquid separation is performed in the sedimentation basin 4, and the supernatant water is taken out as treated water. Part of the sludge is returned to the anaerobic tank 1 via the sludge return line 6, and the remainder is taken out of the system.

【0030】通常は以上プロセスを経て各槽で脱窒・脱
リン処理が行われるが、処理槽への流入水のアンモニア
性窒素の濃度が高い場合は硝化の能力が低下する。この
ときは末端区画の無酸素槽の水中撹拌機に通じる空気導
入管に設けた空気調整弁を開き、末端区画の無酸素槽を
好気槽として利用し、硝化の不足を補う。これにより処
理水の水質を安定化させることができる。
Normally, the denitrification and dephosphorization treatment is performed in each tank after the above-described process. However, when the concentration of ammonia nitrogen in the inflow water into the treatment tank is high, the nitrification ability is reduced. At this time, the air regulating valve provided in the air introduction pipe leading to the underwater agitator of the oxygen-free tank in the terminal section is opened, and the oxygen-free tank in the terminal section is used as an aerobic tank to compensate for the lack of nitrification. Thereby, the quality of the treated water can be stabilized.

【0031】次に空気調整弁による制御の状態をバタフ
ライ弁を使用した場合と比較して説明する。溶存酸素維
持に必要な酸素量が清水条件で5350kg/日とし、これを
無酸素槽(515m3)、好気槽(149604m3)で溶存させる
には、水中撹拌機側の空気導入管で2.8m3/分、散気装置
側の空気導入管で7.0m3/分の流量が必要である。これを
グローブ弁を使用した空気調整弁で制御すれば、弁の開
度は83度となる。一方、バタフライ弁を使用した場合は
42度の開度となる。
Next, the state of control by the air regulating valve will be described in comparison with the case where a butterfly valve is used. Amount of oxygen required to dissolved oxygen maintained and 5350Kg / day with fresh water conditions, which anoxic tank (515m 3), To dissolved in aerobic tank (149604m 3), an air inlet tube of the water agitator side 2.8 m 3 / min, a flow rate of 7.0 m 3 / min is required in the air introduction pipe on the diffuser side. If this is controlled by an air regulating valve using a globe valve, the opening of the valve will be 83 degrees. On the other hand, when using a butterfly valve
The opening is 42 degrees.

【0032】水中撹拌機側の空気導入管での流量を倍の
5.6m3/分にするには、空気調整弁の場合は86度となり、
バタフライ弁の場合は44度の開度となる。このようにバ
タフライ弁を使用した場合、流量の変動に対する開度の
変化が小さいために、弁の開度制御することが困難であ
る。一方、グローブ弁を使用した空気調整弁の場合、弁
開度の変化は少ないものの、弁の制御が電動あるいは空
気圧で弁開度を変動させることができるたため開度の制
御は容易である。なお、空気導入管の空気調整弁は空気
導入管の流量計を見ながら行われる。
The flow rate at the air inlet pipe on the side of the underwater stirrer was doubled.
For 5.6m 3 / min, 86 degrees for air regulating valve,
In the case of a butterfly valve, the opening is 44 degrees. When the butterfly valve is used as described above, it is difficult to control the opening of the valve because the change in the opening with respect to the variation in the flow rate is small. On the other hand, in the case of an air regulating valve using a globe valve, although the valve opening changes little, the opening can be easily controlled because the valve can be electrically or pneumatically varied. In addition, the air adjustment valve of the air introduction pipe is performed while watching the flow meter of the air introduction pipe.

【0033】[0033]

【発明の効果】以上に説明したように、本発明の下水の
脱窒脱リン装置によれば、次の通りの利点が得られる。 空気導入管に空気調整弁を設けたため、開度の微調整
が簡単で、好気槽内に設けた散気装置の空気供給量との
バランスが取りやすい。 空気導入管への流量計及び空気調整弁の取り付けは、
空気管より分岐した空気導入管に付けるだけでよく、取
り付け工事が簡単である。 グローブ弁を用いることによって、流量調整が天候や
季節変更による影響が受けにくく、空気流量の微調整が
安定して行える。
As described above, according to the sewage denitrification / dephosphorization apparatus of the present invention, the following advantages can be obtained. Since the air adjustment valve is provided in the air introduction pipe, fine adjustment of the opening is easy, and it is easy to balance with the air supply amount of the air diffuser provided in the aerobic tank. Attach the flow meter and air regulating valve to the air introduction pipe,
It only needs to be attached to the air inlet pipe that branches off from the air pipe, and the installation work is simple. By using the globe valve, the flow rate adjustment is hardly affected by the weather and seasonal change, and the fine adjustment of the air flow rate can be stably performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術における下水の脱窒・脱リン生物反応
タンク装置の構成を概念的に示した図である。
FIG. 1 is a view conceptually showing the configuration of a conventional sewage denitrification / phosphorus removal biological reaction tank apparatus.

【図2】従来技術における散気装置・エアレーターS-
1の機能を説明するための断面図である。
FIG. 2 shows an air diffuser / aerator S- in the prior art.
FIG. 3 is a cross-sectional view for explaining a function of No. 1;

【図3】本発明の下水の脱窒・脱リン生物反応タンク装
置の構成を示す上面から見た図である。
FIG. 3 is a top view showing the configuration of the sewage denitrification / phosphorus removal biological reaction tank apparatus of the present invention.

【図4】図3の図を生物反応タンク装置部分を中心に拡
大した図である。
FIG. 4 is an enlarged view of FIG. 3 focusing on a biological reaction tank device.

【図5】本発明の下水の脱窒・脱リン生物反応タンク装
置の空気管の配置を示す図である。
FIG. 5 is a view showing the arrangement of air pipes in the sewage denitrification / phosphorus removal biological reaction tank apparatus of the present invention.

【図6】本発明で用いるピトー管式差圧流量計の断面図
である。
FIG. 6 is a sectional view of a pitot tube type differential pressure flow meter used in the present invention.

【符号の説明】[Explanation of symbols]

1 嫌気槽 2 無酸素槽 3 好気槽 4 沈殿池 5 硝化液の循環ライン 6 返送汚泥の返送ライン 8 水中撹拌機 9 散気装置 10 空気調整弁 11 空気導入管 12 空気導入管 13 パラペット 14 空気導入管 15 流量計 16 計量計の管 17 空洞部 18 インジケーター DESCRIPTION OF SYMBOLS 1 Anaerobic tank 2 Oxygen-free tank 3 Aerobic tank 4 Sedimentation tank 5 Nitrogen circulating line 6 Return sludge return line 8 Underwater stirrer 9 Air diffuser 10 Air control valve 11 Air introduction pipe 12 Air introduction pipe 13 Parapet 14 Air Inlet tube 15 Flow meter 16 Meter tube 17 Cavity 18 Indicator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古賀 昭憲 佐賀県西松浦郡有田町中部丙1436番地2 岩尾磁器工業株式会社内 (72)発明者 川中 清昭 佐賀県西松浦郡有田町中部丙1436番地2 岩尾磁器工業株式会社内 (56)参考文献 特開 平5−177195(JP,A) 特開 平1−293192(JP,A) 特開 昭61−192397(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/30 C02F 3/34 101 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Akinori Koga 1436-2, Chubu, Arita-cho, Nishimatsuura-gun, Saga Prefecture Inside Iwao Porcelain Industry Co., Ltd. (56) References JP-A-5-177195 (JP, A) JP-A-1-293192 (JP, A) JP-A-61-192397 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) C02F 3/30 C02F 3/34 101

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下水を嫌気処理・無酸素処理・好気処理を
順次行うA2O法の生物反応タンク装置において、無酸
素槽に、エアレーションすることによって前記無酸素槽
を嫌気・好気槽として兼用するための流量計および空気
調整弁を備えた空気導入管を設けたことを特徴とする下
水の脱窒・脱リン生物反応タンク装置。
In an A2O method biological reaction tank apparatus for sequentially performing anaerobic treatment, anaerobic treatment and aerobic treatment of sewage, the anaerobic tank is also used as an anaerobic / aerobic tank by aeration to an anaerobic tank. A denitrification / dephosphorization biological reaction tank device provided with an air introduction pipe provided with a flow meter and an air regulating valve for performing the treatment.
【請求項2】前記流量計がピトー管式差圧流量計である
ことを特徴とする請求項1の下水の脱窒・脱リン生物反
応タンク装置。
2. The denitrification / phosphorus removal biological reaction tank apparatus according to claim 1, wherein said flow meter is a pitot tube type differential pressure flow meter.
【請求項3】前記空気調整弁がグローブ弁であることを
特徴とする請求項1の下水の脱窒・脱リン生物反応タン
ク装置。
3. The denitrification / dephosphorization biological reaction tank device for sewage according to claim 1, wherein said air regulating valve is a globe valve.
JP2000303521A 2000-10-03 2000-10-03 Sewage denitrification and dephosphorization biological reaction tank equipment Expired - Lifetime JP3202982B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000303521A JP3202982B1 (en) 2000-10-03 2000-10-03 Sewage denitrification and dephosphorization biological reaction tank equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000303521A JP3202982B1 (en) 2000-10-03 2000-10-03 Sewage denitrification and dephosphorization biological reaction tank equipment

Publications (2)

Publication Number Publication Date
JP3202982B1 true JP3202982B1 (en) 2001-08-27
JP2002102879A JP2002102879A (en) 2002-04-09

Family

ID=18784709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303521A Expired - Lifetime JP3202982B1 (en) 2000-10-03 2000-10-03 Sewage denitrification and dephosphorization biological reaction tank equipment

Country Status (1)

Country Link
JP (1) JP3202982B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606513B2 (en) * 2011-11-08 2014-10-15 株式会社東芝 Nitrogen / phosphorus removal treatment method and nitrogen / phosphorus removal treatment apparatus

Also Published As

Publication number Publication date
JP2002102879A (en) 2002-04-09

Similar Documents

Publication Publication Date Title
US6946073B2 (en) Method for treating wastewater in a membrane bioreactor to produce a low phosphorus effluent
US5114587A (en) Method of sewage treatment
CN110240348A (en) A kind of anaerobic ammoxidation sewage processing technique of combination MBR
CN110015756A (en) A kind of denitrification dephosphorization coupled vibrations anoxic MBR device and technique
CN111056698A (en) Wastewater treatment process of multistage biological contact oxidation method
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
McHarness et al. Field studies of nitrification with submerged filters
JP2016140783A (en) Organic wastewater treatment method and apparatus
CN210683343U (en) Rural domestic sewage MBR integration processing apparatus
KR100424060B1 (en) A single body wastewater disposal plant and wastewater treatment process using the same
CN208327522U (en) A kind of Anammox sewage disposal system of combination MBR
JP3202982B1 (en) Sewage denitrification and dephosphorization biological reaction tank equipment
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
CN114853172A (en) Continuous flow low-carbon denitrification process for domestic sewage with low carbon-nitrogen ratio
JP3384951B2 (en) Biological water treatment method and equipment
CN210163206U (en) Short-range biological nitrogen and phosphorus removal system
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
US20120181233A1 (en) Wastewater treatment system and method
JP3213657B2 (en) Wastewater treatment method and apparatus
GB1563420A (en) Method and apparatus for purifying waste water or sewage
CN211170063U (en) Integrated equipment with enhanced dephosphorization and denitrification functions
CN111547850B (en) Wastewater denitrification combined device and method for shortcut nitrification-anaerobic ammonia oxidation
JP3782738B2 (en) Wastewater treatment method
JP2839065B2 (en) Septic tank
CN113636717B (en) Purification treatment method for cultivation tail water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3202982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250