JP3197927B2 - Method for producing black titanium oxide powder - Google Patents

Method for producing black titanium oxide powder

Info

Publication number
JP3197927B2
JP3197927B2 JP00909792A JP909792A JP3197927B2 JP 3197927 B2 JP3197927 B2 JP 3197927B2 JP 00909792 A JP00909792 A JP 00909792A JP 909792 A JP909792 A JP 909792A JP 3197927 B2 JP3197927 B2 JP 3197927B2
Authority
JP
Japan
Prior art keywords
powder
titanium oxide
particle size
black
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00909792A
Other languages
Japanese (ja)
Other versions
JPH05193942A (en
Inventor
通雄 石野
良成 池上
嘉人 横山
嘉伸 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ako Kasei Co Ltd
Original Assignee
Ako Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ako Kasei Co Ltd filed Critical Ako Kasei Co Ltd
Priority to JP00909792A priority Critical patent/JP3197927B2/en
Publication of JPH05193942A publication Critical patent/JPH05193942A/en
Application granted granted Critical
Publication of JP3197927B2 publication Critical patent/JP3197927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は黒色系酸化チタン粉末の
製造方法に関し、特に、水素化ホウ素ナトリウムを還元
剤として用いる黒色系酸化チタン粉末の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing black titanium oxide powder, and more particularly to a method for producing black titanium oxide powder using sodium borohydride as a reducing agent.

【0002】[0002]

【従来の技術】従来より、黒色顔料としては、主に、カ
ーボンブラックや四三酸化鉄が用いられてきた。
2. Description of the Related Art Conventionally, carbon black and triiron tetroxide have been mainly used as black pigments.

【0003】しかしながら、カーボンブラックは疎水性
なので水に濡れにくい。また、一般に粒径が0.005μm程
度と極端に小さい。したがって、他に汎用されている顔
料、例えば、二酸化チタン粉末(粒径0.3μm程度)と混合
して用いる場合に、配合比によって流動性が敏感に変化
し、混合性に劣るという問題がある。また、カーボンブ
ラックを工業的に生産する際には発癌性物質である3,4-
ベンツピレンが混入する可能性があるので、安全性に問
題がある。
[0003] However, since carbon black is hydrophobic, it is hard to wet with water. The particle size is generally extremely small, such as about 0.005 μm. Therefore, when used in combination with other commonly used pigments, for example, titanium dioxide powder (particle diameter: about 0.3 μm), there is a problem that the fluidity changes sensitively depending on the blending ratio and the mixing property is poor. When carbon black is industrially produced, the carcinogenic substance 3,4-
There is a problem in safety because benzopyrene may be mixed.

【0004】一方、四三酸化鉄は磁化されやすく、比重
は5.2と大きい。このため、顔料として用いた場合に、
色分かれが生じたり、分散性に劣るなどの問題がある。
また、大気中で150℃程度に加熱するとγ-Fe2O3に変化
し、変色するという問題もある。
On the other hand, ferric oxide is easily magnetized, and its specific gravity is as large as 5.2. Therefore, when used as a pigment,
There are problems such as color separation and poor dispersibility.
Further, when heated to about 150 ° C. in the atmosphere, there is a problem that the color changes to γ-Fe 2 O 3 and the color changes.

【0005】このように、従来より使用されている黒色
顔料には様々な問題点があり、より良好な混合性および
分散性を有する品質の優れた黒色顔料が望まれている。
そのような黒色顔料の一つに黒色系低次酸化チタン粉末
がある。
As described above, the conventionally used black pigment has various problems, and a high-quality black pigment having better mixing and dispersing properties is desired.
One of such black pigments is a black low-order titanium oxide powder.

【0006】黒色系低次酸化チタン化合物を得る方法と
しては、たとえば、特公昭52-12733号公報に開示されて
いる二酸化チタン粉末と金属チタン粉末との混合物を真
空または還元雰囲気中で550〜1100℃で1〜5時間加熱
する方法が挙げられる。
As a method for obtaining a black lower titanium oxide compound, for example, a mixture of a titanium dioxide powder and a metal titanium powder disclosed in Japanese Patent Publication No. 52-12733 is 550-1100 in a vacuum or reducing atmosphere. A method of heating at 1 ° C. for 1 to 5 hours.

【0007】しかしながら、この従来法で黒色度の高い
酸化チタン化合物を得るためには、二酸化チタン粉末と
金属チタン粉末との混合物を950〜1,100℃の高温で加熱
する工程を必要とする。二酸化チタン粉末をこのような
高温で加熱すると粒子同士が焼結して粗大化する。した
がって、従来の二酸化チタン還元法では混合性および分
散性の良好な均一な粒径を有する黒色系酸化チタン粉末
を得ることが困難である。
However, in order to obtain a titanium oxide compound having a high blackness by the conventional method, a step of heating a mixture of a titanium dioxide powder and a metal titanium powder at a high temperature of 950 to 1,100 ° C. is required. When the titanium dioxide powder is heated at such a high temperature, the particles are sintered and coarsened. Therefore, it is difficult to obtain a black titanium oxide powder having a uniform particle size with good mixing and dispersibility by the conventional titanium dioxide reduction method.

【0008】また、特開昭64-72921号公報および特開昭
64-72922号公報には、二酸化チタン粉末を無水ヒドラジ
ンガス等のような特殊雰囲気中で加熱還元する方法が開
示されている。
Further, Japanese Patent Application Laid-Open Nos. 64-72921 and
Japanese Patent Application Laid-Open No. 64-72922 discloses a method of heating and reducing titanium dioxide powder in a special atmosphere such as anhydrous hydrazine gas.

【0009】しかしながら、一般に、これらの還元性ガ
スは腐食性が強いので、取扱いおよび反応装置、設備等
の面で種々の制約がある。
However, since these reducing gases are generally highly corrosive, there are various restrictions in terms of handling, reaction equipment, facilities and the like.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記従来の問
題を解決するものであり、その目的とするところは、還
元性ガスを用いることなく低い還元処理温度で二酸化チ
タン粉末を加熱還元することにより混合性および分散性
に優れる黒色系酸化チタン粉末を提供可能な、安全性が
高く、低コストの黒色系酸化チタン粉末の製造方法を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems. It is an object of the present invention to reduce titanium dioxide powder by heating at a low reduction treatment temperature without using a reducing gas. It is an object of the present invention to provide a highly safe and low-cost method for producing a black titanium oxide powder which can provide a black titanium oxide powder having excellent mixing and dispersibility.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究の結果、不活性雰囲気下で30
0〜950℃の温度で加熱すれば、上記目的が達成されるこ
とを見い出し、本発明に到達した。すなわち、本発明
は、二酸化チタン粉末と水素化ホウ素ナトリウムとの混
合物を不活性雰囲気下で300〜950℃の温度で加熱するこ
とを特徴とする黒色系酸化チタン粉末の製造方法を要旨
とするものである。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found that under an inert atmosphere,
It has been found that the above object can be achieved by heating at a temperature of 0 to 950 ° C., and the present invention has been achieved. That is, the present invention provides a method for producing a black titanium oxide powder, which comprises heating a mixture of titanium dioxide powder and sodium borohydride at a temperature of 300 to 950 ° C. in an inert atmosphere. It is.

【0012】本発明に用い得る二酸化チタン粉末として
は、アナタース、ルチル、ブルッカイト型のいずれでも
よい。粉末の粒子寸法は特に限定されないが、良好な混
合性および分散性を有する黒色系酸化チタン粉末を得る
ためには粒径0.2μm以下の粉末であることが好ましい。
このような二酸化チタン粉末は市販されており、例え
ば、和光純薬工業(株)社製の「試薬一級二酸化チタン」、
テイカ(株)社製の「JR」および「JA―1」、およびフロイン
ト産業(株)社製の「A―HR」および「R―SM3」が挙げられ
る。
The titanium dioxide powder that can be used in the present invention may be any of anatase, rutile and brookite types. The particle size of the powder is not particularly limited, but is preferably a powder having a particle size of 0.2 μm or less in order to obtain a black titanium oxide powder having good mixability and dispersibility.
Such titanium dioxide powder is commercially available, for example, `` reagent first grade titanium dioxide '' manufactured by Wako Pure Chemical Industries, Ltd.,
“JR” and “JA-1” manufactured by Teika Co., Ltd., and “A-HR” and “R-SM3” manufactured by Freund Corporation.

【0013】本発明に用い得る水素化ホウ素ナトリウム
としては、98%以上の純度を有する粉末状水素化ホウ素
ナトリウムであれば特に限定されない。水素化ホウ素ナ
トリウム粉末は、約250μm以下の粒径を有する微粉末で
あることが好ましい。粉末の粒径が小さい方が混合均一
性および反応性が増すためである。このような水素化ホ
ウ素ナトリウムは市販されており、例えば、(株)モート
ン・インターナショナル社製の「NaBH4」、および川研フ
ァインケミカル(株)社製の「NaBH4」が挙げられる。
The sodium borohydride that can be used in the present invention is not particularly limited as long as it is a powdery sodium borohydride having a purity of 98% or more. Preferably, the sodium borohydride powder is a fine powder having a particle size of about 250μm or less. This is because the smaller the particle size of the powder, the higher the mixing uniformity and reactivity. Such sodium borohydride are commercially available, for example, Inc. Morton International, Inc. of "NaBH 4", and by Kawaken Fine Chemicals Co., Ltd. of "NaBH 4".

【0014】本発明では、まず、水素化ホウ素ナトリウ
ム粉末と二酸化チタン粉末との混合物が調製される。水
素化ホウ素ナトリウム粉末と二酸化チタン粉末との混合
比はモル比で1:8〜1:2の範囲とすることが好まし
い。混合比が1:8以下になると還元能力が低下するの
で十分な黒色度が得られない。混合比が1:2以上にな
ると黒色度は増すけれども製造コストが上昇する。
In the present invention, first, a mixture of sodium borohydride powder and titanium dioxide powder is prepared. The mixing ratio of the sodium borohydride powder and the titanium dioxide powder is preferably in the range of 1: 8 to 1: 2 in molar ratio. If the mixing ratio is 1: 8 or less, a sufficient blackness cannot be obtained because the reducing ability is reduced. When the mixing ratio is 1: 2 or more, the blackness increases, but the production cost increases.

【0015】このような量の水素化ホウ素ナトリウム粉
末および二酸化チタン粉末は、当業者に周知の方法によ
り混合される。例えば、ロッキングミキサーで混合する
ことにより本発明に用い得る水素化ホウ素ナトリウム粉
末と二酸化チタン粉末との混合物が得られる。
[0015] Such amounts of sodium borohydride powder and titanium dioxide powder are mixed by methods well known to those skilled in the art. For example, a mixture of a sodium borohydride powder and a titanium dioxide powder that can be used in the present invention can be obtained by mixing with a rocking mixer.

【0016】得られた混合物は加熱用容器に投入され
る。本発明の加熱工程では特殊雰囲気を必要とせず加熱
温度も低いことから、用いる加熱用容器に特に制約はな
く、通常のステンレス鋼もしくはセラミックス製容器が
用いられる。本発明の好ましい実施態様では、例えば、
SUS-309S(日本ステンレス(株)社製)が用いられる。
The obtained mixture is charged into a heating vessel. In the heating step of the present invention, since a special atmosphere is not required and the heating temperature is low, there is no particular limitation on the heating vessel used, and a normal stainless steel or ceramic vessel is used. In a preferred embodiment of the present invention, for example,
SUS-309S (manufactured by Nippon Stainless Steel Co., Ltd.) is used.

【0017】次いで、加熱用容器内部に不活性ガスをパ
ージすることにより、容器内部の空気が不活性ガスに置
換される。本発明に用い得る不活性ガスには、例えば、
窒素、アルゴンおよびヘリウム等が挙げられる。
Next, by purging the inside of the heating container with an inert gas, the air inside the container is replaced with the inert gas. Inert gases that can be used in the present invention include, for example,
Nitrogen, argon, helium and the like.

【0018】次いで、加熱容器に密閉された上記混合物
は300〜950℃の範囲、好ましくは400〜850℃の範囲の温
度に加熱される。
Next, the mixture sealed in a heating vessel is heated to a temperature in the range of 300 to 950 ° C., preferably 400 to 850 ° C.

【0019】加熱温度が300℃未満であると得られる酸
化チタン色は灰色系となるので黒色顔料として好ましく
ない。これは、水素化ホウ素ナトリウムの分解温度が約
300℃なので、300℃未満では二酸化チタン粉末の還元が
十分進行しないためと考えられる。一方、950℃を超え
る温度に加熱した場合は、原料のチタン粉末が焼結する
ことによる粒子の成長が生じる。したがって、分散性が
良好な均一な粒子寸法を有する黒色系酸化チタン粉末が
得られない。また、このような高温に加熱すると製造コ
ストが上昇するという問題も生じる。
If the heating temperature is lower than 300 ° C., the color of the titanium oxide obtained becomes grayish, which is not preferable as a black pigment. This is because the decomposition temperature of sodium borohydride is about
Since the temperature is 300 ° C., it is considered that the reduction of the titanium dioxide powder does not sufficiently proceed at a temperature lower than 300 ° C. On the other hand, when heated to a temperature exceeding 950 ° C., particles grow due to sintering of the raw titanium powder. Therefore, it is not possible to obtain a black titanium oxide powder having good dispersibility and uniform particle size. In addition, there is also a problem that heating to such a high temperature increases the manufacturing cost.

【0020】上記加熱工程では水素化ホウ素ナトリウム
が分解することにより二酸化チタンの部分還元反応が生
じる。加熱処理時間は、1〜4時間程度が好ましい。し
たがって、本発明では、還元反応は比較的短時間のうち
に進行する。
In the heating step, sodium borohydride is decomposed to cause a partial reduction reaction of titanium dioxide. The heat treatment time is preferably about 1 to 4 hours. Therefore, in the present invention, the reduction reaction proceeds within a relatively short time.

【0021】得られた粉末状生成物は不活性雰囲気中で
50℃以下、好ましくは常温まで冷却され、次いで試料重
量の約2倍量の水で洗浄、瀘過、そして120℃で静置乾
燥される。その後、乾式法または湿式法或いはこれらを
組み合わせて粉砕が行われ、黒色系低次酸化チタン粉末
が得られる。
The obtained powdery product is placed in an inert atmosphere.
The solution is cooled to 50 ° C. or less, preferably to room temperature, then washed with about twice the weight of the sample, filtered, and dried at 120 ° C. by standing. Thereafter, pulverization is performed by a dry method, a wet method, or a combination thereof to obtain a black low-order titanium oxide powder.

【0022】本発明の方法では、従来の方法と比較して
低温、且つ簡易な装置で黒色系酸化チタン粉末を製造可
能である。さらに、加熱工程中の酸化チタン粒子同志の
焼結が防止されるので、混合性および分散性が良好な均
一な粒径を有する微細粉末状黒色系酸化チタンが得られ
る。
According to the method of the present invention, a black titanium oxide powder can be produced at a lower temperature and with a simpler apparatus than in the conventional method. Furthermore, since sintering of the titanium oxide particles during the heating step is prevented, a fine powdery black titanium oxide having a uniform particle size with good mixing and dispersibility can be obtained.

【0023】[0023]

【実施例】以下の実施例により本発明を更に具体的に説
明する。
The present invention will be described more specifically with reference to the following examples.

【0024】なお、色調については東京電色(株)社製全
自動色差計カラーエースTC-8600Aを用いて粉末セル法に
よって測色を行い、ハンター表色系のL値を測定した。
The color tone was measured by a powder cell method using a fully automatic color difference meter Color Ace TC-8600A manufactured by Tokyo Denshoku Co., Ltd., and the L value of the Hunter color system was measured.

【0025】また、生成粒径については日本電子(株)社
製走査電子顕微鏡JSM-5200を用いて測定を行った。
The particle size was measured using a scanning electron microscope JSM-5200 manufactured by JEOL Ltd.

【0026】[0026]

【実施例1】水素化ホウ素ナトリウム粉末と平均粒径0.
18μmの二酸化チタン粉末とをモル比で1:8の割合で
均一に混合し、この混合物を窒素ガス気流中の不活性雰
囲気中において、450℃で3時間加熱した。得られた粉
末状生成物を同一雰囲気中で50℃まで冷却し、水洗、乾
燥、粉砕を行った。得られた黒色系酸化チタン粉末のL
値を表1に、平均粒径を表2に示す。
Example 1 Sodium borohydride powder and average particle size of 0.
18 μm of titanium dioxide powder was uniformly mixed at a molar ratio of 1: 8, and the mixture was heated at 450 ° C. for 3 hours in an inert atmosphere in a nitrogen gas stream. The obtained powdery product was cooled to 50 ° C. in the same atmosphere, washed with water, dried and pulverized. L of the obtained black titanium oxide powder
The values are shown in Table 1 and the average particle size is shown in Table 2.

【0027】[0027]

【実施例2】水素化ホウ素ナトリウムと平均粒径0.18μ
mの二酸化チタン粉末とをモル比で1:4の割合で均一
に混合し、この混合物を窒素ガス気流中の不活性雰囲気
中において、450℃で3時間加熱した。得られた粉末状
生成物を同一雰囲気中で50℃まで冷却し、水洗、乾燥、
粉砕を行った。得られた黒色系酸化チタン粉末のL値を
表1に、平均粒径を表2に示す。
Example 2 Sodium borohydride and average particle size 0.18μ
m of titanium dioxide powder was uniformly mixed at a molar ratio of 1: 4, and the mixture was heated at 450 ° C. for 3 hours in an inert atmosphere in a nitrogen gas stream. The obtained powdery product is cooled to 50 ° C in the same atmosphere, washed with water, dried,
Grinding was performed. Table 1 shows the L value of the obtained black titanium oxide powder, and Table 2 shows the average particle size.

【0028】[0028]

【実施例3】水素化ホウ素ナトリウムと平均粒径0.18μ
mの二酸化チタン粉末とをモル比で1:4の割合で均一
に混合し、この混合物を窒素ガス気流中の不活性雰囲気
中において、450℃で1時間加熱した。得られた粉末状
生成物を同一雰囲気中で50℃まで冷却し、水洗、乾燥、
粉砕を行った。得られた黒色系酸化チタン粉末のL値を
表1に、平均粒径を表2に示す。
Example 3 Sodium borohydride and average particle size 0.18μ
m of titanium dioxide powder was uniformly mixed at a molar ratio of 1: 4, and the mixture was heated at 450 ° C. for 1 hour in an inert atmosphere in a nitrogen gas stream. The obtained powdery product is cooled to 50 ° C in the same atmosphere, washed with water, dried,
Grinding was performed. Table 1 shows the L value of the obtained black titanium oxide powder, and Table 2 shows the average particle size.

【0029】[0029]

【実施例4】水素化ホウ素ナトリウムと平均粒径0.18μ
mの二酸化チタン粉末とをモル比で1:4の割合で均一
に混合し、この混合物を窒素ガス気流中の不活性雰囲気
中において、600℃で3時間加熱した。得られた粉末状
生成物を同一雰囲気中で50℃まで冷却し、水洗、乾燥、
粉砕を行った。得られた黒色系酸化チタン粉末のL値を
表1に、平均粒径を表2に示す。
Example 4 Sodium borohydride and average particle size 0.18μ
m of titanium dioxide powder was uniformly mixed at a molar ratio of 1: 4, and the mixture was heated at 600 ° C. for 3 hours in an inert atmosphere in a nitrogen gas stream. The obtained powdery product is cooled to 50 ° C in the same atmosphere, washed with water, dried,
Grinding was performed. Table 1 shows the L value of the obtained black titanium oxide powder, and Table 2 shows the average particle size.

【0030】[0030]

【比較例1】金属チタン粉末と平均粒径0.18μmの二酸
化チタン粉末とをモル比で1:4の割合で均一に混合
し、この混合物を窒素ガス気流中の不活性雰囲気中にお
いて、450℃で3時間加熱した。得られた粉末状生成物
を同一雰囲気中で50℃まで冷却し、粉砕を行った。得ら
れた黒色系酸化チタン粉末のL値を表1に、平均粒径を
表2に示す。
Comparative Example 1 Metallic titanium powder and titanium dioxide powder having an average particle size of 0.18 μm were uniformly mixed at a molar ratio of 1: 4, and this mixture was heated at 450 ° C. in an inert atmosphere in a nitrogen gas stream. For 3 hours. The obtained powdery product was cooled to 50 ° C. in the same atmosphere and pulverized. Table 1 shows the L value of the obtained black titanium oxide powder, and Table 2 shows the average particle size.

【0031】[0031]

【比較例2】水素化ホウ素ナトリウムと平均粒径0.18μ
mの二酸化チタン粉末とをモル比で1:4の割合で均一
に混合し、この混合物を窒素ガス気流中の不活性雰囲気
中において、1000℃で1時間加熱した。得られた粉末状
生成物を同一雰囲気中で50℃まで冷却し、水洗、乾燥、
粉砕を行った。得られた黒色系酸化チタン粉末のL値を
表1に、平均粒径を表2に示す。
[Comparative Example 2] Sodium borohydride and average particle size 0.18μ
m of titanium dioxide powder was uniformly mixed at a molar ratio of 1: 4, and the mixture was heated at 1000 ° C. for 1 hour in an inert atmosphere in a nitrogen gas stream. The obtained powdery product is cooled to 50 ° C in the same atmosphere, washed with water, dried,
Grinding was performed. Table 1 shows the L value of the obtained black titanium oxide powder, and Table 2 shows the average particle size.

【表1】色調(ハンター表色系L値) 試料 色調(L値) 実施例1 16 実施例2 13 実施例3 15 実施例4 13 比較例1 67 比較例2 12Table 1 Color tone (Hunter color system L value) Sample color tone (L value) Example 1 16 Example 2 13 Example 3 15 Example 4 13 Comparative Example 1 67 Comparative Example 2 12

【0032】表1において、L値は明度を表す数値で、
数値が小さい方が黒いことを示す。実施例2と比較例1
では、加熱条件が同じであるにもかかわらずL値の差が5
4も生じた。これは、実施例2では水素化ホウ素ナトリ
ウムの作用により低温でも還元が進行したためである。
In Table 1, L value is a numerical value representing lightness.
The smaller the value, the darker it is. Example 2 and Comparative Example 1
Now, the difference in L value is 5 despite the same heating conditions.
4 also occurred. This is because in Example 2, the reduction proceeded even at a low temperature due to the action of sodium borohydride.

【0033】一方、実施例2のように水素化ホウ素ナト
リウムの混合比が高く、なおかつ処理時間の長いものほ
ど還元反応が進行し、L値が小さくなった。また、比較
例2のように高温で処理を行うとL値は小さくなった。
On the other hand, the reduction reaction progressed and the L value decreased as the mixing ratio of sodium borohydride was higher and the treatment time was longer as in Example 2. Further, when the treatment was performed at a high temperature as in Comparative Example 2, the L value became small.

【表2】平均粒径 試料 平均粒径(μm) 実施例1 0.18 実施例2 0.18 実施例3 0.18 実施例4 0.19 比較例1 0.32 比較例2 0.63Table 2 Mean particle diameter sample average particle diameter ([mu] m) Example 1 0.18 Example 2 0.18 Example 3 0.18 Example 4 0.19 Comparative Example 1 0.32 Comparative Example 2 0.63

【0034】表1の結果より、実施例1〜4で得られた
黒色系酸化チタン粉末の平均粒径は原料として用いた二
酸化チタン粉末の平均粒径と実質的に同一であることが
わかる。したがって、本発明の加熱工程では粒子同士の
焼結による粒子の粗大化が起こらなかったことが示され
た。
From the results shown in Table 1, it can be seen that the average particle size of the black titanium oxide powders obtained in Examples 1 to 4 is substantially the same as the average particle size of the titanium dioxide powder used as a raw material. Therefore, it was shown that in the heating step of the present invention, coarsening of the particles due to sintering of the particles did not occur.

【0035】一方、比較例1で得られた黒色系酸化チタ
ン粉末の平均粒径は0.32μmであり増大していた。これ
は、還元剤として添加した金属チタン粉末の粒径が大き
いことに起因していると考えられる。また、1000℃で加
熱処理した比較例2では平均粒径は0.63μmと増大して
おり、明らかに粒子同士の焼結による粗大化が起こって
いる。
On the other hand, the average particle size of the black titanium oxide powder obtained in Comparative Example 1 was 0.32 μm, which was increased. This is considered to be due to the large particle size of the metal titanium powder added as a reducing agent. In Comparative Example 2 which was heat-treated at 1000 ° C., the average particle size was increased to 0.63 μm, and the particles were obviously coarsened by sintering.

【0036】[0036]

【発明の効果】本発明によれば、還元性ガスを用いるこ
となく低い還元処理温度で二酸化チタン粉末を加熱還元
することにより混合性および分散性に優れる黒色酸化チ
タン粉末を安全に、低コストで製造することができる。
According to the present invention, a black titanium oxide powder excellent in mixability and dispersibility can be produced safely and at low cost by heating and reducing titanium dioxide powder at a low reduction treatment temperature without using a reducing gas. Can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 原料として用いた二酸化チタン粉末を20000
倍の倍率で撮影した走査型電子顕微鏡写真である。
Fig. 1 Titanium dioxide powder used as a raw material was 20,000
4 is a scanning electron micrograph taken at double magnification.

【図2】 実施例1で得られた黒色系酸化チタン粉末を
20000倍の倍率で撮影した走査型電子顕微鏡写真であ
る。
FIG. 2 shows the black titanium oxide powder obtained in Example 1
4 is a scanning electron microscope photograph taken at a magnification of 20000 times.

【図3】 比較例2で得られた黒色系酸化チタン粉末を
20000倍の倍率で撮影した走査型電子顕微鏡写真であ
る。
FIG. 3 shows the black titanium oxide powder obtained in Comparative Example 2.
4 is a scanning electron microscope photograph taken at a magnification of 20000 times.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−72922(JP,A) 特開 昭64−72921(JP,A) 特開 昭49−5432(JP,A) 特開 平4−2602(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 23/00 CA(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-72922 (JP, A) JP-A-64-72921 (JP, A) JP-A-49-5432 (JP, A) 2602 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C01G 23/00 CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二酸化チタン粉末と水素化ホウ素ナトリ
ウムとの混合物を不活性ガス雰囲気下で300〜950℃の温
度で加熱することを特徴とする黒色系酸化チタン粉末の
製造方法。
1. A method for producing a black titanium oxide powder, comprising heating a mixture of titanium dioxide powder and sodium borohydride at a temperature of 300 to 950 ° C. in an inert gas atmosphere.
JP00909792A 1992-01-22 1992-01-22 Method for producing black titanium oxide powder Expired - Lifetime JP3197927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00909792A JP3197927B2 (en) 1992-01-22 1992-01-22 Method for producing black titanium oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00909792A JP3197927B2 (en) 1992-01-22 1992-01-22 Method for producing black titanium oxide powder

Publications (2)

Publication Number Publication Date
JPH05193942A JPH05193942A (en) 1993-08-03
JP3197927B2 true JP3197927B2 (en) 2001-08-13

Family

ID=11711119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00909792A Expired - Lifetime JP3197927B2 (en) 1992-01-22 1992-01-22 Method for producing black titanium oxide powder

Country Status (1)

Country Link
JP (1) JP3197927B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010055549A (en) * 1999-12-10 2001-07-04 고석권 Method for Fabricate of Black Titanium Oxide
JP2004102154A (en) 2002-09-12 2004-04-02 Hitachi Printing Solutions Ltd Toner for electrophotography and image forming apparatus
US7014700B2 (en) * 2004-01-13 2006-03-21 Engelhard Corporation Highly reflective interference pigments with dark absorption color
KR100918938B1 (en) * 2007-11-30 2009-09-28 (주)젠텍 The manufacturing Method for Black Pigment and Black Pearl pigment used by Reduced Titanium Oxide
CN106467316A (en) * 2016-10-13 2017-03-01 哈尔滨工业大学 A kind of method of the oxide with sodium borohydride for raw material preparation hydrogenation
CN107879376A (en) * 2017-11-17 2018-04-06 郑州大学 A kind of preparation method of substoichiometric tungsten oxide
CN114349037B (en) * 2022-01-02 2023-09-15 广西师范大学 Preparation method and application of black calcium carbonate

Also Published As

Publication number Publication date
JPH05193942A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
EP3636591B1 (en) Zirconium nitride powder and production method therefor
US6238456B1 (en) Tantalum powder, method for producing same powder and sintered anodes obtained from it
US5571492A (en) Composite oxide having oxygen absorbing and desorbing capability
US3988252A (en) Process for the production of Ba(Sr)FCl:Eu phosphors
US20080105085A1 (en) Method Of Production Of High Purity Silver Particles
US3531245A (en) Magnesium-aluminum nitrides
JP3197927B2 (en) Method for producing black titanium oxide powder
JPH0647471B2 (en) Iron oxide black pigment
KR100524338B1 (en) Method for Producing Wolfram Carbides by Gas-Phase Carburetion
US3630718A (en) NONPYROPHORIC METAL POWDER OF A METAL FROM THE GROUP IVb, Vb AND VIb OR THE ACTINIUM SERIES OF THE PERIODIC TABLE
AU775479B2 (en) Fine particulate titanium oxide and method for producing the same
EP0029687B1 (en) Process for stabilizing ferromagnetic chromium dioxide
US4251592A (en) Stabilization treatment of acicular ferromagnetic iron or iron-alloy particles against the oxidation thereof
JP4685651B2 (en) Method for producing iron oxide powder for red pigment
JP2813414B2 (en) Production method of equiaxed tungsten carbide ultrafine powder
Tilquin et al. Preparation and chemical reduction of Pt (IV) chloride-GICS: Supported Pt vs Pt inclusion graphite compounds
US4080430A (en) Decomposition of cupric oxide using a reducing scavenger
US2733134A (en) Method for making titanium carbide
JPH021762B2 (en)
SU778285A1 (en) Method of regenerating carbide-containing waste of hard alloys
JP3186788B2 (en) Method for producing titanium suboxide
US5520900A (en) Method of manufacturing a fine monodisperse oxide powder, a fine monodisperse oxide powder, a ceramic composition and their use of same
EP4299510A1 (en) Metal oxide powder, and method for producing same
US2696661A (en) Article of manufacture
JP3186789B2 (en) Method for producing titanium suboxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11