JP3192794B2 - Lead storage battery deterioration judgment method and deterioration judgment device - Google Patents

Lead storage battery deterioration judgment method and deterioration judgment device

Info

Publication number
JP3192794B2
JP3192794B2 JP01210893A JP1210893A JP3192794B2 JP 3192794 B2 JP3192794 B2 JP 3192794B2 JP 01210893 A JP01210893 A JP 01210893A JP 1210893 A JP1210893 A JP 1210893A JP 3192794 B2 JP3192794 B2 JP 3192794B2
Authority
JP
Japan
Prior art keywords
battery
voltage
lead storage
storage battery
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01210893A
Other languages
Japanese (ja)
Other versions
JPH05281309A (en
Inventor
勝 河野
和夫 高野
一樹 吉田
努 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP01210893A priority Critical patent/JP3192794B2/en
Publication of JPH05281309A publication Critical patent/JPH05281309A/en
Application granted granted Critical
Publication of JP3192794B2 publication Critical patent/JP3192794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、短時間放電あるいは短
時間充電によって鉛蓄電池の劣化状態を検知する鉛蓄電
池の劣化判定方法及び劣化判定器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for judging the deterioration of a lead storage battery by detecting the deterioration state of the lead storage battery by discharging or charging for a short time.

【0002】[0002]

【従来の技術】従来の液式鉛蓄電池は、電解液の比重測
定が可能であるため、劣化状態の把握が容易に出来た
が、密閉されているシール鉛蓄電池はこのような測定が
出来ない。したがって、一般にシール鉛蓄電池では容量
試験によって劣化判定が行われている。
2. Description of the Related Art A conventional liquid lead-acid battery can measure the specific gravity of an electrolytic solution, so that the deterioration state can be easily grasped. However, such a measurement cannot be performed for a sealed sealed lead-acid battery. . Therefore, in a sealed lead-acid battery, deterioration is generally determined by a capacity test.

【0003】特開昭59−54982号で説明されてい
るような簡易な容量試験法によれば、組電池のうち1個
のみ放電するので、無駄な電力消費が無いこと、また万
一試験中に停電が発生しても組電池のうち放電していな
い残りの電池より放電できること、さらに大きな疑似負
荷が不要であるというメリットがある。
According to the simple capacity test method described in Japanese Patent Application Laid-Open No. 59-49882, only one of the assembled batteries is discharged, so that there is no wasteful power consumption. Even if a power failure occurs, there is an advantage that the battery can be discharged from the remaining battery which has not been discharged among the assembled batteries, and that a larger pseudo load is not required.

【0004】しかし、試験時間は充電時間も含めると2
0時間以上に及び、保守者が長時間に亘って拘束される
という欠点は改善されていない。この問題を解決するた
めに、特開平1−134877号で説明されているよう
に、秒単位の短時間放電の過渡電圧変動特性から劣化判
定を行うという方法が提案されている。
[0004] However, the test time is 2 including the charging time.
The drawback of maintaining the maintenance personnel for more than 0 hours and for a long time has not been improved. In order to solve this problem, as described in Japanese Patent Application Laid-Open No. 1-134877, a method has been proposed in which deterioration is determined from transient voltage fluctuation characteristics of short-time discharge in seconds.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記秒
単位の放電特性から劣化判定を行う方法では、電池端子
に疑似負荷付きの大形クリップなどを接続して行うた
め、短時間放電中に誤って電池端子から大形クリップを
外した場合、火花が発生し人体に火傷を負わす危険があ
る。また、充電終了直後に試験を行った場合、火花が発
生すると爆発の危険性がある。したがって、安全性の点
では短時間放電の時間は短ければ短い程よい。しかし、
極端に短い時間では、放電時の過渡電圧変動が電池の劣
化と関係のない配線のインダクタンス成分の影響を受
け、正確な測定が出来ない問題が生じる。
However, in the above-described method of determining deterioration from the discharge characteristics in units of seconds, a large clip or the like with a pseudo load is connected to the battery terminal. If the large clip is removed from the battery terminal, there is a danger of sparks and burns to the human body. In addition, when a test is performed immediately after charging is completed, there is a risk of explosion if a spark is generated. Therefore, in terms of safety, the shorter the short-time discharge time, the better. But,
If the time is extremely short, the transient voltage fluctuation at the time of discharge is affected by the inductance component of the wiring, which is not related to the deterioration of the battery.

【0006】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、安全性が高く、極めて
短時間で正確な劣化判定が行える鉛蓄電池の劣化判定方
法及び劣化判定器を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a method for determining deterioration of a lead storage battery, which is highly safe and can perform accurate deterioration determination in an extremely short time. Is to provide.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の鉛蓄電池の劣化判定の第1の方法は、満充
電状態の鉛蓄電池を1msec以下の一定電流で短時間
放電させることにより、該鉛蓄電池の劣化状態を検知す
る方法であって、まず、放電を開始してから1msec
以下の時間経過後の安定状態での前記鉛蓄電池の電池電
圧と放電開始前の前記鉛蓄電池の電池電圧との差分を測
定し、次に、あらかじめ求めておいた前記鉛蓄電池の電
池容量と前記差分の電圧との回帰式に前記差分の電圧を
代入することにより、あるいは前記電池容量と前記差分
の電圧との関係を表す図より、現在の電池容量を推定す
ることを特徴としている。
In order to achieve the above object, a first method for judging the deterioration of a lead storage battery according to the present invention comprises the steps of:
A method for detecting the state of deterioration of a lead-acid battery by discharging the lead-acid battery in a charged state at a constant current of 1 msec or less for a short period of time.
Measure the difference between the battery voltage of the lead-acid battery in a stable state after the elapse of the following time and the battery voltage of the lead-acid battery before the start of discharging, and then determine the battery capacity of the lead-acid battery obtained in advance and the The present invention is characterized in that the current battery capacity is estimated by substituting the difference voltage into a regression equation with the difference voltage, or from a diagram showing the relationship between the battery capacity and the difference voltage.

【0008】また、その劣化判定の第2の方法は、満充
電状態の鉛蓄電池を1msec以下の一定電流で短時間
放電させることにより、該鉛蓄電池の劣化状態を検知す
る方法であって、まず、放電を開始してから1msec
以下の時間経過後の安定状態での前記鉛蓄電池の電池電
圧と放電開始前の前記鉛蓄電池の電池電圧との差分を測
定し、前記差分の電圧を蓄電池に流れる電流で割って内
部抵抗を求め、次に、あらかじめ求めておいた前記鉛蓄
電池の電池容量と前記内部抵抗との回帰式に前記内部抵
抗を代入することにより、あるいは前記電池容量と前記
内部抵抗との関係を表す図より、現在の電池容量を推定
することを特徴としている。このように内部抵抗と電池
容量の関係から電池容量を推定する方法を用いる方法
は、判定の都度蓄電池に流れる電流を一致させる必要は
ないという特徴を有している。
[0008] A second method of determining the deterioration is a full state.
A method for detecting the state of deterioration of a lead-acid battery by discharging the lead-acid battery in a charged state at a constant current of 1 msec or less for a short period of time.
The difference between the battery voltage of the lead storage battery in the stable state after the following time has elapsed and the battery voltage of the lead storage battery before the start of discharging is measured, and the difference voltage is divided by the current flowing through the storage battery to determine the internal resistance. Then, by substituting the internal resistance into a regression equation between the battery capacity of the lead storage battery and the internal resistance obtained in advance, or from a diagram showing the relationship between the battery capacity and the internal resistance, The battery capacity is estimated. As described above, the method using the method of estimating the battery capacity from the relationship between the internal resistance and the battery capacity has a feature that it is not necessary to make the currents flowing through the storage batteries coincide each time the determination is made.

【0009】また、短時間放電による本発明の劣化判定
器は、試験対象の満充電状態の鉛蓄電池を1msec以
下の一定電流で短時間放電させるためのスイッチ部及び
負荷回路部と、前記鉛蓄電池の電池電圧を検出するため
の電圧検出部もしくは該電圧検出部及び前記鉛蓄電池に
流れる電流を検出するための電流検出部と、前記放電を
開始してから1msec以下の時間経過後の安定状態で
前記検出した電池電圧と前記放電開始前の前記検出した
電池電圧との差分の電圧あるいは該差分の電圧と前記検
出した鉛蓄電池に流れる電流から内部抵抗を計算してあ
らかじめ求めておいた前記差分の電圧と電池容量との回
帰式あるいは内部抵抗と電池容量との回帰式に前記差分
の電圧あるいは前記内部抵抗を代入して現在の電池容量
を推定する記憶演算部と、前記差分の電圧あるいは前記
内部抵抗あるいは前記推定した電池容量を表示するため
の表示部と、前記スイッチ部,前記電圧検出部,前記記
憶演算部を順序立てて操作する操作部と、を具備する構
成とすることを特徴としている。
Further, the deterioration judgment device according to the present invention by short-time discharge includes a switch unit and a load circuit unit for discharging a fully charged lead storage battery to be tested at a constant current of 1 msec or less for a short time, and the lead storage battery. A voltage detector for detecting the battery voltage of the battery or a current detector for detecting the current flowing through the voltage detector and the lead storage battery, and in a stable state after a lapse of 1 msec or less from the start of the discharge. Calculating the internal resistance from the voltage of the difference between the detected battery voltage and the detected battery voltage before the start of the discharge or the voltage of the difference and the detected current flowing through the lead storage battery; A storage function for estimating a current battery capacity by substituting the voltage or the internal resistance of the difference into a regression equation between a voltage and a battery capacity or a regression equation between an internal resistance and a battery capacity. A display unit for displaying the voltage of the difference, the internal resistance, or the estimated battery capacity; and an operation unit for operating the switch unit, the voltage detection unit, and the storage operation unit in order. It is characterized in that it is provided with.

【0010】次に、本発明の鉛蓄電池の劣化判定の第3
の方法は、満充電状態の鉛蓄電池を1msec以下の一
定電流で短時間充電することにより、該鉛蓄電池の劣化
状態を検知する方法であって、まず、充電を開始してか
ら1msec以下の時間経過後の安定状態での前記鉛蓄
電池の電池電圧と充電開始前の前記鉛蓄電池の電池電圧
との差分を測定し、次に、あらかじめ求めておいた前記
鉛蓄電池の電池容量と前記差分の電圧との回帰式に前記
差分の電圧を代入することにより、あるいは前記電池容
量と前記差分の電圧との関係を表す図より、現在の電池
容量を推定することを特徴としている。
Next, a third method for judging the deterioration of the lead storage battery of the present invention will be described.
Is a method of detecting the deterioration state of the lead storage battery by charging the lead storage battery in a fully charged state with a constant current of 1 msec or less for a short time, and first, for a time of 1 msec or less after the start of charging. Measure the difference between the battery voltage of the lead storage battery in the stable state after the passage and the battery voltage of the lead storage battery before the start of charging, and then determine the battery capacity of the lead storage battery and the voltage of the difference obtained in advance. The current battery capacity is estimated by substituting the voltage of the difference into the regression equation of (1) or from a diagram showing the relationship between the battery capacity and the voltage of the difference.

【0011】また、その劣化判定の第4の方法は、満充
電状態の鉛蓄電池を1msec以下の一定電流で短時間
充電することにより、該鉛蓄電池の劣化状態を検知する
方法であって、まず、充電を開始してから1msec以
下の時間経過後の安定状態での前記鉛蓄電池の電池電圧
と充電開始前の前記鉛蓄電池の電池電圧との差分を測定
し、前記差分の電圧を蓄電池に流れる電流で割って内部
抵抗を求め、次に、あらかじめ求めておいた前記鉛蓄電
池の電池容量と前記内部抵抗との回帰式に前記内部抵抗
を代入することにより、あるいは前記電池容量と前記内
部抵抗との関係を表す図より、現在の電池容量を推定す
ることを特徴としている。このように内部抵抗と電池容
量の関係から電池容量を推定する方法を用いる方法は、
判定の都度蓄電池に流れる電流を一致させる必要はない
という特徴を有している。
A fourth method of determining the deterioration is a full state.
A method for detecting the state of deterioration of a lead-acid battery by charging the lead-acid battery in a charged state for a short period of time at a constant current of 1 msec or less, wherein the stable state after a lapse of 1 msec or less from the start of charging. Measuring the difference between the battery voltage of the lead storage battery and the battery voltage of the lead storage battery before the start of charging, dividing the difference voltage by the current flowing through the storage battery to determine the internal resistance, and then determining the internal resistance in advance. By substituting the internal resistance into a regression equation between the battery capacity of the lead storage battery and the internal resistance, or estimating the current battery capacity from a diagram showing the relationship between the battery capacity and the internal resistance. Features. As described above, the method of using the method of estimating the battery capacity from the relationship between the internal resistance and the battery capacity is as follows.
It is characterized in that it is not necessary to match the current flowing through the storage battery every time the determination is made.

【0012】また、本発明の短時間充電による劣化判定
器は、試験対象の満充電状態の鉛蓄電池を1msec以
下の一定電流で短時間充電するためのスイッチ部及び充
電回路部と、前記鉛蓄電池の電池電圧を検出するための
電圧検出部もしくは該電圧検出部及び前記鉛蓄電池に流
れる電流を検出するための電流検出部と、前記充電を開
始してから1msec以下の時間経過後の安定状態での
前記検出した電池電圧と前記充電開始前の前記検出した
電池電圧との差分の電圧あるいは該差分び電圧と前記検
出した前記鉛蓄電池に流れる電流から内部抵抗を計算し
あらかじめ求めておいた前記差分の電圧と電池容量との
回帰式あるいは内部抵抗と電池容量との回帰式に前記差
分の電圧あるいは内部抵抗を代入して現在の電池容量を
推定する記憶演算部と、前記差分の電圧あるいは前記内
部抵抗あるいは前記推定した電池容量を表示するための
表示部と、前記スイッチ部,前記電圧検出部,前記記憶
演算部を順序立てて操作する操作部と、を具備する構成
とすることを特徴としている。
Further, the deterioration judgment device for short-time charging according to the present invention includes a switch unit and a charging circuit unit for charging a fully charged lead storage battery to be tested with a constant current of 1 msec or less for a short time, and the lead storage battery. A voltage detection unit for detecting the battery voltage of the battery or a current detection unit for detecting the current flowing through the voltage detection unit and the lead storage battery, and a stable state after a lapse of 1 msec or less from the start of the charging. Calculating the internal resistance from the voltage of the difference between the detected battery voltage and the detected battery voltage before the start of charging or the difference and the detected current flowing through the lead storage battery. A storage operation for estimating the current battery capacity by substituting the voltage or internal resistance of the difference into the regression equation between the voltage and the battery capacity or the regression equation between the internal resistance and the battery capacity. A display unit for displaying the voltage of the difference, the internal resistance, or the estimated battery capacity; and an operation unit for operating the switch unit, the voltage detection unit, and the storage operation unit in order. It is characterized in that the configuration is such that:

【0013】[0013]

【作用】本発明の鉛蓄電池の劣化判定方法は、放電前ま
たは充電前の電池電圧と短時間放電後または短時間充電
後の安定状態の電池電圧の差分の電圧を求めるか、ある
いは放電前または充電前の電池電圧と短時間放電後また
は短時間充電後の安定状態の電池電圧の差分の電圧を鉛
蓄電池に流れる電流で割って内部抵抗と定義すれば、前
記差分の電圧あるいは内部抵抗が現在の電池容量と強い
相関があり、また短時間放電または短時間充電後の電池
電圧の安定状態も1msec以下で達することに着目
し、1msec以下の放電特性または充電特性の上記差
分の電圧、あるいは内部抵抗と電池容量の関係から高い
精度で現在の電池容量を推定することを特徴とする。
According to the method for judging the deterioration of a lead storage battery of the present invention, the difference between the battery voltage before discharge or before charge and the battery voltage in a stable state after short-time discharge or short-time charge is obtained, or before or after discharge. If the voltage of the difference between the battery voltage before charging and the battery voltage in a stable state after short-time discharging or short-time charging is divided by the current flowing through the lead-acid battery to define the internal resistance, the voltage or internal resistance of the difference is Focusing on the fact that there is a strong correlation with the battery capacity of the battery, and that the stable state of the battery voltage after short-time discharge or short-time charge also reaches 1 msec or less, the voltage of the difference between the discharge characteristics or charge characteristics of 1 msec or less, or the internal voltage The present invention is characterized in that the current battery capacity is estimated with high accuracy from the relationship between the resistance and the battery capacity.

【0014】鉛蓄電池を一定電流で短時間放電または短
時間充電させることにより、該鉛蓄電池の劣化を検知す
る方法において、放電または充電を開始して1msec
以上の時間経過後の電圧から劣化を判断する方法は、電
池の化学反応が始まり劣化と直接関係の無いイオンの状
態の影響を受けるため、経過時間をパラメータとした内
部抵抗と電池容量の相関を示す図6からもわかるよう
に、相関係数が低くなるが、本発明の鉛蓄電池の劣化判
定方法では、試験時間を1msec以下とすることによ
り上記の影響を受けることなく高い精度で現在の電池容
量の推定ができる。さらに、短時間放電または短時間充
電により鉛蓄電池の劣化の判定を行うことによって、万
一、鉛蓄電池と劣化判定のための測定器具がミスにより
鉛蓄電池の端子等から外れても、放電または充電終了に
より火花が発生する恐れをなくし、安全性を高めてい
る。
In a method for detecting deterioration of a lead-acid battery by discharging or charging the lead-acid battery for a short time at a constant current, a method for detecting the deterioration of the lead-acid battery is described below.
The method of judging the deterioration from the voltage after the above time elapses is affected by the state of ions that are not directly related to the deterioration due to the start of the chemical reaction of the battery, so the correlation between the internal resistance and the battery capacity using the elapsed time as a parameter is As can be seen from FIG. 6, the correlation coefficient is low. However, in the lead storage battery deterioration determination method of the present invention, the test time is set to 1 msec or less so that the current battery can be accurately determined without being affected by the above. The capacity can be estimated. Furthermore, by judging the deterioration of the lead-acid battery by short-time discharging or short-term charging, even if the lead-acid battery and the measuring instrument for judging the deterioration come off the terminals of the lead-acid battery due to a mistake, the discharging or charging is performed. Eliminating the risk of sparks resulting from the termination, enhancing safety.

【0015】本発明による劣化判定器は、スイッチ部
と、負荷回路部または充電回路部と、電流検出部と、記
憶演算部と、電圧検出部と、表示部と、操作部とで、1
msec以下の極めて短時間の放電または充電による鉛
蓄電池の劣化判定を行うことにより、安全性が高く、し
かも従来より極めて精度の高い劣化判定を可能にしてい
る。
The deterioration determinator according to the present invention comprises a switch unit, a load circuit unit or a charging circuit unit, a current detection unit, a storage operation unit, a voltage detection unit, a display unit, and an operation unit.
By performing the deterioration judgment of the lead storage battery by discharging or charging for a very short time of not more than msec, it is possible to perform the deterioration judgment with high safety and extremely high accuracy as compared with the related art.

【0016】[0016]

【実施例】以下、本発明の放電による場合の実施例を、
図面を参照して詳細に説明する。
Hereinafter, embodiments of the present invention in which discharge is performed will be described.
This will be described in detail with reference to the drawings.

【0017】図1は本発明の方法の一実施例を示すため
の電力供給方式の一例および放電による場合の測定回路
の一例を示す図である。図において、1は商用電源、2
は整流器、3はシール鉛蓄電池31を直列接続した組電
池、4はスイッチ、5は抵抗、6は負荷である。商用電
源1は整流器2の入力に接続され、整流器2の出力に負
荷6が接続されるとともに、並列に組電池3が接続され
ている。鉛蓄電池の劣化を判定するための測定回路とし
ては、組電池3を構成する一つのシール鉛蓄電池31に
スイッチ4を介して抵抗5が接続されている。
FIG. 1 is a diagram showing an example of a power supply system for showing an embodiment of the method of the present invention and an example of a measuring circuit in the case of discharging. In the figure, 1 is a commercial power supply, 2
Is a rectifier, 3 is an assembled battery in which sealed lead-acid batteries 31 are connected in series, 4 is a switch, 5 is a resistor, and 6 is a load. The commercial power supply 1 is connected to the input of the rectifier 2, the load 6 is connected to the output of the rectifier 2, and the battery pack 3 is connected in parallel. As a measuring circuit for determining the deterioration of the lead storage battery, a resistor 5 is connected via a switch 4 to one sealed lead storage battery 31 constituting the assembled battery 3.

【0018】以上の構成において、通常、整流器2よ
り、負荷6へ電力が供給され、また組電池3を維持充電
するための電力が供給されている。停電が発生し商用電
源1からの電力供給が途絶えると、組電池3から負荷6
へ電力が供給され、負荷6への電力供給が途絶えること
はない。このような構成の電力供給方式において、図に
示す組電池3のうち一つのシール鉛蓄電池31に対する
1msec以下という極めて短い時間の放電から劣化判
定を行う方法について述べる。
In the above configuration, usually, power is supplied from the rectifier 2 to the load 6 and power for maintaining and charging the battery pack 3 is supplied. When a power outage occurs and the power supply from the commercial power supply 1 is interrupted, the load 6
And the power supply to the load 6 is not interrupted. In the power supply system having such a configuration, a method of determining deterioration from a very short time discharge of 1 msec or less for one sealed lead storage battery 31 of the assembled battery 3 shown in the drawing will be described.

【0019】まず、1msec以下の放電特性から劣化
判定する方法の原理について説明する。図2は新品と劣
化したシール鉛蓄電池のそれぞれの短時間放電特性を示
す図である。また、図3は鉛蓄電池の短時間放電特性の
等価回路モデルを示す図である。図3の等価回路におい
て、7は電池電圧VB、8は電極内部抵抗を含む液抵抗
1、9は電荷移動抵抗R2、10は電気二重層コンデン
サC、11は放電電流と等価の電流I、12,13は電
池端子である。この等価モデルにおいて、液抵抗8、電
荷移動抵抗9は電池端子12,13の間に対し直列接続
であり、電気二重層コンデンサ10は電荷移動抵抗9に
対し並列接続である。電気二重層コンデンサ10の両端
の電圧をVCとし、短時間放電時の電池端子12,13
間の電圧V(t)を図3より求めると次のようになる。
First, the principle of a method for determining deterioration from discharge characteristics of 1 msec or less will be described. FIG. 2 is a diagram showing the short-time discharge characteristics of a new and deteriorated sealed lead storage battery. FIG. 3 is a diagram showing an equivalent circuit model of a short-time discharge characteristic of a lead storage battery. In the equivalent circuit of FIG. 3, 7 is a battery voltage V B , 8 is a liquid resistance R 1 including the internal resistance of the electrode, 9 is a charge transfer resistance R 2 , 10 is an electric double layer capacitor C, and 11 is a current equivalent to a discharge current. I, 12 and 13 are battery terminals. In this equivalent model, the liquid resistance 8 and the charge transfer resistor 9 are connected in series between the battery terminals 12 and 13, and the electric double layer capacitor 10 is connected in parallel to the charge transfer resistor 9. The voltage at both ends of the electric double layer capacitor 10 is defined as V C, and the battery terminals 12 and 13 during short-time discharge are
The voltage V (t) between them is obtained from FIG.

【0020】 V(t)=VB−I・(R1+R2)+R2・I・EXP(−t/CR2)−VC・ EXP(−t/CR2)…(1) (1)式より安定状態(t→∞)を求めると、 V(t)=VB−I・(R1+R2)…(2) となる。放電前の電池電圧VBと安定状態の電池端子電
圧V(t)の差分をΔV(図2)とすると ΔV=VB−V(t)=I・(R1+R2)…(3) となる。電池の劣化が進むと、電極内部抵抗を含む液抵
抗R1,電荷移動抵抗R2も増加するため(3)式の差分
の電圧ΔVが大きくなる。また、これは図2に示すよう
に短時間放電時の電圧特性からも分かることである。
V (t) = V B− I · (R 1 + R 2 ) + R 2 · I · EXP (−t / CR 2 ) −V C · EXP (−t / CR 2 ) (1) (1) )), A stable state (t → ∞) is obtained as follows: V (t) = V B− I · (R 1 + R 2 ) (2) Assuming that the difference between the battery voltage V B before discharging and the battery terminal voltage V (t) in a stable state is ΔV (FIG. 2), ΔV = V B −V (t) = I · (R 1 + R 2 ) (3) Becomes As the battery deteriorates, the liquid resistance R 1 including the internal resistance of the electrode and the charge transfer resistance R 2 also increase, so that the difference voltage ΔV in the equation (3) increases. This can also be seen from the voltage characteristics during short-time discharge as shown in FIG.

【0021】図4は、例えば容量200AHのシール鉛
蓄電池の放電開始から300μsec経過後の式(3)
の差分の電圧ΔVと電池容量の相関性を表すデータを図
示したものである。図4の例では相関係数が0.95で
あり、明らかに式(3)の差分の電圧ΔVと電池容量は
強い相関があるといえる。
FIG. 4 shows, for example, the equation (3) after a lapse of 300 μsec from the start of discharging of a sealed lead storage battery having a capacity of 200 AH.
3 shows data representing the correlation between the difference voltage ΔV and the battery capacity. In the example of FIG. 4, the correlation coefficient is 0.95, and it can be clearly said that the voltage ΔV of the difference in the equation (3) and the battery capacity have a strong correlation.

【0022】図5は、例えば容量200AHのシール鉛
蓄電池の放電開始から300μsec経過後の式(3)
の差分の電圧ΔVと蓄電池に流れる電流IからΔV/I
によって求めた内部抵抗(R1+R2)と電池容量の相関
性を表すデータを図示したものである。この例では相関
係数が0.93であり、明らかに式(3)の内部抵抗
(R1+R2)と電池容量は強い相関があるといえる。
FIG. 5 shows, for example, equation (3) after a lapse of 300 μsec from the start of discharging of a sealed lead storage battery having a capacity of 200 AH.
ΔV / I from the voltage ΔV of the difference
4 is a diagram showing data representing the correlation between the internal resistance (R 1 + R 2 ) obtained by the above and the battery capacity. In this example, the correlation coefficient is 0.93, and it can be said that there is a strong correlation between the internal resistance (R 1 + R 2 ) of the equation (3) and the battery capacity.

【0023】そこで、本実施例においては、上記原理に
基づいて、例えば図1におけるシール鉛蓄電池31の短
時間放電特性からの劣化判定を、図4あるいは図5によ
って行う。なお、図4、図5は、充電終了後に劣化判定
することを想定して満充電状態で試験して得たものであ
る。まず、図1においてスイッチ4を例えば300μs
ecの間閉じ、放電開始から300μsec経過後の図
2に示す差分の電圧ΔVを測定する。次に、図4から測
定した差分の電圧ΔVに相当する電池容量を読み取る。
この電池容量が規定値以下の時に劣化と判断する。
Therefore, in the present embodiment, based on the above principle, for example, the judgment of the deterioration from the short-time discharge characteristic of the sealed lead storage battery 31 in FIG. 1 is made by FIG. 4 or FIG. FIGS. 4 and 5 show deterioration determination after charging is completed.
It is obtained by testing in a fully charged state assuming that
You. First, in FIG. 1, the switch 4 is set to, for example, 300 μs.
It closes for ec and measures the difference voltage ΔV shown in FIG. 2 after 300 μsec has elapsed from the start of discharge. Next, the battery capacity corresponding to the measured voltage difference ΔV is read from FIG.
When the battery capacity is equal to or less than the specified value, it is determined that the battery has deteriorated.

【0024】あるいは、図1においてスイッチ4を例え
ば300μsecの間閉じ、放電開始から300μse
c経過後の図2に示す差分の電圧ΔVとこの時の電流I
を測定する。次にΔV/Iによって内部抵抗(R+R
)を求め、図5から内部抵抗(R+R)に相当す
る電池容量を読み取る。この電池容量が規定値以下の時
に劣化と判断する。このように内部抵抗と電池容量の関
係から電池容量を推定する方法を用いると、劣化の判定
の都度に鉛蓄電池に流れる電流を一致させる必要が無い
という利点が得られる。
Alternatively, in FIG. 1, the switch 4 is closed for, for example, 300 μsec, and 300 μsec from the start of discharge.
After the lapse of c, the voltage difference ΔV shown in FIG.
Is measured. Next, the internal resistance (R 1 + R) is calculated by ΔV / I.
2 ) is determined, and the battery capacity corresponding to the internal resistance (R 1 + R 2 ) is read from FIG. When the battery capacity is equal to or less than the specified value, it is determined that the battery has deteriorated. When the method of estimating the battery capacity from the relationship between the internal resistance and the battery capacity is used as described above, there is an advantage that it is not necessary to make the current flowing through the lead-acid battery equal every time the deterioration is determined.

【0025】なお、図4に示す差分の電圧ΔVと電池容
量の関係、あるいは図5に示す内部抵抗(R1+R2)と
電池容量の関係は回帰式によっても表わすことが出来、
この式に差分の電圧ΔV、あるいは内部抵抗(R1
2)を代入することにより電池容量を求めることが出
来る。また、実施例では、放電時間300μsec後の
差分の電圧ΔVから電池容量を求める方法および放電時
間300μsec後の差分の電圧ΔVと電流IからΔV
/Iによって求めた内部抵抗(R1+R2)を求め、これ
から電池容量を求める方法を説明したが、放電時間1m
sec以下でも差分の電圧ΔVもしくは内部抵抗と電池
容量の相関係数は0.89以上と高く(図6参照)、同
様の手法によって電池容量を推定することが出来る。
The relationship between the difference voltage ΔV and the battery capacity shown in FIG. 4 or the relationship between the internal resistance (R 1 + R 2 ) and the battery capacity shown in FIG. 5 can also be expressed by a regression equation.
In this equation, the difference voltage ΔV or the internal resistance (R 1 +
By substituting R 2 ), the battery capacity can be determined. Further, in the embodiment, the method of obtaining the battery capacity from the difference voltage ΔV after the discharge time of 300 μsec and the method of calculating the battery voltage from the difference voltage ΔV and the current I after the discharge time of 300 μsec
/ I, the method of obtaining the internal resistance (R 1 + R 2 ) and calculating the battery capacity from this was described.
Even when the difference is less than sec, the correlation coefficient between the difference voltage ΔV or the internal resistance and the battery capacity is as high as 0.89 or more (see FIG. 6), and the battery capacity can be estimated by the same method.

【0026】図7は放電による場合の本発明の劣化判定
器の構成の一例を示す図である。
FIG. 7 is a diagram showing an example of the configuration of the deterioration determiner of the present invention in the case of discharge.

【0027】図において、14は試験電池(試験対象の
鉛蓄電池)、15はスイッチ部、16は負荷回路部、1
7は電流検出部、18は記憶演算部、19は電圧検出
部、20は表示部、21は操作部である。試験電池14
はスイッチ部15に接続されるとともに、電圧検出部1
9に接続される。さらに電圧検出部19は記憶演算部1
8に接続されている。スイッチ部15は負荷回路部16
と接続され、負荷回路部16は電流検出部17と接続さ
れ、さらに電流検出部17は記憶演算部18と接続され
ている。また、記憶演算部18は表示部20、操作部2
1と接続され、操作部21はさらにスイッチ部15、電
圧検出部19等に接続されている。
In the figure, 14 is a test battery (lead storage battery to be tested), 15 is a switch section, 16 is a load circuit section, 1
7 is a current detection unit, 18 is a storage operation unit, 19 is a voltage detection unit, 20 is a display unit, and 21 is an operation unit. Test battery 14
Is connected to the switch unit 15 and the voltage detection unit 1
9 is connected. Further, the voltage detection unit 19 includes the storage operation unit 1
8 is connected. The switch unit 15 includes a load circuit unit 16
, The load circuit section 16 is connected to the current detection section 17, and the current detection section 17 is connected to the storage operation section 18. The storage operation unit 18 includes a display unit 20 and an operation unit 2.
1, the operation unit 21 is further connected to the switch unit 15, the voltage detection unit 19, and the like.

【0028】このような構成の劣化判定器において、例
えば内部抵抗と電池容量の回帰式から電池の劣化判定を
行う動作例について説明する。まず、試験電池14と電
圧検出部19、および試験電池14とスイッチ部15を
接続する。次に、負荷回路部16の放電電流を例えば3
0Aに設定し、スイッチ部15の動作によって例えば3
00μsecの間放電する。電圧検出部19は、放電開
始前の電圧と放電開始から300μsec経過後の電圧
を記憶演算部18に送り、記憶演算部18は、放電開始
前の電圧と放電開始から300μsec経過後の電圧と
の差の電圧ΔVを算出する。一方、電流検出部17は、
蓄電池に流れる電流Iを負荷回路部16で検出し、記憶
演算部18に送る。記憶演算部18は前記電圧差ΔVと
電流IからΔV/Iによって内部抵抗を算出し、あらか
じめ求めてある内部抵抗と電池容量の回帰式に内部抵抗
値を代入し、電池容量を算出する。この電池容量に基づ
いて鉛蓄電池の劣化を判定できることは、前述のとおり
である。表示部20は記憶演算部18で算出した結果、
すなわち差の電圧ΔVや内部抵抗値、電池容量、あるい
は劣化を判定した場合の判定結果等を表示する。操作部
21は、劣化判定器の操作、すなわち上記したスイッチ
部15、記憶演算部18、電圧検出部19等の操作を順
序立てて行い、上記各部の時系列的な動作を実現してい
る。
An example of the operation of the deterioration judging device having such a structure in which the deterioration of the battery is judged from the regression equation of the internal resistance and the battery capacity will be described. First, the test battery 14 and the voltage detector 19 are connected, and the test battery 14 and the switch 15 are connected. Next, the discharge current of the load circuit section 16 is set to, for example, 3
0A and, for example, 3
Discharge for 00 μsec. The voltage detection unit 19 sends the voltage before the start of the discharge and the voltage after 300 μsec from the start of the discharge to the storage operation unit 18, and the storage operation unit 18 calculates the difference between the voltage before the start of the discharge and the voltage after the start of the discharge 300 μsec. The voltage difference ΔV is calculated. On the other hand, the current detecting unit 17
The current I flowing through the storage battery is detected by the load circuit section 16 and sent to the storage operation section 18. The storage operation unit 18 calculates the internal resistance from the voltage difference ΔV and the current I according to ΔV / I, and substitutes the internal resistance value into a regression equation of the internal resistance and the battery capacity, which is obtained in advance, to calculate the battery capacity. As described above, it is possible to determine the deterioration of the lead storage battery based on the battery capacity. The display unit 20 calculates the result by the storage operation unit 18,
That is, the difference voltage ΔV, the internal resistance value, the battery capacity, the determination result when the deterioration is determined, and the like are displayed. The operation unit 21 performs the operations of the deterioration determination unit, that is, the operations of the switch unit 15, the storage operation unit 18, the voltage detection unit 19, and the like in order, thereby realizing the time-series operation of each unit.

【0029】なお、上記の例でも、放電時間は1mse
c以下であればよい。また、上記の例では、内部抵抗と
電池容量の回帰式から電池の劣化判定を行う動作例につ
いて説明したが、放電を開始してから1msec以下の
時間経過後の電池電圧と放電開始前の鉛蓄電池の電池電
圧との差分の電圧と、電池容量の回帰式からも全く同様
に電池容量の推定ができる。この場合、電流検出部17
は、判定毎の放電電流が一定であることのチェックに用
いることができる。ただし、負荷回路部16が判定の都
度、放電電流を設定された一定の値にできれば、電流検
出部17は省略可能である。
In the above example, the discharge time is 1 msec.
It suffices if it is c or less. Further, in the above example, the operation example in which the deterioration of the battery is determined from the regression equation of the internal resistance and the battery capacity has been described. However, the battery voltage after 1 msec or less has elapsed since the start of the discharge and the lead voltage before the start of the discharge. The battery capacity can be estimated in the same manner from the voltage of the difference between the battery voltage of the storage battery and the regression equation of the battery capacity. In this case, the current detector 17
Can be used to check that the discharge current is constant for each determination. However, if the load circuit unit 16 can set the discharge current to the set constant value each time the determination is made, the current detection unit 17 can be omitted.

【0030】次に、本発明の充電による場合の実施例
を、図面を参照して詳細に説明する。
Next, an embodiment of the present invention using charging will be described in detail with reference to the drawings.

【0031】図8は本発明の方法の一実施例を示すため
の電力供給方式の一例および充電による場合の測定回路
の一例を示す図である。図において、1は商用電源、2
は整流器、3はシール鉛蓄電池31を直列接続した組電
池、4はスイッチ、44は電池、45は抵抗、6は負荷
である。商用電源1は整流器2の入力に接続され、整流
器2の出力には負荷6が接続されるとともに、並列に組
電池3が接続されている。鉛蓄電池の劣化を判定するた
めの測定回路としては、組電池3を構成する一つのシー
ル鉛蓄電池31に対し、シール鉛蓄電池31を充電する
ための電源としての電池44および抵抗5がスイッチ4
を介して直列に接続されている。
FIG. 8 is a diagram showing an example of a power supply system for showing an embodiment of the method of the present invention and an example of a measuring circuit in the case of charging. In the figure, 1 is a commercial power supply, 2
Is a rectifier, 3 is an assembled battery in which the sealed lead-acid batteries 31 are connected in series, 4 is a switch, 44 is a battery, 45 is a resistor, and 6 is a load. The commercial power supply 1 is connected to the input of the rectifier 2, the output of the rectifier 2 is connected to the load 6, and the battery pack 3 is connected in parallel. As a measuring circuit for judging the deterioration of the lead storage battery, a battery 44 as a power supply for charging the sealed lead storage battery 31 and a resistor 5 are connected to the switch 4 for one sealed lead storage battery 31 constituting the assembled battery 3.
Are connected in series.

【0032】以上の構成において、通常、整流器2よ
り、負荷6へ電力が供給され、また組電池3を維持充電
するための電力が供給されている。停電が発生し商用電
源1からの電力供給が途絶えると、組電池3から負荷6
へ電力が供給され、負荷6への電力供給が途絶えること
はない。このような構成の電力供給方式において、図に
示す組電池3のうち一つのシール鉛蓄電池31に対する
1msec以下という極めて短い時間の充電から劣化判
定を行う方法について述べる。
In the above configuration, normally, power is supplied from the rectifier 2 to the load 6 and power for maintaining and charging the assembled battery 3 is supplied. When a power outage occurs and the power supply from the commercial power supply 1 is interrupted, the load 6
And the power supply to the load 6 is not interrupted. In the power supply system having the above-described configuration, a method of determining deterioration from a very short time of 1 msec or less for one sealed lead storage battery 31 of the assembled battery 3 shown in the drawing will be described.

【0033】まず、1msec以下の充電特性から劣化
判定する方法の原理について説明する。図9は新品と劣
化したシール鉛蓄電池のそれぞれの短時間充電特性を示
す図である。また、図10は鉛蓄電池の短時間充電特性
の等価回路モデルを示す図である。図10の等価回路に
おいて、7は電池電圧VB、8は電極内部抵抗を含む液
抵抗R1、9は電荷移動抵抗R2、10は電気二重層コン
デンサC、41は充電電流と等価の電流I、12,13
は電池端子である。この等価モデルにおいて、液抵抗
8、電荷移動抵抗9は電池端子12,13の間に対し直
列接続であり、電気二重層コンデンサ10は電荷移動抵
抗9に対し並列接続である。電気二重層コンデンサ10
の両端の電圧をVCとし、短時間充電時の電池端子1
2,13間の電圧V(t)を図10より求めると、次の
ようになる。
First, the principle of a method for determining deterioration from charging characteristics of 1 msec or less will be described. FIG. 9 is a diagram illustrating the short-time charging characteristics of a new and deteriorated sealed lead storage battery. FIG. 10 is a diagram showing an equivalent circuit model of a short-time charging characteristic of a lead storage battery. In the equivalent circuit of FIG. 10, 7 is a battery voltage V B , 8 is a liquid resistance R 1 including the internal resistance of the electrode, 9 is a charge transfer resistance R 2 , 10 is an electric double layer capacitor C, 41 is a current equivalent to a charging current I, 12, 13
Is a battery terminal. In this equivalent model, the liquid resistance 8 and the charge transfer resistor 9 are connected in series between the battery terminals 12 and 13, and the electric double layer capacitor 10 is connected in parallel to the charge transfer resistor 9. Electric double layer capacitor 10
The voltage at both ends of the battery terminal is V C, and the battery terminal 1
When the voltage V (t) between the terminals 2 and 13 is obtained from FIG.

【0034】 V(t)=VB+I・(R1+R2)−R2・I・EXP(−t/CR2)+VC・ EXP(−t/CR2)…(4) (4)式より安定状態(t→∞)を求めると、 V(t)=VB+I・(R1+R2)…(5) となる。充電前の電池電圧VBと安定状態の電池端子電
圧V(t)の差分をΔV(図9)とすると ΔV=V(t)−VB=I・(R1+R2)…(6) となる。電池の劣化が進むと、電極内部抵抗を含む液抵
抗R1,電荷移動抵抗R2も増加するため(6)式の差分
の電圧ΔVが大きくなる。また、これは図9に示すよう
に短時間充電時の電圧特性からも分かることである。
V (t) = V B + I · (R 1 + R 2 ) −R 2 · I · EXP (−t / CR 2 ) + V C · EXP (−t / CR 2 ) (4) (4) When a stable state (t → ∞) is obtained from the equation, V (t) = V B + I · (R 1 + R 2 ) (5) The difference between the charging before the battery voltage V B and the steady state battery terminal voltage V (t) [Delta] V (FIG. 9) to the ΔV = V (t) -V B = I · (R 1 + R 2) ... (6) Becomes As the battery deteriorates, the liquid resistance R 1 including the internal resistance of the electrode and the charge transfer resistance R 2 also increase, so that the difference voltage ΔV in the equation (6) increases. This can also be seen from the voltage characteristics during short-time charging as shown in FIG.

【0035】図11は、例えば容量200AHのシール
鉛蓄電池の充電開始から300μsec経過後の式
(6)の差分の電圧ΔVと電池容量の相関性を表すデー
タを図示したものである。図11の例では相関係数が
0.96であり、明らかに式(6)の差分の電圧ΔVと
電池容量は強い相関があるといえる。
FIG. 11 shows data showing the correlation between the difference voltage ΔV in equation (6) and the battery capacity after elapse of 300 μsec from the start of charging of, for example, a sealed lead storage battery having a capacity of 200 AH. In the example of FIG. 11, the correlation coefficient is 0.96, and it can be said that there is a clear correlation between the difference voltage ΔV in equation (6) and the battery capacity.

【0036】図12は、例えば容量200AHのシール
鉛蓄電池の充電開始から300μsec経過後の式
(6)の差分の電圧ΔVと蓄電池に流れる電流IからΔ
V/Iによって求めた内部抵抗(R1+R2)と電池容量
の相関性を表すデータを図示したものである。この例で
は相関係数が0.94であり、明らかに式(6)の内部
抵抗(R1+R2)と電池容量は強い相関があるといえ
る。
FIG. 12 shows, for example, the difference between the voltage ΔV of the difference of equation (6) and the current I flowing through the storage battery after 300 μsec from the start of charging of the sealed lead storage battery having a capacity of 200 AH.
FIG. 3 is a diagram showing data indicating a correlation between an internal resistance (R 1 + R 2 ) obtained by V / I and a battery capacity. In this example, the correlation coefficient is 0.94, and it can be clearly said that the internal resistance (R 1 + R 2 ) in the equation (6) and the battery capacity have a strong correlation.

【0037】そこで、本実施例においては、上記原理に
基づいて、例えば図8におけるシール鉛蓄電池31の短
時間充電特性からの劣化判定を、図11あるいは図12
によって行う。なお、図11、図12は、充電終了後に
劣化判定することを想定して満充電状態で試験して得た
ものである。まず、図8においてスイッチ4を例えば3
00μsecの間閉じ、充電開始から300μsec経
過後の図9に示す差分の電圧ΔVを測定する。次に図1
1から測定した差分の電圧ΔVに相当する電池容量を読
み取る。この電池容量が規定値以下の時に劣化と判断す
る。
Therefore, in the present embodiment, based on the above principle, for example, the judgment of deterioration from the short-time charging characteristic of the sealed lead storage battery 31 in FIG.
Done by 11 and 12 show the state after the end of charging.
Obtained by testing in a fully charged state assuming that deterioration is judged
Things. First, in FIG.
It closes for 00 μsec and measures the difference voltage ΔV shown in FIG. 9 after 300 μsec has elapsed from the start of charging. Next, FIG.
The battery capacity corresponding to the voltage difference ΔV measured from 1 is read. When the battery capacity is equal to or less than the specified value, it is determined that the battery has deteriorated.

【0038】あるいは、図8においてスイッチ4を例え
ば300μsecの間閉じ、充電開始から300μse
c経過後の図9に示す差分の電圧ΔVとこの時の電流I
を測定する。次にΔV/Iによって内部抵抗(R+R
)を求め、図12から内部抵抗(R+R)に相当
する電池容量を読み取る。この電池容量が規定値以下の
時に劣化と判断する。このように内部抵抗と電池容量の
関係から電池容量を推定する方法を用いると、劣化の判
定の都度に鉛蓄電池に流れる電流を一致させる必要が無
いという利点が得られる。
Alternatively, in FIG. 8, the switch 4 is closed for, for example, 300 μsec, and 300 μsec from the start of charging.
After the elapse of the time c, the difference voltage ΔV shown in FIG.
Is measured. Next, the internal resistance (R 1 + R) is calculated by ΔV / I.
2 ) is determined, and the battery capacity corresponding to the internal resistance (R 1 + R 2 ) is read from FIG. When the battery capacity is equal to or less than the specified value, it is determined that the battery has deteriorated. When the method of estimating the battery capacity from the relationship between the internal resistance and the battery capacity is used as described above, there is an advantage that it is not necessary to make the current flowing through the lead-acid battery equal every time the deterioration is determined.

【0039】なお、図11に示す差分の電圧ΔVと電池
容量の関係、あるいは図12に示す内部抵抗(R1
2)と電池容量の関係は回帰式によっても表わすこと
が出来、この式に差分の電圧ΔV、あるいは内部抵抗
(R1+R2)を代入することにより電池容量を求めるこ
とが出来る。また、実施例では、充電時間300μse
c後の差分の電圧ΔVから電池容量を求める方法および
充電時間300μsec後の差分の電圧ΔVと電流Iか
らΔV/Iによって求めた内部抵抗(R1+R2)を求
め、これから電池容量を求める方法を説明したが、充電
時間1msec以下でも差分の電圧ΔVもしくは内部抵
抗と電池容量の相関係数は0.89以上と高く、同様の
手法によって電池容量を推定することが出来る。
The relationship between the difference voltage ΔV and the battery capacity shown in FIG. 11 or the internal resistance (R 1 +
The relationship between R 2 ) and the battery capacity can also be expressed by a regression equation, and the battery capacity can be obtained by substituting the difference voltage ΔV or the internal resistance (R 1 + R 2 ) into this equation. In the embodiment, the charging time is 300 μsec.
A method for obtaining the battery capacity from the voltage difference ΔV after the current c and a method for obtaining the internal resistance (R 1 + R 2 ) obtained from the voltage difference ΔV and the current I after the charge time of 300 μsec by ΔV / I, and obtaining the battery capacity therefrom However, the correlation coefficient between the difference voltage ΔV or the internal resistance and the battery capacity is as high as 0.89 or more even when the charging time is 1 msec or less, and the battery capacity can be estimated by the same method.

【0040】図13は、充電による場合の本発明の劣化
判定器の構成の一例を示す図である。
FIG. 13 is a diagram showing an example of the configuration of the deterioration determiner of the present invention in the case of charging.

【0041】図において、54は試験電池(試験対象の
鉛蓄電池)、55はスイッチ部、56は充電回路部、5
7は電流検出部、58は記憶演算部、59は電圧検出
部、60は表示部、61は操作部である。試験電池54
はスイッチ部55に接続されるとともに、電圧検出部5
9に接続される。さらに電圧検出部59は記憶演算部5
8に接続されている。スイッチ部55は充電回路部56
と接続され、充電回路部56は電流検出部57と接続さ
れ、さらに電流検出部57は記憶演算部58と接続され
ている。また、記憶演算部58は表示部60、操作部6
1と接続され、操作部61はさらにスイッチ部55、電
圧検出部59等に接続されている。
In the figure, 54 is a test battery (lead storage battery to be tested), 55 is a switch, 56 is a charging circuit, 5
7 is a current detection unit, 58 is a storage operation unit, 59 is a voltage detection unit, 60 is a display unit, and 61 is an operation unit. Test battery 54
Is connected to the switch unit 55 and the voltage detection unit 5
9 is connected. Further, the voltage detection section 59 is provided for the storage operation section 5
8 is connected. The switch unit 55 includes a charging circuit unit 56
, The charging circuit unit 56 is connected to the current detection unit 57, and the current detection unit 57 is connected to the storage operation unit 58. The storage operation unit 58 includes a display unit 60 and an operation unit 6.
1, and the operation unit 61 is further connected to the switch unit 55, the voltage detection unit 59, and the like.

【0042】このような構成の劣化判定器において、例
えば内部抵抗と電池容量の回帰式から電池の劣化判定を
行う動作例について説明する。まず、試験電池54と電
圧検出部59、および試験電池54とスイッチ部55を
接続する。次に、充電回路部56の充電電流を例えば3
0Aに設定し、スイッチ部55の動作によって例えば3
00μsecの間充電する。電圧検出部59は充電開始
前の電圧と充電開始から300μsec経過後の電圧を
記憶演算部58に送り、記憶演算部58は、充電開始前
の電圧と充電開始から300μsec経過後の電圧との
差の電圧ΔVを算出する。一方、電流検出部57は、蓄
電池に流れる電流Iを充電回路部56で検出し、記憶演
算部58に送る。記憶演算部58は前記電圧差ΔVと電
流IからΔV/Iによって内部抵抗を算出し、あらかじ
め求めてある内部抵抗と電池容量の回帰式に内部抵抗値
を代入し、電池容量を算出する。この電池容量から鉛蓄
電池の劣化を判定できることは、前述のとおりである。
表示部60は記憶演算部58で算出した結果、すなわち
上記の差の電圧ΔVや内部抵抗値、電池容量、あるいは
劣化を判定した場合の判定結果等を表示する。操作部6
1は劣化判定器の操作、すなわち上記したスイッチ部5
5、記憶演算部58、電圧検出部59等の操作を順序立
てて行い、上記各部の時系列的な動作を実現している。
An example of the operation of the deterioration judging device having such a structure for judging the deterioration of the battery from the regression equation of the internal resistance and the battery capacity will be described. First, the test battery 54 and the voltage detection unit 59 are connected, and the test battery 54 and the switch unit 55 are connected. Next, the charging current of the charging circuit unit 56 is set to, for example, 3
0A and, for example, 3
Charge for 00 μsec. The voltage detection unit 59 sends the voltage before the start of charging and the voltage after 300 μsec from the start of charging to the storage operation unit 58, and the storage operation unit 58 calculates the difference between the voltage before the start of charging and the voltage after 300 μsec from the start of charging. Is calculated. On the other hand, the current detecting unit 57 detects the current I flowing through the storage battery by the charging circuit unit 56 and sends it to the storage operation unit 58. The storage operation unit 58 calculates the internal resistance from the voltage difference ΔV and the current I by ΔV / I, and substitutes the internal resistance value into a regression equation of the internal resistance and the battery capacity, which is obtained in advance, to calculate the battery capacity. As described above, the deterioration of the lead storage battery can be determined from the battery capacity.
The display unit 60 displays the result calculated by the storage operation unit 58, that is, the voltage ΔV of the difference, the internal resistance value, the battery capacity, the determination result when the deterioration is determined, and the like. Operation unit 6
1 is the operation of the deterioration judgment unit, that is, the switch unit 5 described above.
5. The operations of the storage operation unit 58, the voltage detection unit 59, and the like are performed in order, thereby realizing the time-series operation of each unit.

【0043】なお、上記の例でも、充電時間は1mse
c以下であればよい。また、上記の例では、内部抵抗と
電池容量の回帰式から電池の劣化判定を行う動作例につ
いて説明したが、充電を開始してから1msec以下の
時間経過後の電池電圧と充電開始前の鉛蓄電池の電池電
圧との差分の電圧と、電池容量の回帰式からも全く同様
に電池容量の推定ができる。この場合、電流検出部57
は、判定毎の充電電流が一定であることのチェックに用
いることができる。ただし、充電回路部56が判定の都
度、充電電流を設定された一定の値にできれば、電流検
出部57は省略可能である。
In the above example, the charging time is 1 ms.
It suffices if it is c or less. Further, in the above example, the operation example in which the deterioration of the battery is determined from the regression equation of the internal resistance and the battery capacity has been described, but the battery voltage after 1 msec or less from the start of charging and the lead before starting charging are described. The battery capacity can be estimated in the same manner from the voltage of the difference between the battery voltage of the storage battery and the regression equation of the battery capacity. In this case, the current detection unit 57
Can be used to check that the charging current is constant for each determination. However, if the charging circuit unit 56 can set the charging current to a set constant value each time the determination is made, the current detection unit 57 can be omitted.

【0044】本発明は、シール鉛蓄電池の劣化判定に好
適であるが、液式等の他の鉛蓄電池に対しても有効に適
用できることは明らかである。以上、各実施例にも述べ
たように本発明は、その主旨に沿って種々に応用され、
種々の実施態様を取り得るものである。
Although the present invention is suitable for determining the deterioration of a sealed lead storage battery, it is apparent that the present invention can be effectively applied to other lead storage batteries such as a liquid type. As described above, the present invention is variously applied according to the gist as described in each embodiment,
Various embodiments are possible.

【0045】[0045]

【発明の効果】以上の説明で明らかなように、本発明の
鉛蓄電池の劣化判定方法及び劣化判定器によれば、極め
て短時間に試験が終了するために保守者の負担が極めて
少なくなるとともに、試験時間が1msec以下である
ので、万一、劣化判定器と電池の接続が保守者のミスに
よって外れても、そのときには放電が終了しており、火
花が発生する恐れもなく極めて安全性が高く、しかも従
来より極めて精度の高い劣化判定が実現できる。
As is apparent from the above description, according to the lead-acid battery deterioration judging method and the deterioration judging device of the present invention, the test is completed in a very short time, so that the burden on the maintenance person is extremely reduced. Since the test time is 1 msec or less, even if the connection between the deterioration judgment device and the battery is disconnected due to a mistake of a maintenance person, the discharge is completed at that time, and there is no danger of sparking. It is possible to realize a high-quality and extremely accurate deterioration determination as compared with the related art.

【0046】また、請求項2または請求項5の発明によ
れば、特に、内部抵抗を算出し、それに基づいて劣化判
定を行うので、劣化判定の都度に鉛蓄電池に流す電流を
一定にする必要が無くなり、より一層、保守者の負担が
軽くなる。
According to the second or fifth aspect of the invention, in particular, the internal resistance is calculated and the deterioration is determined based on the calculated internal resistance. Therefore, it is necessary to keep the current flowing through the lead storage battery constant every time the deterioration is determined. And the burden on maintenance personnel is further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すための電力供給方式の
一例および、放電よる場合の測定回路の一例を示す図
FIG. 1 is a diagram showing an example of a power supply method for showing an embodiment of the present invention and an example of a measuring circuit in the case of discharging.

【図2】短時間放電による過渡電圧特性の一例を示す図FIG. 2 is a diagram illustrating an example of a transient voltage characteristic due to short-time discharge;

【図3】鉛蓄電池の短時間放電の場合の等価回路モデル
を示す図
FIG. 3 is a diagram showing an equivalent circuit model in the case of short-time discharge of a lead storage battery.

【図4】放電前と放電後の定常状態における電池電圧の
差分ΔVと電池の容量の相関の一例を示す図
FIG. 4 is a diagram showing an example of a correlation between a battery voltage difference ΔV and a battery capacity in a steady state before and after discharging.

【図5】放電前と放電後の定常状態における電池電圧の
差分ΔVと放電電池IからΔV/Iによって求めた内部
抵抗と電池容量の相関の一例を示す図
FIG. 5 is a diagram showing an example of the correlation between the battery resistance and the internal resistance obtained by ΔV / I from the discharge battery I and the difference ΔV between the battery voltages in the steady state before and after discharge.

【図6】放電経過時間をパラメータにしたΔV/Iによ
り求めた内部抵抗と電池容量の相関係数を示す図
FIG. 6 is a diagram showing a correlation coefficient between an internal resistance and a battery capacity obtained by ΔV / I using discharge elapsed time as a parameter.

【図7】短時間放電による場合の鉛蓄電池劣化判定器の
構成の一例を示す図
FIG. 7 is a diagram showing an example of a configuration of a lead storage battery deterioration determiner in the case of short-time discharge.

【図8】本発明の一実施例を示すための電力供給方式の
一例および、充電による場合の測定回路の一例を示す図
FIG. 8 is a diagram illustrating an example of a power supply method for illustrating an embodiment of the present invention and an example of a measurement circuit in the case of charging.

【図9】短時間充電による過渡電圧特性の一例を示す図FIG. 9 is a diagram illustrating an example of a transient voltage characteristic due to short-time charging;

【図10】鉛蓄電池の短時間充電の場合の等価回路モデ
ルを示す図
FIG. 10 is a diagram showing an equivalent circuit model in the case of short-time charging of a lead storage battery.

【図11】充電前と充電後の定常状態における電池電圧
の差分ΔVと電池の容量の相関の一例を示す図
FIG. 11 is a diagram showing an example of a correlation between a battery voltage difference ΔV and a battery capacity in a steady state before and after charging.

【図12】充電前と充電後の定常状態における電池電圧
の差分ΔVと放電電池IからΔV/Iによって求めた内
部抵抗と電池容量の相関の一例を示す図
FIG. 12 is a diagram showing an example of the correlation between the internal resistance and the battery capacity obtained from ΔV / I from the difference ΔV between the battery voltage in the steady state before charging and the state after charging and ΔV / I from the discharge battery I.

【図13】短時間充電の場合の鉛蓄電池劣化判定器の構
成の一例を示す図
FIG. 13 is a diagram showing an example of a configuration of a lead storage battery deterioration determiner in the case of short-time charging.

【符号の説明】[Explanation of symbols]

1…商用電源 2…整流器 3…鉛蓄電池を直列接続した組電池 4…スイッチ 5…抵抗 6…負荷 7…電池電圧VB 8…電極内部抵抗を含む液抵抗R1 9…電荷移動抵抗R2 10…電気二重層コンデンサC 11…放電電流と等価の電流I 12,13…電池端子 14…試験電池 15…スイッチ部 16…負荷回路部 17…電流検出部 18…記憶演算部 19…電圧検出部 20…表示部 21…操作部 31…シール鉛蓄電池 41…充電電流と等価の電流I 44…電池 45…抵抗 54…試験電池 55…スイッチ部 56…充電回路部 57…電流検出部 58…記憶演算部 59…電圧検出部 60…表示部 61…操作部1 ... commercial power source 2 ... rectifier 3 ... the assembled battery 4 ... switch 5 ... resistance 6 ... load 7 ... battery voltage V B 8 ... liquid containing an electrode internal resistance resistor R 1 9 ... charge transfer resistance R 2 of the lead-acid battery are connected in series DESCRIPTION OF SYMBOLS 10 ... Electric double layer capacitor C11 ... Current I equivalent to discharge current 12,13 ... Battery terminal 14 ... Test battery 15 ... Switch part 16 ... Load circuit part 17 ... Current detection part 18 ... Storage operation part 19 ... Voltage detection part DESCRIPTION OF SYMBOLS 20 ... Display part 21 ... Operation part 31 ... Sealed lead storage battery 41 ... Current I equivalent to charging current 44 ... Battery 45 ... Resistance 54 ... Test battery 55 ... Switch part 56 ... Charging circuit part 57 ... Current detection part 58 ... Storage operation Unit 59: Voltage detection unit 60: Display unit 61: Operation unit

フロントページの続き (72)発明者 尾形 努 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 平4−366781(JP,A) 特開 昭59−48661(JP,A) 特開 平1−253177(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 31/36 H01M 10/42 - 10/48 H02J 7/00 Continuation of the front page (72) Inventor Tsutomu Ogata 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (56) References JP-A-4-366781 (JP, A) JP-A-59-48661 (JP, A) JP-A-1-253177 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01R 31/36 H01M 10/42-10/48 H02J 7/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 満充電状態の鉛蓄電池を一定電流で1m
sec以下の短時間放電させることにより、該鉛蓄電池
の劣化状態を検知する方法であって、 まず、放電を開始してから1msec以下の時間経過後
の安定状態での前記鉛蓄電池の電池電圧と放電開始前の
前記鉛蓄電池の電池電圧との差分を測定し、 次に、あらかじめ求めておいた前記鉛蓄電池の電池容量
と前記差分の電圧との回帰式に前記差分の電圧を代入す
ることにより、あるいは前記電池容量と前記差分の電圧
との関係を表す図より、現在の電池容量を推定すること
を特徴とする鉛蓄電池の劣化判定方法。
1. A fully charged lead-acid battery at a constant current of 1 m
A method for detecting the state of deterioration of the lead storage battery by discharging the battery for a short period of time of less than or equal to 1 second, wherein the battery voltage of the lead storage battery in a stable state after a time of 1 msec or less has elapsed since the start of discharging. By measuring the difference between the battery voltage of the lead storage battery before the start of discharging, and then substituting the voltage of the difference into a regression equation between the battery capacity of the lead storage battery and the voltage of the difference obtained in advance. Alternatively, a method for determining the deterioration of a lead storage battery, wherein a current battery capacity is estimated from a diagram representing a relationship between the battery capacity and the voltage of the difference.
【請求項2】 満充電状態の鉛蓄電池を一定電流で1m
sec以下の短時間放電させることにより、該鉛蓄電池
の劣化状態を検知する方法であって、 まず、放電を開始してから1msec以下の時間経過後
の安定状態での前記鉛蓄電池の電池電圧と放電開始前の
前記鉛蓄電池の電池電圧との差分を測定し、前記差分の
電圧を蓄電池に流れる電流で割って内部抵抗を求め、 次に、あらかじめ求めておいた前記鉛蓄電池の電池容量
と前記内部抵抗との回帰式に前記内部抵抗を代入するこ
とにより、あるいは前記電池容量と前記内部抵抗との関
係を表す図より、現在の電池容量を推定することを特徴
とする鉛蓄電池の劣化判定方法。
2. A fully charged lead storage battery is charged at a constant current of 1 m.
A method for detecting the state of deterioration of the lead storage battery by discharging the battery for a short period of time of less than or equal to 1 second, wherein the battery voltage of the lead storage battery in a stable state after a time of 1 msec or less has elapsed since the start of discharging. Measure the difference between the battery voltage of the lead storage battery before the start of discharging, determine the internal resistance by dividing the voltage of the difference by the current flowing through the storage battery, and then determine the battery capacity of the lead storage battery determined in advance and the A method for determining the deterioration of a lead storage battery, wherein a current battery capacity is estimated by substituting the internal resistance into a regression equation with an internal resistance or from a diagram showing a relationship between the battery capacity and the internal resistance. .
【請求項3】 試験対象の満充電状態の鉛蓄電池を一定
電流で1msec以下の短時間放電させるためのスイッ
チ部及び負荷回路部と、前記鉛蓄電池の電池電圧を検出
するための電圧検出部と、前記放電を開始してから1m
sec以下の時間経過後の安定状態で前記検出した電池
電圧と前記放電開始前の前記検出した電池電圧との差分
の電圧を計算してあらかじめ求めておいた前記差分の電
圧と電池容量との回帰式に前記差分の電圧を代入して現
在の電池容量を推定する記憶演算部と、前記差分の電圧
あるいは前記推定した電池容量を表示するための表示部
と、前記スイッチ部,前記電圧検出部,前記記憶演算部
を順序立てて操作する操作部と、を具備することを特徴
とする劣化判定器。
3. A switch unit and a load circuit unit for discharging a fully charged lead storage battery to be tested at a constant current for a short time of 1 msec or less, and a voltage detection unit for detecting a battery voltage of the lead storage battery. 1 m from the start of the discharge
The regression of the difference voltage and the battery capacity obtained in advance by calculating the difference voltage between the detected battery voltage and the detected battery voltage before the start of the discharge in a stable state after a time equal to or less than sec A storage operation unit for estimating the current battery capacity by substituting the voltage of the difference in the equation, a display unit for displaying the voltage of the difference or the estimated battery capacity, the switch unit, the voltage detection unit, An operation unit for operating the storage operation unit in order.
【請求項4】 試験対象の満充電状態の鉛蓄電池を一定
電流で1msec以下の短時間放電させるためのスイッ
チ部及び負荷回路部と、前記鉛蓄電池の電池電圧を検出
するための電圧検出部及び前記鉛蓄電池に流れる電流を
検出するための電流検出部と、前記放電を開始してから
1msec以下の時間経過後の安定状態で前記検出した
電池電圧と前記放電開始前の前記検出した電池電圧との
差分の電圧と前記検出した鉛蓄電池に流れる電流から内
部抵抗を計算してあらかじめ求めておいた前記内部抵抗
と電池容量との回帰式に前記内部抵抗を代入して現在の
電池容量を推定する記憶演算部と、前記内部抵抗あるい
は前記推定した電池容量を表示するための表示部と、前
記スイッチ部,前記電圧検出部,前記記憶演算部を順序
立てて操作する操作部と、を具備することを特徴とする
劣化判定器。
4. A switch unit and a load circuit unit for discharging a fully charged lead storage battery to be tested at a constant current for a short time of 1 msec or less, a voltage detection unit for detecting a battery voltage of the lead storage battery, and A current detection unit for detecting a current flowing through the lead storage battery, and the battery voltage detected in a stable state after a lapse of 1 msec or less from the start of the discharge, and the detected battery voltage before the start of the discharge. Calculate the internal resistance from the voltage of the difference and the detected current flowing through the lead storage battery and substitute the internal resistance into a regression equation between the internal resistance and the battery capacity, which has been obtained in advance, to estimate the current battery capacity. A storage operation unit, a display unit for displaying the internal resistance or the estimated battery capacity, and an operation of operating the switch unit, the voltage detection unit, and the storage operation unit in order And a unit for determining deterioration.
【請求項5】 満充電状態の鉛蓄電池を一定電流で1m
sec以下の短時間充電することにより、該鉛蓄電池の
劣化状態を検知する方法であって、 まず、充電を開始してから1msec以下の時間経過後
の安定状態での前記鉛蓄電池の電池電圧と充電開始前の
前記鉛蓄電池の電池電圧との差分を測定し、 次に、あらかじめ求めておいた前記鉛蓄電池の電池容量
と前記差分の電圧との回帰式に前記差分の電圧を代入す
ることにより、あるいは前記電池容量と前記差分の電圧
との関係を表す図より、現在の電池容量を推定すること
を特徴とする鉛蓄電池の劣化判定方法。
5. A fully charged lead-acid battery at a constant current of 1 m
A method for detecting the deterioration state of the lead storage battery by charging the lead storage battery for a short period of time of not more than 1 second, and first, the battery voltage of the lead storage battery in a stable state after a lapse of 1 msec or less from the start of charging. By measuring the difference between the battery voltage of the lead storage battery before the start of charging, and then substituting the voltage of the difference into a regression equation between the battery capacity of the lead storage battery and the voltage of the difference obtained in advance. Alternatively, a method for determining the deterioration of a lead storage battery, wherein a current battery capacity is estimated from a diagram representing a relationship between the battery capacity and the voltage of the difference.
【請求項6】 満充電状態の鉛蓄電池を一定電流で1m
sec以下の短時間充電することにより、該鉛蓄電池の
劣化状態を検知する方法であって、 まず、充電を開始してから1msec以下の時間経過後
の安定状態での前記鉛蓄電池の電池電圧と充電開始前の
前記鉛蓄電池の電池電圧との差分を測定し、前記差分の
電圧を蓄電池に流れる電流で割って内部抵抗を求め、 次に、あらかじめ求めておいた前記鉛蓄電池の電池容量
と前記内部抵抗との回帰式に前記内部抵抗を代入するこ
とにより、あるいは前記電池容量と前記内部抵抗との関
係を表す図より、現在の電池容量を推定することを特徴
とする鉛蓄電池の劣化判定方法。
6. A fully charged lead-acid battery at a constant current of 1 m
A method for detecting the deterioration state of the lead storage battery by charging the lead storage battery for a short period of time of not more than 1 second, and first, the battery voltage of the lead storage battery in a stable state after a lapse of 1 msec or less from the start of charging. Measure the difference between the battery voltage of the lead storage battery before the start of charging, determine the internal resistance by dividing the voltage of the difference by the current flowing through the storage battery, and then determine the battery capacity of the lead storage battery determined in advance and the A method for determining the deterioration of a lead storage battery, wherein a current battery capacity is estimated by substituting the internal resistance into a regression equation with an internal resistance or from a diagram showing a relationship between the battery capacity and the internal resistance. .
【請求項7】 試験対象の満充電状態の鉛蓄電池を一定
電流で1msec以下の短時間充電するためのスイッチ
部及び充電回路部と、前記鉛蓄電池の電池電圧を検出す
るための電圧検出部と、前記充電を開始してから1ms
ec以下の時間経過後の安定状態で前記検出した電池電
圧と前記充電開始前の前記検出した電池電圧との差分の
電圧を計算しあらかじめ求めておいた前記差分の電圧と
電池容量との回帰式に前記差分の電圧を代入して現在の
電池容量を推定する記憶演算部と、前記差分の電圧ある
いは前記推定した電池容量を表示するための表示部と、
前記スイッチ部,前記電圧検出部,前記記憶演算部を順
序立てて操作する操作部と、を具備することを特徴とす
る劣化判定器。
7. A switch unit and a charging circuit unit for charging a fully charged lead storage battery to be tested with a constant current for a short time of 1 msec or less, and a voltage detection unit for detecting a battery voltage of the lead storage battery. , 1 ms after starting the charging
The regression equation between the voltage of the difference and the battery capacity obtained in advance by calculating the voltage of the difference between the detected battery voltage in a stable state after a time equal to or less than ec and the detected battery voltage before the start of charging. A storage operation unit that estimates the current battery capacity by substituting the voltage of the difference, and a display unit that displays the voltage of the difference or the estimated battery capacity.
A deterioration judging device comprising: an operation unit configured to operate the switch unit, the voltage detection unit, and the storage operation unit in order .
【請求項8】 試験対象の満充電状態の鉛蓄電池を一定
電流で1msec以下の短時間充電するためのスイッチ
部及び充電回路部と、前記鉛蓄電池の電池電圧を検出す
るための電圧検出部及び前記鉛蓄電池に流れる電流を検
出するための電流検出部と、前記充電を開始してから1
msec以下の時間経過後の安定状態で前記検出した電
池電圧と前記充電開始前の前記検出した電池電圧との差
分の電圧と前記検出した前記鉛蓄電池に流れる電流とか
ら内部抵抗を計算しあらかじめ求めておいた前記内部抵
抗と電池容量との回帰式に前記内部抵抗を代入して現在
の電池容量を推定する記憶演算部と、前記内部抵抗ある
いは前記推定した電池容量を表示するための表示部と、
前記スイッチ部,前記電圧検出部,前記記憶演算部を順
序立てて操作する操作部と、を具備することを特徴とす
る劣化判定器。
8. A switch unit and a charging circuit unit for charging a fully charged lead storage battery to be tested with a constant current for a short time of 1 msec or less, a voltage detection unit for detecting a battery voltage of the lead storage battery, and A current detector for detecting a current flowing through the lead storage battery;
The internal resistance is calculated and obtained in advance from the voltage of the difference between the detected battery voltage and the detected battery voltage before the start of charging in a stable state after a lapse of time equal to or less than msec and the detected current flowing through the lead storage battery. A storage operation unit that estimates the current battery capacity by substituting the internal resistance into the regression equation between the internal resistance and the battery capacity, and a display unit that displays the internal resistance or the estimated battery capacity. ,
A deterioration judging device comprising: an operation unit configured to operate the switch unit, the voltage detection unit, and the storage operation unit in order.
JP01210893A 1992-02-03 1993-01-28 Lead storage battery deterioration judgment method and deterioration judgment device Expired - Fee Related JP3192794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01210893A JP3192794B2 (en) 1992-02-03 1993-01-28 Lead storage battery deterioration judgment method and deterioration judgment device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1723192 1992-02-03
JP4-17231 1992-02-03
JP01210893A JP3192794B2 (en) 1992-02-03 1993-01-28 Lead storage battery deterioration judgment method and deterioration judgment device

Publications (2)

Publication Number Publication Date
JPH05281309A JPH05281309A (en) 1993-10-29
JP3192794B2 true JP3192794B2 (en) 2001-07-30

Family

ID=26347678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01210893A Expired - Fee Related JP3192794B2 (en) 1992-02-03 1993-01-28 Lead storage battery deterioration judgment method and deterioration judgment device

Country Status (1)

Country Link
JP (1) JP3192794B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799723A (en) * 1993-09-28 1995-04-11 Okamura Kenkyusho:Kk Power capacitance device
JPH08136629A (en) * 1994-11-11 1996-05-31 Kyushu Electric Power Co Inc Device for diagnosing service life of battery
JP3385780B2 (en) * 1995-03-08 2003-03-10 日本電信電話株式会社 Method for deriving regression equation for estimating capacity of Ni-Cd battery for trickle
JP4659296B2 (en) * 2001-08-31 2011-03-30 日置電機株式会社 Method for measuring equivalent parallel resistance of power storage device
JP4038456B2 (en) 2003-08-25 2008-01-23 株式会社豊田中央研究所 Battery characteristic detection method
JP4647509B2 (en) * 2005-03-04 2011-03-09 株式会社オートネットワーク技術研究所 Battery state management device and management method
DE112006000499B4 (en) * 2005-03-04 2017-12-14 Sumitomo Wiring Systems, Ltd. Battery state monitoring device
JP4799941B2 (en) * 2005-07-20 2011-10-26 株式会社オートネットワーク技術研究所 Battery state management device
WO2007032382A1 (en) 2005-09-16 2007-03-22 The Furukawa Electric Co., Ltd Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system
JP4993679B2 (en) * 2006-10-10 2012-08-08 オリジン電気株式会社 Battery discharge control device
KR20110134019A (en) * 2010-06-08 2011-12-14 현대자동차주식회사 Degradation diagnosis method of battery cell of vehicle
JP2012208027A (en) * 2011-03-30 2012-10-25 Gs Yuasa Corp Method for diagnosing deterioration of battery pack
JP5772541B2 (en) * 2011-11-24 2015-09-02 トヨタ自動車株式会社 Vehicle, power storage device diagnosis method, and diagnosis program
JP6469485B2 (en) * 2015-03-16 2019-02-13 一般財団法人電力中央研究所 Battery deterioration determination device, battery pack, battery deterioration determination method, and battery deterioration determination program
CN105572601B (en) * 2016-03-15 2019-02-19 河北工业大学 The judgment method of lithium battery performance degradation
JP7042413B2 (en) * 2018-08-22 2022-03-28 株式会社オートネットワーク技術研究所 Internal resistance detector and power supply
KR102351637B1 (en) * 2018-09-12 2022-01-14 주식회사 엘지에너지솔루션 Apparatus and method for managing battery
JP2022081210A (en) * 2020-11-19 2022-05-31 オムロン株式会社 Storage battery management system and storage battery management method

Also Published As

Publication number Publication date
JPH05281309A (en) 1993-10-29

Similar Documents

Publication Publication Date Title
JP3192794B2 (en) Lead storage battery deterioration judgment method and deterioration judgment device
US6930485B2 (en) Electronic battery tester with battery failure temperature determination
US7295936B2 (en) Electronic battery tester with relative test output
US7723993B2 (en) Electronic battery tester configured to predict a load test result based on open circuit voltage, temperature, cranking size rating, and a dynamic parameter
US7619417B2 (en) Battery monitoring system
EP0711016B1 (en) Parameter measuring method, charge/discharge control method and apparatus and life predicting method for secondary batteries and power storage apparatus using the same
US6472847B2 (en) Battery operable device with battery state-of-charge indicator
EP0407522A1 (en) State-of-charge indications
JP2001231179A (en) Method and apparatus for detecting battery capacity and battery pack
WO2003034084A1 (en) Electronic battery tester with relative test output
TWI579575B (en) Battery health detection method and its circuit
JP2000121710A (en) Battery control device for backup power supply and method for diagnosing deterioration of secondary battery
JPH10172616A (en) Charging device
JP2006153663A (en) Method of determining lifetime of secondary battery
Çadırcı et al. Microcontroller-based on-line state-of-charge estimator for sealed lead–acid batteries
JPH0933620A (en) Degradation judgment method for lead storage-battery
JP3412355B2 (en) Nickel-based battery deterioration determination method
JP2010008133A (en) Portable charger, and deterioration diagnosis method of secondary battery used therefor
KR960027130A (en) Battery charging control device and method for electric vehicle
JP3410158B2 (en) Lead storage battery deterioration judgment method and deterioration judgment device
JP3478069B2 (en) Method for detecting remaining capacity of lithium ion secondary battery
JP3426019B2 (en) Method and apparatus for estimating remaining capacity of Ni-MH battery
JP2000133322A (en) Charge/discharge system for secondary battery
JPH1123680A (en) Method and device for life determination of lead storage battery
EP1199767B1 (en) Battery operable device with battery state-of-charge indicator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees