JP3200001U - Buildings with insulation based on estimated heat loss - Google Patents

Buildings with insulation based on estimated heat loss Download PDF

Info

Publication number
JP3200001U
JP3200001U JP2015002502U JP2015002502U JP3200001U JP 3200001 U JP3200001 U JP 3200001U JP 2015002502 U JP2015002502 U JP 2015002502U JP 2015002502 U JP2015002502 U JP 2015002502U JP 3200001 U JP3200001 U JP 3200001U
Authority
JP
Japan
Prior art keywords
heat
building
value
heat loss
temperature change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015002502U
Other languages
Japanese (ja)
Inventor
長内 健一
健一 長内
Original Assignee
株式会社 長内健一建築設計事務所
株式会社 長内健一建築設計事務所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 長内健一建築設計事務所, 株式会社 長内健一建築設計事務所 filed Critical 株式会社 長内健一建築設計事務所
Priority to JP2015002502U priority Critical patent/JP3200001U/en
Application granted granted Critical
Publication of JP3200001U publication Critical patent/JP3200001U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Building Environments (AREA)

Abstract

【課題】建築前の建物の性能表示、例えば温熱環境に関するその指標数値はあくまで推定値であるが、その推定値を現実建物と可及的に近似したものとし、指標に合致した断熱材を配置した建物を提供する。【解決手段】屋根、壁、床で構成された建物のうちの側壁および天井の断熱材5において、建物の熱貫流量U(W/K)に、建物の断熱材を構成する種々の物質の温度変化(K/h)を掛けて得た値を、熱損失量Q(W/K)の推定値とし、その推定値に基づき断熱材5を配置したことを特徴とする。この推定値は、現実の建物の熱損失量Q(W/K)に近似し、設計段階で適切な省エネ指標を提示できる。【選択図】図1[PROBLEMS] To display the performance of a building before construction, for example, the index value related to the thermal environment is only an estimated value, but the estimated value is approximated to the actual building as much as possible, and heat insulation that matches the index is placed Provide a building. In a heat insulating material 5 on a side wall and a ceiling of a building composed of a roof, a wall, and a floor, the heat-transmission flow rate U (W / K) of the building includes various substances constituting the heat insulating material of the building. A value obtained by multiplying the temperature change (K / h) is an estimated value of the heat loss amount Q (W / K), and the heat insulating material 5 is arranged based on the estimated value. This estimated value approximates the actual heat loss amount Q (W / K) of the building, and an appropriate energy saving index can be presented at the design stage. [Selection] Figure 1

Description

本考案は、熱損失推定値に基づき断熱材を配置して建築した建物に関する。   The present invention relates to a building constructed by arranging a heat insulating material based on an estimated heat loss value.

消費者は、省エネルギー対策等の指標を参考にして、より好ましい住宅の購入を検討するが、建築前の建物の場合は、性能表示される例えば温熱環境に関するその指標数値は、あくまで推定値である。
住宅・店舗・建築物等の建物の熱損失は、室内の熱が断熱部を介して外に逃げることを指し、この熱伝導の仕組みから熱損失量が算出される。
この時、建物の熱伝導が「定常熱伝導」であると仮定し、フーリエの「定常熱伝導方程式」を用いて算出した値を熱損失量とするのが、従来の熱損失量算出の方法である。
しかし、建物の熱は、室内の温度変化に応じて消費されるものであり、室内の温度変化速度から当該建物の熱損失量を算出する事が望ましい。
Consumers consider purchasing more favorable homes with reference to energy conservation measures, etc., but in the case of buildings before construction, performance indicators such as those for thermal environments are only estimates. .
The heat loss of a building such as a house, a store, or a building indicates that the heat in the room escapes outside through the heat insulating portion, and the amount of heat loss is calculated from the heat conduction mechanism.
At this time, assuming that the heat conduction of the building is “steady heat conduction”, the value calculated using Fourier's “steady heat conduction equation” is the heat loss amount. It is.
However, the heat of the building is consumed according to the temperature change in the room, and it is desirable to calculate the heat loss amount of the building from the temperature change rate in the room.

本考案は、設計段階で現実に施工される建物が実現する熱損失係数等の現実値に近似した数値を算出し、それを熱損失推定値として提示し、その事前に提示した熱損失推定値に基づき断熱材を配置して建築した建築物を提案する。
本考案で使用する推定値は、従前の「定常熱伝導方程式」を用いて算出した値を熱損失量として推定するのではなく、さらに物質の温度変化を要素として取り入れて算出した確度の高い計算式で現物建物の熱損失係数と近似した推定値である。
The present invention calculates a numerical value that approximates the actual value such as the heat loss coefficient that is realized by the building actually built at the design stage, presents it as a heat loss estimated value, and presents the estimated heat loss value in advance. Based on the above, we propose a building constructed with heat insulating material.
The estimated value used in the present invention is a calculation with a high degree of accuracy calculated by taking the temperature change of the substance as an element, rather than estimating the value calculated using the conventional "steady heat conduction equation" as a heat loss amount. It is an estimated value that approximates the heat loss coefficient of the actual building.

本考案では、建物の熱損失量を推定する際に、建物の熱貫流量に物質の温度変化を勘案して算出する計算方法およびプログラムを開発して、建物に実現したものであるので、この計算方法原理およびプログラムについても説明する。
室内外に温度差があるとき、高温側(室内)の熱が熱的境界に施された断熱材を貫流して低温側(屋外)に達する時の、フーリエの「定常熱伝導方程式」(フーリエの基本則は固体中を伝わる熱量、つまり熱伝導によって伝わる熱量を計算する基礎方程式)は、次の式(1)で表わされる。
In this invention, when estimating the amount of heat loss in a building, a calculation method and program for calculating the heat flow rate of the building in consideration of the temperature change of the substance was developed and realized in the building. The calculation method principle and program will also be described.
When there is a temperature difference between indoors and outdoors, Fourier's “steady heat conduction equation” (Fourier) when the heat on the high temperature side (indoor) flows through the thermal insulation on the thermal boundary and reaches the low temperature side (outdoor) Is a basic equation for calculating the amount of heat transmitted through a solid, that is, the amount of heat transmitted by heat conduction, is expressed by the following equation (1).

(熱貫流率U(W/m・K)は、「ワット パー 平方メートル ケルビン」,λは熱伝導率(W/m・K:「ワット パー メートル ケルビン」),Tは温度,
は微分,dは空間座標、Aは熱の伝わる面積m)である。

dは、単位長さ当たりの温度差つまり温度勾配である。
この式(1)は、熱量は熱伝導率λと温度勾配の積で表すことができることを示している。
(The heat transmissivity U (W / m 2 · K) is “Watts per square meter Kelvin”, λ is the thermal conductivity (W / m · K: “Watts per meter Kelvin”), T is the temperature,
Is a differential, d is a spatial coordinate, and A is an area m 2 ) through which heat is transmitted.
/
d is a temperature difference per unit length, that is, a temperature gradient.
This equation (1) indicates that the amount of heat can be expressed by the product of the thermal conductivity λ and the temperature gradient.

熱伝導率で、1(W)とは、1秒間に1(J)の熱エネルギーが通過することである。1(W)とは、1(J){1ジュール}の仕事が、1(s){1秒}で為されることを意味し、つまり1(W)=1(J/s)でもある。
1(J)は、熱の仕事当量から1秒間に4.2(cal)の熱量が通過することに相当し、即ち、1(g)の水を4.2(℃)={4.2(cal)}上昇させるのに必要な熱エネルギーに等しい。
又、熱伝導率で使われる(m)は、壁などの面材であれば、通常は厚み方向のことをいい、壁体の厚み方向に1mあたりに、いくらくらい熱が通過するかの単位を意味する。
熱伝導率の単位(W/m・K)を使用して、1(W/m・K)の熱伝導率を壁体で考えれば、壁の厚さ1m、壁体の両面の温度差1(K)=1(℃)あたりの場合、1秒間に1(J)熱エネルギーが通過するということを意味する。
In terms of thermal conductivity, 1 (W) means that 1 (J) of thermal energy passes per second. 1 (W) means that 1 (J) {1 Joule} work is done in 1 (s) {1 second}, that is, 1 (W) = 1 (J / s) .
1 (J) is equivalent to passing 4.2 (cal) of heat per second from the work equivalent of heat, that is, 4.2 (° C.) = {4.2 (Cal)} equal to the thermal energy required to raise.
In addition, (m) used for thermal conductivity usually means the thickness direction of a wall material such as a wall, and a unit of how much heat passes per meter in the thickness direction of the wall. Means.
Using a unit of thermal conductivity (W / m · K) and considering a thermal conductivity of 1 (W / m · K) as a wall, the wall thickness is 1 m and the temperature difference between both sides of the wall is 1 In the case of (K) = 1 (° C.), it means that 1 (J) thermal energy passes per second.

熱貫流率(U値)とは熱の伝えやすさを表した値で、熱伝導率(λ)は材料自体を評価する数値であるのに対し、熱貫流率(U値)はそれに加え、その材料の厚さも評価する。つまり、熱伝導率(λ)は材料の断熱性能を評価した数値、熱貫流率(U値)は仕様の断熱性能を評価した数値であって、外皮平均熱貫流率(UA値)は、1以上の材料を要素勘案して、各々の熱伝導率(λ)を元に算出される。
熱貫流率は、2012年時点ではQ値と表現していたが、2015年現在ではより正確な熱貫流量算出のためU値に改められたので、本明細書でも熱貫流率はU値と表示する。
The thermal conductivity (U value) is a value representing the ease of heat transfer, and the thermal conductivity (λ) is a numerical value for evaluating the material itself, whereas the thermal conductivity (U value) is added to it, The thickness of the material is also evaluated. That is, the thermal conductivity (λ) is a numerical value that evaluates the thermal insulation performance of the material, the thermal conductivity (U value) is a numerical value that evaluates the thermal insulation performance of the specification, and the average skin thermal conductivity (UA value) is 1 It is calculated on the basis of each thermal conductivity (λ) in consideration of the above materials.
The heat flow rate was expressed as Q value as of 2012, but as of 2015, it was changed to U value for more accurate heat flow rate calculation. indicate.

外皮平均熱貫流率UA(W/mK)は、建物の内部と外気の温度差を1℃としたときに、建物内部から建物外部へ逃げる時間あたりの熱量を外皮延べ面積で除した数値のことを指す。
熱貫流量U(W/K)や、熱損失量Q(W/K)が小さいほど住宅の断熱性能が高いことになり、省エネ効果が高いものとなる。
Outer skin average heat transmissibility UA (W / m 2 K) is a numerical value obtained by dividing the amount of heat per hour that escapes from the inside of the building to the outside of the building by the outer skin area when the temperature difference between the inside of the building and the outside air is 1 ° C. Refers to that.
The smaller the heat flow rate U (W / K) and the heat loss amount Q (W / K), the higher the heat insulation performance of the house, and the higher the energy saving effect.

前記式(1)を、図3に沿って説明する。
室内外に温度差が有る時、高温側(室内)の温度も、低温側(屋外)の温度も、熱的境界の物質(断熱部)の温度も変化(定常)しないと仮定し熱損失量Q(W/K)(厳密には、熱貫流量U(W/K)である。)を算出する。
物質dには、体積熱容量ρc(J/mK)と温度拡散率α=λ/ρc(m/s)があり、物質の体積m=Vにおいて、この熱物性値で「定常熱伝導」時に伝わった熱量を算出する式は
The equation (1) will be described with reference to FIG.
When there is a temperature difference between indoors and outdoors, it is assumed that the temperature on the high temperature side (indoor), the temperature on the low temperature side (outdoor), and the temperature of the material at the thermal boundary (thermal insulation) do not change (steady state). Q (W / K) (strictly speaking, the heat transmissible flow rate U (W / K)) is calculated.
The substance d, there is volumetric heat capacity ρc (J / m 3 K) and thermal diffusivity α = λ / ρc (m 2 / s), the volume of m 3 = V materials, in this thermophysical properties "Transient Thermal The formula for calculating the amount of heat transferred during `` conduction '' is

になる。
定常熱伝導時は、熱貫流量U(W/K)と熱損失量Q(W/K)とが同量となる事から、温度拡散率を未知数と仮定すると、物質本来の温度拡散率α:(λ/ρc)×10−6(m/s)が、α×10−3(m/s)に変化する。
この事から、室内外の温度が時間変化、日変化、季節変化する建物の熱的境界にある物質(断熱部)の温度変化速度(α値)を推定する事で、全物質の温度変化の推定値を得る事ができる。
become.
At the time of steady heat conduction, the heat flow rate U (W / K) and the heat loss amount Q (W / K) are the same amount. Therefore, assuming that the temperature diffusivity is unknown, the original temperature diffusivity α : (Λ / ρc) × 10 −6 (m 2 / s) changes to α × 10 −3 (m 2 / s).
From this, by estimating the temperature change rate (α value) of the material (heat insulation part) at the thermal boundary of the building where the indoor and outdoor temperatures change over time, daily, and seasonally, the temperature change of all materials An estimate can be obtained.

前記より、住宅・建築物の不在時の「温度測定データ」と熱消費量から算出した「室内の温度変化」とを比較する過程で得た情報に基づき、不在時の温度変化と居住時の熱消費量とが整合する「温度変化計算式」(近似式)を推定することができる。
因みに、現実に完成した建物の温度変化を測定し、その建物の内外温度を測定し、その結果に基づいて、熱損失係数を診断する方法は以下の先行技術文献のようにある。
Based on the information obtained in the process of comparing `` temperature measurement data '' in the absence of houses and buildings with `` indoor temperature change '' calculated from heat consumption, the temperature change in absence and the A “temperature change calculation formula” (approximate formula) that matches the heat consumption can be estimated.
Incidentally, there is a method of measuring the temperature change of an actually completed building, measuring the temperature inside and outside the building, and diagnosing the heat loss coefficient based on the result as in the following prior art documents.

特許第5509402号公報Japanese Patent No. 5509402

特許文献1では、建設後に建物内外の温度測定データから熱損失係数を推定する方法としている。
現在の熱損失計算で算出した熱損失係数が確かなものであれば、建設後に熱損失係数を推定する必要はない。
しかし、現実には、建設後に実際の熱損失量Q(W/K)を確認する方法しか無いのも確かである。
一方、この推定方法は、熱的境界を形成する物質の種類や材厚等を考慮したもので無く、学術的に熱損失量Q(W/K)を推定する方法では無い。
また、建設後に外皮平均熱貫流率(UA値)が分かる現在の計算方法では、結局事前の情報が欠如していることであり、消費者にとっては不利益となる。
In patent document 1, it is set as the method of estimating a heat loss coefficient from the temperature measurement data inside and outside a building after construction.
If the heat loss coefficient calculated by the current heat loss calculation is reliable, it is not necessary to estimate the heat loss coefficient after construction.
However, in reality, there is no doubt that there is only a method of confirming the actual heat loss amount Q (W / K) after construction.
On the other hand, this estimation method does not consider the type or thickness of the material forming the thermal boundary, and is not a method for estimating the heat loss amount Q (W / K) academically.
In addition, the current calculation method in which the average outer skin heat transfer rate (UA value) is known after construction is disadvantageous for consumers because it lacks prior information after all.

したがって、この課題を改善するには、建物を設計する段階で厳密な熱損失量Q(W/K)を算出する計算法乃至計算式(近似式)が必要である。
解決しようとする課題は、建築前の設計段階で、省エネルギー対策等の指標をできる限り正確に提示しかつ、その通りの完成後の現物建物を提供することである。
Therefore, in order to improve this problem, a calculation method or a calculation formula (approximation formula) for calculating a strict heat loss amount Q (W / K) at the stage of designing a building is required.
The problem to be solved is to present an index of energy saving measures, etc. as accurately as possible at the design stage before construction, and to provide an actual building after completion.

本考案では、設計段階で厳密な熱損失量Q(W/K)を算出してその厳密な推定値を得、それを指標として提示された設計で、それに基づく断熱材を適宜個所に配置選択或いは設定して建築した建物として達成した。
つまり、厳密な熱損失量Q(W/K)として、建物の熱貫流量U(W/K)に断熱材を構成する物質の温度変化(K/h)を掛けて得た値を熱損失量Q(W/K)の推定値とし、その推定値に基づき断熱材を建物の各所に配置することで、建築前に提示した省エネ指標と一致した熱損失量Q(W/K)を実現したことを特徴とする建物である。
断熱材を構成する物質の温度変化(K/h)を指標算出の要素とすることは、技術として進歩性があり、新規な着想である。
In the present invention, a strict heat loss amount Q (W / K) is calculated at the design stage to obtain a strict estimate, and the design presented as an index is used to select the appropriate location of insulation based on the design. Or achieved as a building that was set up and built.
In other words, as the exact heat loss amount Q (W / K), the value obtained by multiplying the heat flow rate U (W / K) of the building by the temperature change (K / h) of the material constituting the heat insulating material is the heat loss. Estimated value Q (W / K) and heat insulation Q (W / K) that is consistent with the energy-saving index presented before construction is realized by placing heat insulation at various locations in the building based on the estimated value. It is a building characterized by that.
Making the temperature change (K / h) of the material constituting the heat insulating material as an element of index calculation has an inventive step and is a new idea.

建物の断熱材を構成する物質の温度変化(K/h)を、熱損失量Q(W/K)の算出要素とすることで、より現場(立地 環境)に合致した推定値を得、その推定値に基づき断熱材を配置して建築した建物であることを特徴とする。
本考案では、後述するように設計段階で厳密な熱損失量Q(W/K)を算出してその厳密な推定値を得る近似した推定値の計算方法およびプログラム(ソフトウエア発明)を同時に開発している。
By using the temperature change (K / h) of the material that constitutes the heat insulating material of the building as a calculation factor for the heat loss Q (W / K), an estimated value that more closely matches the site (location environment) is obtained. It is a building constructed by arranging heat insulation materials based on estimated values.
In the present invention, as will be described later, an approximate estimated value calculation method and a program (software invention) are simultaneously developed to calculate the exact heat loss Q (W / K) at the design stage and obtain the exact estimated value. doing.

本考案によれば、以下のような技術的効果を得る事が出来る。
(1)確度の高い熱損失量Q(W/K)を設計段階で得ることにより、期待の熱損失量Q(W/K)の建物が提供でき、設計段階で期待値が達成できないことが判明した場合は設計変更が可能である。
(2)確度の高い熱損失量Q(W/K)を推定値とすることで、建物の各部の断熱材を適宜相応のものに、選択設定できる。
(3)住宅・建築物の「省エネルギー基準」で算出した値より、確度の高い熱損失量Q(W/K)が算出され、一次エネルギー消費量が大幅に削減される。
(4)建物本体からの、熱損失量Q(W/K)を減らすことで、暖冷房機器の負荷低減に繋がり、電力への依存度が縮小し、「創エネ」効果が大きくなり「自立循環型住宅」が建設できる。
(5)「省エネルギー」基準の、熱損失量Q(W/K)算出基準が変わる事で、熱収支バランスの良い素材の活用が可能となる。具体的には、建築には使わなくなった木繊維質素材、以前は「氷室」の保温材に使われていた「おが屑」等が挙げられる。
According to the present invention, the following technical effects can be obtained.
(1) By obtaining a highly accurate heat loss amount Q (W / K) at the design stage, a building with the expected heat loss amount Q (W / K) can be provided, and the expected value cannot be achieved at the design stage. If it becomes clear, the design can be changed.
(2) By using the heat loss amount Q (W / K) with high accuracy as an estimated value, the heat insulating material of each part of the building can be selected and set appropriately.
(3) The heat loss amount Q (W / K) with high accuracy is calculated from the value calculated by the “energy saving standard” of the house / building, and the primary energy consumption is greatly reduced.
(4) Reducing the amount of heat loss Q (W / K) from the main body of the building will lead to a reduction in the load on heating and cooling equipment, reducing the dependency on power, and increasing the “energy creation” effect. A recycling house can be built.
(5) By changing the standard for calculating the amount of heat loss Q (W / K) in the “energy saving” standard, it becomes possible to use a material with a good balance of heat balance. Specific examples include wood fiber materials that are no longer used for construction, and “sawdust” that was previously used for heat insulation in the “ice room”.

おが屑は、その厚さ設計や、面積設計、圧縮成型程度に自由性が高く、熱損失量Q(W/K)の設定の要請に応じる幅が広い素材である。
この素材は全国の「製材工場」や「プレカット加工工場」や「集成材加工工場」に豊富にあり、これを住宅・建築物に活用する事で「C〇2」を長期間ストックでき、地球温暖化対策に繋げることが出来る。
Sawdust is a material that is highly flexible in terms of thickness design, area design, and compression molding, and has a wide range in response to requests for setting the heat loss Q (W / K).
This material is abundant in “sawmill factories”, “pre-cut processing factories” and “glulam processing factories” nationwide, and by using this material in houses and buildings, “C02” can be stocked for a long period of time. It can be linked to global warming countermeasures.

図1は、仮設住宅の各部の断熱材の配置例を示す平面視の説明図。FIG. 1 is an explanatory diagram in a plan view showing an example of arrangement of heat insulating materials in each part of a temporary house. 図2は、仮設住宅の断熱材で囲繞された状態を示す側面視の説明図。FIG. 2 is an explanatory view in a side view showing a state where the temporary housing is surrounded by a heat insulating material. 図3は、物質の定常熱伝導を説明する説明図。FIG. 3 is an explanatory diagram illustrating steady heat conduction of a substance. 図4は、建物の熱伝導を説明する説明図。FIG. 4 is an explanatory diagram for explaining heat conduction in a building. 図5は、省エネ設計システムの概略構成図。FIG. 5 is a schematic configuration diagram of an energy saving design system.

図1は、仮設住宅の各部の断熱材の配置例を示す平面視の説明図であり、建物1を構成する屋根、壁、床、のうち、側壁および天井の断熱材5が、おが屑で形成されている場合の仮設住宅例である。
図1の建物1の左側壁構成は、外壁2(杉下見板 厚21mm)と通気層3(厚18mm)、外壁側の透湿防水シート4、断熱材5(おが屑、 厚120mm)、室内側の透湿防水シート6、室内仕上石膏ボード7(厚12.5mm)からなる。
側壁や天井に配置される断熱材5は、適宜選択されるもので、本実施の形態では、実際に施工された仮設住宅において断熱材5がおが屑の例を示す。
おが屑は一例であり、グラスウール等各種の断熱素材が配置される場合は、その素材ごとに部位ごとに、熱損失量Q(W/K)は算出できる。
FIG. 1 is an explanatory view in plan view showing an example of arrangement of heat insulating materials in each part of a temporary house, and among the roof, wall, and floor constituting the building 1, the heat insulating material 5 on the side walls and the ceiling is formed of sawdust. It is an example of a temporary housing when it is done.
The left side wall structure of the building 1 in FIG. 1 is composed of an outer wall 2 (cedar clapboard thickness 21 mm), a ventilation layer 3 (thickness 18 mm), a moisture-permeable waterproof sheet 4 on the outer wall side, a heat insulating material 5 (sawdust, thickness 120 mm), and an indoor side The moisture-permeable waterproof sheet 6 and the indoor finish plaster board 7 (thickness 12.5 mm).
The heat insulating material 5 arranged on the side wall or the ceiling is appropriately selected. In the present embodiment, the heat insulating material 5 shows an example of sawdust in a temporarily constructed temporary house.
Sawdust is an example, and when various heat insulating materials such as glass wool are arranged, the heat loss amount Q (W / K) can be calculated for each part of each material.

本考案は、断熱材5の熱損失量Q(W/K)を、現実の建物と一致或いは近似する数値に推定してその数値の断熱材5を配置したものである。
建物の熱損失量Q(W/K)の推定値において、現実の建物と近似した推定値を算出するための、実施例として建設した住戸=応急仮設住宅の温熱環境データを示す。
住戸は、断熱仕様「おが屑」を天井と外壁に配置した設計で、施設全体<住戸)の部位面積が536.61m、熱損失量461.5(W/K),熱損失係数Q値:2.576(W/m・K)を表1「温度測定住戸の熱損失係数計算書」に示す。
外皮面積:119.24(m)、U値0.76(W/mK)、熱貫流量:90.6(W/K)、
室内温度変化(不在時):室内外温度差10.2℃の時、温度変化−0.33(K/h)測定データは「岩手県林業技術センター」が測定したデータを用いる(表2「温度測定住戸の不在時における温度変化データ」)。
1月電力使用料523引く9月(無暖房期)電力使用量155=シーズン差電力使用量368(kWh)である。
In the present invention, the heat loss amount Q (W / K) of the heat insulating material 5 is estimated to a numerical value that matches or approximates an actual building, and the heat insulating material 5 having the numerical value is arranged.
In the estimated value of the heat loss amount Q (W / K) of a building, the thermal environment data of a dwelling unit = emergency temporary housing constructed as an example for calculating an estimated value approximated to an actual building is shown.
The dwelling unit is designed with thermal insulation specifications "sawdust" arranged on the ceiling and outer wall, the area of the entire facility <dwelling unit) is 536.61 m 2 , heat loss 461.5 (W / K), heat loss coefficient Q value: 2.576 (W / m 2 · K) is shown in Table 1 “Calculation of heat loss coefficient of temperature measurement dwelling unit”.
Outer skin area: 119.24 (m 2 ), U value 0.76 (W / m 2 K), Heat flow rate: 90.6 (W / K),
Indoor temperature change (when absent): When the indoor / outdoor temperature difference is 10.2 ° C, the temperature change -0.33 (K / h) measurement data is the data measured by "Iwate Prefectural Forestry Technology Center" (Table 2 " Temperature change data in absence of temperature measurement dwelling unit ").
January power usage fee 523 minus September (no heating period) power usage 155 = seasonal difference power usage 368 (kWh).

使用断熱材は、以前は氷室の保温材として活用していた「おが屑」(含水率5%)で、この物質の熱物性は、表3「各種材料の熱物性一覧表および熱交換率表」に示す通り、熱伝導率(λ):0.058(W/m・K)、体積熱容量(cρ):121(kJ/m・K)温度拡散率(α値):0.48×10−6(m/s)である。 The insulation material used is “sawdust” (water content 5%), which was previously used as a thermal insulation material for ice rooms. The thermal properties of this material are listed in Table 3 “Thermal properties and heat exchange rates of various materials” As shown in Fig. 5, thermal conductivity (λ): 0.058 (W / m · K), volumetric heat capacity (cρ): 121 (kJ / m 3 · K) temperature diffusivity (α value): 0.48 × 10 −6 (m 2 / s).

また図1の仮設住宅では、室内側には厚さ12.5mmの石膏ボードが施されており、この物質の熱物性は熱伝導率(λ):0.22(W/m・K)、
体積熱容量(cρ):1,018(kJ/m・K)、温度拡散率(α):0.22×10−6(m/s)で、断熱は充填断熱工法である。
温度変化計算式(近似式)は、主に「熱貫流量」と「室内温度変化」(不在時)及び「シーズン差電力使用量」とを整合させる過程で得た情報に基づき、確度の高い計算式を導く事とする。
そのため、先に、測定住戸1月のシーズン差電力使用量から、1月室内平均温度変化量を算出し、次に、物質の「温度変化計算式(近似式)」式(6)の確度を確認する。
Further, in the temporary house of FIG. 1, a gypsum board having a thickness of 12.5 mm is provided on the indoor side, and the thermal properties of this material are thermal conductivity (λ): 0.22 (W / m · K),
Volume heat capacity (cρ): 1,018 (kJ / m 3 · K), temperature diffusivity (α): 0.22 × 10 −6 (m 2 / s), and heat insulation is a filling heat insulation method.
The temperature change calculation formula (approximate formula) is based on information obtained in the process of matching the “heat flow rate”, “indoor temperature change” (when absent), and “seasonal power consumption” with high accuracy. The calculation formula will be derived.
Therefore, first calculate the January indoor average temperature change from the seasonal difference power consumption of the measured dwelling unit January, and then calculate the accuracy of the “temperature change calculation formula (approximation)” formula (6) of the substance. Check.

測定住戸のシーズン差電力使用量から、1月室内平均温度変化を算出すると、
熱損失量Q(Wh/K)=U値0.76(W/m・K)×119.24(m)×温度変化T(K/h)室内外温度差12.6(K)×24(h)×31(D)=368(kWh)より、
室内外温度差12.6℃の時、温度変化T(K/h)は、 368(kWh)÷849(kWh)=0.43(K/h)
である。
When calculating the average indoor temperature change in January based on the seasonal power consumption of the measured units,
Heat loss Q (Wh / K) = U value 0.76 (W / m 2 · K) × 119.24 (m 2 ) × temperature change T (K / h) Indoor / outdoor temperature difference 12.6 (K) From x24 (h) x31 (D) = 368 (kWh),
When the indoor / outdoor temperature difference is 12.6 ° C., the temperature change T (K / h) is 368 (kWh) ÷ 849 (kWh) = 0.43 (K / h)
It is.

≪仮説に基づいた温度変化計算(近似式)≫
物質の熱物性そのもので温度変化を算出すると温度は殆んど変化しない。そのため、物質の体積熱容量(ρc)を少なく見積り推定値を求める。
その際、熱物性中で変化しうるのが温度拡散率のみである事から(α値)[m/s]の値を補正し、熱交換効率(β値)とし、
≪Temperature change calculation based on hypothesis (approximate expression) ≫
If the temperature change is calculated based on the thermophysical properties of the substance itself, the temperature hardly changes. Therefore, an estimated value is obtained by estimating the volumetric heat capacity (ρc) of the substance less.
At that time, since only the thermal diffusivity can change in the thermophysical properties, the value of (α value) [m 2 / s] is corrected to obtain the heat exchange efficiency (β value),

とする。
この時、β値に単位を付さない。
よって、
「断熱材」の補正後全熱量(J/K)の計算式は、
And
At this time, no unit is added to the β value.
Therefore,
The formula for calculating the total heat quantity (J / K) after correction for “Insulation” is

となる。
断熱部に「蓄熱部位」が複数ある場合の熱量補正は、物質の熱交換効率[β値]の小さい物質の熱量が、[β値]の大きい他の物質の影響を受け減少すると仮定し、
It becomes.
The amount of heat correction when there are multiple “heat storage parts” in the heat insulation part assumes that the heat amount of a substance with a small heat exchange efficiency [β value] of the substance is affected by other substances with a large [β value] and decreases.

とする。
物質の1時間当りの温度変化の計算式は、
And
The formula for calculating the temperature change per hour of a substance is:

となる。
熱損失量Q(W/K)の計算式は、
It becomes.
The calculation formula for heat loss Q (W / K) is

である。
外皮平均熱貫流率UA(W/m・K)は、
It is.
The skin average heat transmissivity UA (W / m 2 · K) is

(外皮延べ面積(m)は、開口部等を含む熱的境界部面積の合計)
である。
(The total surface area (m 2 ) is the total area of the thermal boundary including the opening)
It is.

≪住戸の熱損失量Q(W/K)を算出≫
表4「温度想定住戸の全熱量算出データ」に示す住戸の熱量を式(4)、式(5)に代入すると、
「おが屑」:天井断熱おが屑377.86+外壁断熱おが屑462.91+界壁おが屑75.33=「おが屑」:全熱量E915(kJ/K)であり、
「おが屑」:全熱量E915(kJ/K)×β0.477=436(kJ/K)
天井石膏ボード315.58+外壁石膏ボード386.84+界壁石膏ボード61.08=「石膏」:全熱量E764(kJ/K)であり、
「石膏」:全熱量E764(kJ/K)×β0.216(m/s)×β0.477=78.7(kJ/K)
が得られ、全熱量Eは、436(kJ/K)+78.7(kJ/K)=514.700(J/K)となる。
≪Calculate the heat loss Q (W / K) of dwelling units≫
Substituting the calorific value of the dwelling units shown in Table 4 “Calculation data for total heat of dwelling units” into Equation (4) and Equation (5),
“Sawdust”: Ceiling heat insulation sawdust 377.86 + outer wall heat insulation sawdust 462.91 + saw wall sawdust 75.33 = “sawdust”: total heat E915 (kJ / K),
“Sawdust”: Total heat E915 (kJ / K) × β0.477 = 436 (kJ / K)
Ceiling gypsum board 315.58 + outer wall gypsum board 386.84 + boundary wall gypsum board 61.08 = “gypsum”: total heat E764 (kJ / K),
“Gypsum”: Total heat E764 (kJ / K) × β0.216 (m 2 /s)×β0.477=78.7 (kJ / K)
Is obtained, and the total heat E is 436 (kJ / K) +78.7 (kJ / K) = 514.700 (J / K).

この全熱量Eを式(6)に代入すると、
温度変化(K/h)=熱貫流量90.6(W/K)÷全熱量E514,700(J/K)×3,600(s)=0.63(K/h)
が得られ、
この温度変化を式(7)に代入すると、
熱損失量Q(W/K)=90.6(W/K)×0.63(K/h)=57.1(W/K)
となり、「エネルギー消費」削減率は、約37%である。
算出した熱損失量Q(W/K)で、住戸1月のエネルギー消費量を算出すると、
57.1(W/K)×12.6(K)×24(h)×31(D)=535(kWh)
となる。
Substituting this total heat E into equation (6),
Temperature change (K / h) = Heat flow rate 90.6 (W / K) ÷ Total heat E514,700 (J / K) × 3,600 (s) = 0.63 (K / h)
Is obtained,
Substituting this temperature change into equation (7),
Heat loss Q (W / K) = 90.6 (W / K) × 0.63 (K / h) = 57.1 (W / K)
Therefore, the reduction rate of “energy consumption” is about 37%.
Using the calculated heat loss amount Q (W / K) to calculate the energy consumption in January,
57.1 (W / K) × 12.6 (K) × 24 (h) × 31 (D) = 535 (kWh)
It becomes.

この時、物質の熱物性値は、温度差20℃時の定常熱伝導で得た値である事から、推定値温度0.63(K/h)を、室内外温度差20℃時の温度変化量と仮定すると、
室内外温度差1.0℃時の温度変化、
0.63(K/h)÷20(K)=0.0315(K/h)
が得られる。
At this time, since the thermophysical property value of the substance is a value obtained by steady heat conduction at a temperature difference of 20 ° C., the estimated temperature of 0.63 (K / h) is set to a temperature at an indoor / outdoor temperature difference of 20 ° C. Assuming change,
Temperature change when the indoor / outdoor temperature difference is 1.0 ° C,
0.63 (K / h) ÷ 20 (K) = 0.0315 (K / h)
Is obtained.

この値で、不在時の温度変化は、
推定値:室内外温度差10.2℃×0.0315(K/h)=0.32(K/h)
居住時の温度変化は
推定値:室内外温度差12.6℃×0.0315(K/h)=0.40(K/h)
である。
この事から、1月住戸のエネルギー消費量を修正すると、
熱損失量Q(W/K)(推定値)90.6(W/K)×0.40(K/h)=36.2(W/K)
熱消費量(推定値)36.2(W/K)×12.6(K)×24(h)×31(D)
=339(kWh)
となり、「エネルギー消費」削減率は、約60%となる。
結果、
異なる4種類の温度(0.43℃、0.33℃、0.63℃、0.4℃)は、室内外温度差の違いによるものであり、また、建物の漏気等を考慮すると「温度変化計算(近似式)」の確度は高い。
With this value, the temperature change when absent is
Estimated value: Indoor / outdoor temperature difference 10.2 ° C. × 0.0315 (K / h) = 0.32 (K / h)
Temperature change at the time of residence is estimated value: Indoor / outdoor temperature difference 12.6 ° C x 0.0315 (K / h) = 0.40 (K / h)
It is.
From this, when the energy consumption of January dwelling units is corrected,
Heat loss Q (W / K) (estimated value) 90.6 (W / K) × 0.40 (K / h) = 36.2 (W / K)
Heat consumption (estimated value) 36.2 (W / K) x 12.6 (K) x 24 (h) x 31 (D)
= 339 (kWh)
Thus, the reduction rate of “energy consumption” is about 60%.
result,
The four different temperatures (0.43 ° C, 0.33 ° C, 0.63 ° C, 0.4 ° C) are due to differences in indoor / outdoor temperature differences. The accuracy of “temperature change calculation (approximation)” is high.

これまで、断熱性能を高めても室内温度変化がどの程度改善されたのかが解らなかった。
この方法によれば、外皮の熱性能基準を外皮平均熱貫流(W/K)から、室内温度変化(K/h)に改める事ができ、身近な気象データで建物の室内温度変化を推定した推定値で熱性能を評価する事が可能である。
Until now, it has not been understood how much the temperature change in the room has been improved even if the heat insulation performance is improved.
According to this method, the thermal performance standard of the outer skin can be changed from the average outer skin heat flow (W / K) to the indoor temperature change (K / h), and the indoor temperature change of the building was estimated from familiar weather data. Thermal performance can be evaluated with estimated values.

≪他の物質の解を求める≫
ここでは、住宅で一般的に行われている断熱工法に基づいて熱性能を評価する。
建物の断熱材を構成する種々の物質の熱貫流量(W/mK)、全熱量E、温度変化(K/h)を算出しておく。
≪Find solutions for other substances≫
Here, thermal performance is evaluated based on a heat insulation method generally used in a house.
The heat flow rate (W / m 2 K), total heat E, and temperature change (K / h) of various materials constituting the heat insulating material of the building are calculated in advance.

「硬質ウレタンフォーム」
・断熱部構成
外気側:ウレタンフォームt−50mm、構造用合板t−9mm、柱間:空気層t−100mm
室内側:石膏ボードt−12.5mm
・熱貫流量:0.399(W/mK)、全熱量E:2.27(kJ/K)、
温度変化:0.63(K/h)
"Rigid urethane foam"
・ Insulation part configuration Outside air side: urethane foam t-50mm, structural plywood t-9mm, between pillars: air layer t-100mm
Indoor side: gypsum board t-12.5mm
Heat flow rate: 0.399 (W / m 2 K), total heat E: 2.27 (kJ / K),
Temperature change: 0.63 (K / h)

「高性能グラスウール(GW)16kg品」
・断熱部構成
外気側:構造用合板t−9mm、柱間:グラスウール充填t−100mm、
室内側:石膏ボ ードt−12.5mm
・熱貫流率:0.406(W/mK)、全熱量E:1.66(kJ/K)、
温度変化:0.88(K/h)
"High-performance glass wool (GW) 16kg product"
-Heat insulation part structure The outside air side: Structural plywood t-9mm, Between pillars: Glass wool filling t-100mm,
Indoor side: gypsum board t-12.5mm
-Thermal conductivity: 0.406 (W / m 2 K), Total heat E: 1.66 (kJ / K),
Temperature change: 0.88 (K / h)

「セルロースファイバー」
・断熱部構成
外気側:構造用合板t−9mm、柱間:セルロースファイバーt90mm、
室内側:石膏ボードt−12.5mm
・熱貫流量:0.381(W/m・K)、全熱量E:3.55(kJ/K)、温度変化:0.38(K/h)
"Cellulose fiber"
-Heat insulation part structure The outside air side: Structural plywood t-9mm, Between pillars: Cellulose fiber t90mm,
Indoor side: gypsum board t-12.5mm
Heat flow rate: 0.381 (W / m 2 · K), total heat E: 3.55 (kJ / K), temperature change: 0.38 (K / h)

「断熱材:おが屑」
・断熱部構成
外気側:構造用合板t−9mm、柱間:おが屑充填t−90mm、
室内側:石膏ボードt−12.5mm
・熱貫流率:0.531(W/mK)、全熱量E:6.30(kJ/K)、
温度変化:0.30(K/h)
“Insulation: sawdust”
・ Insulation part configuration Outside air side: structural plywood t-9 mm, between pillars: sawdust filling t-90 mm,
Indoor side: gypsum board t-12.5mm
-Heat flow rate: 0.531 (W / m 2 K), total heat E: 6.30 (kJ / K),
Temperature change: 0.30 (K / h)

各物質の温度変化を算出した結果、
温度拡散率(α値)の大きいグラスウール断熱材は、温度変化が早く熱損失量Q(W/K)が多い。逆に、断熱材「おが屑」の熱貫流量がGWの1.3倍の量にも関わらず温度変化が遅く、他の物質の1/2〜1/3以下の熱損失量Q(W/K)である。
表5「熱貫流量比較」として、各素材の熱貫流量を例示する。
As a result of calculating the temperature change of each substance,
A glass wool heat insulating material having a large temperature diffusivity (α value) has a rapid temperature change and a large amount of heat loss Q (W / K). On the contrary, despite the heat flow rate of the heat insulating material “sawdust” being 1.3 times the amount of GW, the temperature change is slow, and the heat loss Q (W / W) of 1/2 to 1/3 or less of other substances. K).
As Table 5 “Heat flow rate comparison”, the heat flow rate of each material is illustrated.

比較結果より
(1) 熱貫流率U値が同等であっても、断熱材の熱物性によって熱損失量Q(W/K)に大きな差がある。
(2) 課題は、居住性の目安となる温度変化の速度である。「省エネルギー基準」で算出した熱貫流量はフーリエの「定常熱伝導方程式:式(1)の解」であり、室内外の温度が時間変化、日変化、季節変化する環境下では、建物で定常熱伝導を再現する事は不可能である。
(3) つまり、居住性の良い建物とは、定常熱伝導の解では無く、熱消費量が少なく、室内温度変化の小さい建物の事である。
(4) 上記より、「熱伝導率が小さければ、熱損失量Q(W/K)は少ない。」とは限らない事が、逆に、「熱伝導率が大きければ、熱損失量Q(W/K)が多くなる。」とも限らない事が分かる。
(5) 建物の「最良の断熱材」は、熱収支バランスの良い熱交換効率β:0.5程度の(表3「各種材料の熱物性一覧表」で示す。)熱物性値を有す物質である。
From the comparison result (1) Even if the heat transmissibility U value is the same, there is a large difference in the heat loss Q (W / K) due to the thermal properties of the heat insulating material.
(2) The issue is the speed of temperature change, which is a measure of comfort. The heat flow rate calculated by the “Energy Conservation Standard” is Fourier's “steady heat conduction equation: solution of equation (1)”, and it is steady in the building in an environment where indoor and outdoor temperatures change over time, daily, and seasonally. It is impossible to reproduce heat conduction.
(3) In other words, a building with good habitability is not a solution for steady heat conduction, but a building that consumes less heat and has a small change in indoor temperature.
(4) From the above, “If the thermal conductivity is small, the amount of heat loss Q (W / K) is not necessarily small.” Conversely, “If the thermal conductivity is large, the amount of heat loss Q ( (W / K) increases. "
(5) The “best thermal insulation material” of the building has a thermal property value of about 0.5 (shown in Table 3 “List of thermophysical properties of various materials”) with good heat balance and good heat exchange efficiency β. It is a substance.

次に本考案の構成要素になる「省エネ設計方法」である推定値算出方法およびそのプログラムを説明する。
省エネ設計方法は、
1、住宅・建築物等の建物の熱損失量Q(W/K)を推定する際に、建物の熱貫流量U(W/K)に物質の温度変化(K/h)を掛けて得た値を熱損失量Q(W/K)の値とした計算方法=式(7)およびプログラム。
Next, an estimated value calculation method, which is an “energy saving design method” that is a component of the present invention, and a program therefor will be described.
The energy-saving design method is
1. When estimating the heat loss Q (W / K) of a building such as a house or building, multiply the heat flow rate U (W / K) of the building by the temperature change (K / h) of the substance. Calculation method using the calculated value as the value of heat loss Q (W / K) = Equation (7) and program.

2、前記1で使用する物質の温度変化を算出する際に、建物の熱貫流量を熱的境界を形成する物質の全熱量Eで除して得た値を物質の温度変化とした事を特徴とする計算方法=式(7)およびプログラム。 2. When calculating the temperature change of the substance used in 1 above, the value obtained by dividing the heat flow rate of the building by the total heat E of the substance that forms the thermal boundary is taken as the temperature change of the substance. Characteristic calculation method = Equation (7) and program.

3、前記2で使用する全熱量Eを算出する際に、体積熱容量(ρc)を補正する補正係数を温度拡散率(α値)に10を掛けて得た値を「熱交換効率」(β値)とした事を特徴とする計算方法=式(3)およびプログラム。 3. When calculating the total heat E to be used in 2 above, a value obtained by multiplying the temperature diffusivity (α value) by 10 6 as a correction coefficient for correcting the volumetric heat capacity (ρc) is “heat exchange efficiency” ( (Calculation method characterized by β value) = Equation (3) and program.

4、上記3で、全熱量Eを算出する際に、熱的境界を形成する複数の蓄熱部位が存在する時、温度拡散率の大きい物質が温度拡散率の小さい物質の熱量を奪うとして、式(3)に温度拡散率の大きい物質の熱交換効率[β値]を掛けて、蓄熱部位の補正後全熱量Eとした事を特徴とする計算方法およびプログラム。
上記1〜4の計算方法およびプログラムに基づいて、指標である現実の熱損失量Q(W/K)に近似の推定値を算出する。
4. When calculating the total heat quantity E in the above 3, when there are a plurality of heat storage parts forming a thermal boundary, the substance having a large temperature diffusivity takes the heat quantity of the substance having a small temperature diffusivity, A calculation method and program characterized in that (3) is multiplied by the heat exchange efficiency [β value] of a substance having a large temperature diffusivity to obtain a corrected total heat quantity E of the heat storage site.
Based on the calculation methods and programs of 1 to 4 above, an estimated value approximate to the actual heat loss amount Q (W / K) as an index is calculated.

図5は、本省エネ設計システム20は、熱損失量Q(W/K)を算出するコンピュータソフトウエアシステムであり、キーボード、ポインティングデバイス等の入力部11、ディスプレー等の出力部12に接続されている。
図5に示すように、省エネ設計システム20は、制御部21、入力データ記憶部24、設定データ記憶部25、熱物性データ記憶部23、全熱量E算出データ記憶部26、温度変化算出データ記憶部27、熱損失量Q(W/K)算出データ記憶部28、外皮平均熱貫流率UA算出データ記憶部29を備えている。
FIG. 5 shows a computer software system in which the energy saving design system 20 calculates a heat loss amount Q (W / K), and is connected to an input unit 11 such as a keyboard and a pointing device and an output unit 12 such as a display. Yes.
As shown in FIG. 5, the energy-saving design system 20 includes a control unit 21, an input data storage unit 24, a setting data storage unit 25, a thermal property data storage unit 23, a total heat E calculation data storage unit 26, and a temperature change calculation data storage. A unit 27, a heat loss amount Q (W / K) calculation data storage unit 28, and an outer skin average thermal conductivity UA calculation data storage unit 29.

制御部21は、後述する処理(入力取得段階、熱物性特定段階、全熱量E算出段階、熱損失量Q(W/K)算出段階、外皮平均熱貫流率UA算出段階、出力段階を含む処理)を行う。
そして、このための省エネ設計プログラムを実行する事により、制御部21は、入力条件取得手段210、熱物性特定手段211、全熱量E算出手段212、温度変化算出手順213、熱損失量Q(W/K)算出手順214、外皮平均熱貫流量算出手順215、出力表示手段216として機能する。
本システムは、年間エネルギー消費量算出の手段としても機能する。
The control unit 21 includes processes described later (an input acquisition stage, a thermophysical identification stage, a total heat E calculation stage, a heat loss Q (W / K) calculation stage, a skin average heat transmissivity UA calculation stage, and an output stage). )I do.
And by executing the energy-saving design program for this, the control part 21 is the input condition acquisition means 210, the thermophysical property specification means 211, the total heat E calculation means 212, the temperature change calculation procedure 213, the heat loss amount Q (W / K) Functions as a calculation procedure 214, a skin average heat-transmission flow rate calculation procedure 215, and an output display means 216.
This system also functions as a means for calculating annual energy consumption.

入力条件取得段階210は、公知によって算出された熱損失計算書の中の熱的境界に使用する部位別(床・壁・天井・屋根等)材料の名称と材厚、更に開口部を含む外皮延べ面積および外皮熱貫流量もしくは外皮平均熱貫流量を取得する。   In the input condition acquisition stage 210, the name and thickness of each part (floor, wall, ceiling, roof, etc.) used for the thermal boundary in the heat loss calculation sheet calculated by public knowledge, and the outer skin including the opening Acquire the total area and skin heat flux or skin average heat flux.

熱物性特定段階211は、取得した入力条件と熱物性データ記憶部23に記憶されたデータを用いて計算に用いる特定する処理を行う。記憶部23には、各種材料の熱物性と熱交換率が記憶されている。   The thermophysical property specifying step 211 performs a process of specifying for calculation using the acquired input conditions and the data stored in the thermophysical property data storage unit 23. The storage unit 23 stores thermal properties and heat exchange rates of various materials.

全熱量E算出手段212には、予め式(4)、式(5)が記憶されおり、熱物性特定手段211で特定した熱物性で全熱量Eを算出する処理を行う。   Equations (4) and (5) are stored in advance in the total heat quantity E calculating means 212, and a process of calculating the total heat quantity E with the heat physical properties specified by the heat physical property specifying means 211 is performed.

温度変化算出段階213には、予め式(6)が記憶されており、212で算出した全熱量Eで、物質の温度変化を算出する処理を行う。   In the temperature change calculation stage 213, formula (6) is stored in advance, and a process of calculating the temperature change of the substance is performed with the total heat amount E calculated in 212.

熱損失量Q(W/K)算出段階214には、予め式(7)が記憶されており、213で算出した温度変化で、熱損失量Q(W/K)を算出する。
建物の熱貫流量U(W/K)に断熱材を構成する物質の温度変化(K/h)を掛けて、当該建物の熱損失量Q(W/K)(W/K)の近似した推定値を算出する。
その推定値に基づき断熱材を建物の各所に配置することで、建築前の省エネ指標と一致した熱損失量Q(W/K)を実現した建物としたものである。
In the heat loss amount Q (W / K) calculation step 214, the equation (7) is stored in advance, and the heat loss amount Q (W / K) is calculated based on the temperature change calculated in step 213.
Multiplying the heat flow rate U (W / K) of the building by the temperature change (K / h) of the material constituting the heat insulating material, the heat loss amount Q (W / K) (W / K) of the building is approximated. Calculate an estimate.
Based on the estimated value, the heat insulating material is arranged in various places in the building, thereby realizing a building that realizes the heat loss amount Q (W / K) that matches the energy saving index before construction.

外皮平均熱貫流率UA算出段階215には、予め式(8)が記憶されており、熱損失量Q(W/K)算出手順214で算出した熱損失量Q(W/K)を、入力条件取得段階210で取得した外皮延べ面積で除して外皮平均熱貫流率UAを算出する。   Equation (8) is stored in advance in the average skin heat transfer rate UA calculation stage 215, and the heat loss amount Q (W / K) calculated in the heat loss amount Q (W / K) calculation procedure 214 is input. The average skin heat transmissivity UA is calculated by dividing by the total surface area acquired in the condition acquisition step 210.

出力表示手段216は、出力手段として機能し、設定データ記憶部24、全熱量E算出データ記憶部25、温度変化算出データ記憶部26、熱損失量Q(W/K)算出データ記憶部27、外皮平均熱貫流率UA算出データ記憶部28、各々から数値を取得し出力部12に表示する。   The output display unit 216 functions as an output unit, and includes a setting data storage unit 24, a total heat E calculation data storage unit 25, a temperature change calculation data storage unit 26, a heat loss Q (W / K) calculation data storage unit 27, A numerical value is acquired from each of the skin average heat transmissibility UA calculation data storage unit 28 and displayed on the output unit 12.

本考案は、前記計算式や前記に一例として示すプログラムのように、建物の断熱材を構成する物質の温度変化を算出する際に、建物の熱貫流量U(W/K)を、熱的境界を形成する物質の全熱量Eで除して得た値を物質の温度変化とし、全熱量Eを算出する際に、熱的境界を形成する複数の蓄熱部位が存在する時、温度拡散率の大きい物質が温度拡散率の小さい物質の熱量を奪うとして、全熱量Eを算出する際に、体積熱容量(ρc値)を補正する補正係数を温度拡散率(α値)に10を掛けて得た値を「熱交換効率」(β値)とし、温度拡散率の大きい物質の熱交換効率[β値]を掛けて、蓄熱部位の補正後全熱量Eとして、建物の熱損失量Q(W/K)を推定する際に、建物の熱貫流量U(W/K)に物質の温度変化(K/h)を掛けて得た値を熱損失量Q(W/K)の値とする熱損失計算式によって得た熱損失推定値に基づいて、その推定値に適合する断熱材を配置して建築した建物であるので、省エネ性能を確度あるものとすることができる。
このように本考案では、上記プログラムで得た近似の推定値を設計段階で得て、それを指標として示すことができるので、その指標を「省エネ」の各種施策に主張して、利用することができる。
又、「省エネ住宅」として示した指標への信頼に答えることができる。
表6「省エネシュミレーション」は、住宅の性能から全体の熱貫流率U値(0.54W/m・K)を提示し、電気料金でよりわかりやすく説明することができる。
The present invention calculates the thermal flow rate U (W / K) of the building when calculating the temperature change of the material constituting the heat insulating material of the building, as in the calculation formula and the program shown as an example above. The value obtained by dividing by the total amount of heat E of the substance that forms the boundary is the temperature change of the substance, and when calculating the total amount of heat E, when there are multiple heat storage sites that form the thermal boundary, the temperature diffusivity Assuming that a substance having a large temperature takes away the heat quantity of a substance having a low temperature diffusivity, when calculating the total heat E, a correction coefficient for correcting the volumetric heat capacity (ρc value) is multiplied by 10 6 to the temperature diffusivity (α value). The obtained value is defined as “heat exchange efficiency” (β value), multiplied by the heat exchange efficiency [β value] of a substance having a large temperature diffusivity, and the amount of heat loss Q ( W / K) was obtained by multiplying the building's heat transfer flow rate U (W / K) by the material temperature change (K / h). Based on the heat loss estimated value obtained by the heat loss calculation formula where is the heat loss amount Q (W / K) Can be accurate.
In this way, in the present invention, the approximate estimated value obtained by the above program can be obtained at the design stage and shown as an index, so that the index can be claimed and used for various energy saving measures. Can do.
In addition, it is possible to answer the trust of the index shown as “energy-saving house”.
Table 6 “Energy-saving simulation” presents the overall heat transmissivity U value (0.54 W / m 2 · K) based on the performance of the house, and can be explained more easily with the electricity bill.

本考案は、一般建物の例を示したが、公共の施設建物などでも、リフォームなどでも実施できる。 Although the present invention shows an example of a general building, it can be implemented in a public facility building or the like.

1 建物
2 外 壁:杉下見板 厚21mm
3 通気層:厚18mm
4 外壁側:透湿防水シート
5 断熱材:おが屑 厚120mm
6 室内側:透湿防水シート
7 室内仕上:石膏ボード 厚12.5mm

1 Building 2 Exterior wall: Cedar clapboard thickness 21mm
3 Ventilation layer: thickness 18mm
4 Outer wall side: Moisture permeable waterproof sheet 5 Insulation: Sawdust Thickness 120mm
6 Indoor side: Moisture permeable waterproof sheet 7 Indoor finish: Gypsum board thickness 12.5 mm

(熱貫流率U(W/m・K)は、「ワット パー 平方メートル ケルビン」,λは熱伝導率(W/m・K:「ワット パー メートル ケルビン」),Tは温度,∂は微分,dは空間座標、Aは熱の伝わる面積m)である。
∂T/∂dは、単位長さ当たりの温度差つまり温度勾配である。
この式(1)は、熱量は熱伝導率λと温度勾配の積で表すことができることを示している。
(The heat transmissivity U (W / m 2 · K) is “Watts per square meter Kelvin”, λ is the thermal conductivity (W / m · K: “Watts per meter Kelvin”), T is the temperature, ∂ is the differential, d is a spatial coordinate, and A is an area m 2 ) through which heat is transmitted.
∂T / ∂d is a temperature difference per unit length, that is, a temperature gradient.
This equation (1) indicates that the amount of heat can be expressed by the product of the thermal conductivity λ and the temperature gradient.

Claims (2)

建物の熱貫流量U(W/K)に、建物の断熱材を構成する物質の温度変化(K/h)を掛けて得た値を熱損失量Q(W/K)の推定値として、その推定値に基づき断熱材を配置して建築した建物。 The value obtained by multiplying the heat transfer flow rate U (W / K) of the building by the temperature change (K / h) of the material constituting the heat insulating material of the building is used as the estimated value of the heat loss Q (W / K). A building built with heat insulation materials based on the estimated values. 建物の断熱材を構成する物質の温度変化を算出する際に、建物の熱貫流量U(W/K)を、熱的境界を形成する物質の全熱量Eで除して得た値を物質の温度変化とし、全熱量Eを算出する際に、熱的境界を形成する複数の蓄熱部位が存在する時、温度拡散率の大きい物質が温度拡散率の小さい物質の熱量を奪うとして、全熱量Eを算出する際に、体積熱容量(ρc値)を補正する補正係数を温度拡散率(α値)に10を掛けて得た値を「熱交換効率」(β値)とし、温度拡散率の大きい物質の熱交換効率[β値]を掛けて、蓄熱部位の補正後全熱量Eとして、建物の熱損失量Q(W/K)を推定する際に、建物の熱貫流量U(W/K)に物質の温度変化(K/h)を掛けて得た値を熱損失量Q(W/K)の値とする熱損失計算式によって得た熱損失推定値に基づき断熱材を配置して建築した建物。





When calculating the temperature change of the material that constitutes the thermal insulation of a building, the value obtained by dividing the heat flow rate U (W / K) of the building by the total heat E of the material that forms the thermal boundary When calculating the total heat quantity E and there are a plurality of heat storage sites that form a thermal boundary, it is assumed that a substance with a large temperature diffusivity takes away the heat quantity of a substance with a low temperature diffusivity. When calculating E, the value obtained by multiplying the thermal diffusivity (α value) by 10 6 as the correction coefficient for correcting the volumetric heat capacity (ρc value) is “heat exchange efficiency” (β value), and the thermal diffusivity When the heat loss amount Q (W / K) of the building is estimated as the corrected total heat amount E of the heat storage region by multiplying the heat exchange efficiency [β value] of the substance having a large size, the heat flow rate U (W / K) is the heat loss obtained by the heat loss calculation formula with the value obtained by multiplying the temperature change (K / h) of the substance as the value of heat loss Q (W / K) A building that is built with heat insulation materials based on estimates.





JP2015002502U 2015-05-21 2015-05-21 Buildings with insulation based on estimated heat loss Expired - Fee Related JP3200001U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015002502U JP3200001U (en) 2015-05-21 2015-05-21 Buildings with insulation based on estimated heat loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015002502U JP3200001U (en) 2015-05-21 2015-05-21 Buildings with insulation based on estimated heat loss

Publications (1)

Publication Number Publication Date
JP3200001U true JP3200001U (en) 2015-10-01

Family

ID=54241516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015002502U Expired - Fee Related JP3200001U (en) 2015-05-21 2015-05-21 Buildings with insulation based on estimated heat loss

Country Status (1)

Country Link
JP (1) JP3200001U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351817A (en) * 2020-04-22 2020-06-30 河南省建筑科学研究院有限公司 Building wall heat insulation effect detection assembly
CN117937715A (en) * 2024-03-21 2024-04-26 时代绿建(福建)工程科技有限公司 Intelligent building photovoltaic glass power supply control method and system thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351817A (en) * 2020-04-22 2020-06-30 河南省建筑科学研究院有限公司 Building wall heat insulation effect detection assembly
CN117937715A (en) * 2024-03-21 2024-04-26 时代绿建(福建)工程科技有限公司 Intelligent building photovoltaic glass power supply control method and system thereof

Similar Documents

Publication Publication Date Title
Biswas et al. Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard
Ahmad et al. Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material
Xu et al. Study of heat and moisture transfer in internal and external wall insulation configurations
Qin et al. Simulation of whole building coupled hygrothermal-airflow transfer in different climates
Weitzmann et al. Modelling floor heating systems using a validated two-dimensional ground-coupled numerical model
Qin et al. Evaluation of different thermal models in EnergyPlus for calculating moisture effects on building energy consumption in different climate conditions
Dodoo et al. Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings
Halimov et al. Validation and integration of a latent heat storage model into building envelopes of a high-order building model for Modelica library AixLib
Ascione et al. MATRIX, a multi activity test-room for evaluating the energy performances of ‘building/HVAC’systems in Mediterranean climate: Experimental set-up and CFD/BPS numerical modeling
RU2655640C2 (en) Room thermal losses determining method and device
Thomas et al. Model validation of a dynamic embedded water base surface heat emitting system for buildings
Mantesi et al. Empirical and computational evidence for thermal mass assessment: The example of insulating concrete formwork
Albatayneh et al. Warming issues associated with the long term simulation of housing using CFD analysis
Li et al. Heat storage and release characteristics of composite phase change wall under different intermittent heating conditions
Võsa et al. A combined analytical model for increasing the accuracy of heat emission predictions in rooms heated by radiators
Yu et al. Experimental study on the thermal performance of a hollow block ventilation wall
Gaujena et al. Influence of building envelope thermal mass on heating design temperature
Yun et al. Development of an automatic calibration method of a VRF energy model for the design of energy efficient buildings
Choi et al. Influence of the moisture driving force of moisture adsorption and desorption on indoor hygrothermal environment and building thermal load
Vasco et al. Thermal simulation of a social dwelling in Chile: Effect of the thermal zone and the temperature-dependant thermophysical properties of light envelope materials
Kaşka et al. Comparison of experimental and theoretical results for the transient heat flow through multilayer walls and flat roofs
Liu et al. Development and sensitivity study of a simplified and dynamic method for double glazing facade and verified by a full-scale façade element
Rahiminejad et al. Thermal resistance of ventilated air-spaces behind external claddings; definitions and challenges (ASHRAE 1759-RP)
JP3200001U (en) Buildings with insulation based on estimated heat loss
Le Dréau et al. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

R150 Certificate of patent or registration of utility model

Ref document number: 3200001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370