JP3189399B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3189399B2
JP3189399B2 JP19303692A JP19303692A JP3189399B2 JP 3189399 B2 JP3189399 B2 JP 3189399B2 JP 19303692 A JP19303692 A JP 19303692A JP 19303692 A JP19303692 A JP 19303692A JP 3189399 B2 JP3189399 B2 JP 3189399B2
Authority
JP
Japan
Prior art keywords
film
refractory metal
metal nitride
gate electrode
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19303692A
Other languages
Japanese (ja)
Other versions
JPH0613605A (en
Inventor
英明 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP19303692A priority Critical patent/JP3189399B2/en
Publication of JPH0613605A publication Critical patent/JPH0613605A/en
Application granted granted Critical
Publication of JP3189399B2 publication Critical patent/JP3189399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願の発明は、ゲート電極を有す
る半導体装置の製造方法に関するものである。
The present invention relates to a relates to a method for manufacturing a semiconductor equipment having a gate electrode.

【0002】[0002]

【従来の技術】半導体装置におけるゲート電極の材料と
しては、W、Mo、Ti等の高融点金属のシリサイド膜
を多結晶Si膜上に積層させた高融点金属ポリサイド
や、不純物をドーピングした多結晶Siが、一般的に用
いられている。しかし、集積度が高くなってゲート電極
の線幅が細くなると、このゲート電極の電気抵抗が高く
なるので、半導体装置の高速動作のために、電気抵抗が
より低いゲート電極の材料が要求されている。
2. Description of the Related Art As a material of a gate electrode in a semiconductor device, a refractory metal polycide in which a silicide film of a refractory metal such as W, Mo, Ti or the like is laminated on a polycrystalline Si film, or a polycrystalline material doped with impurities is used. Si is generally used. However, as the degree of integration increases and the line width of the gate electrode becomes narrower, the electrical resistance of the gate electrode becomes higher. For high-speed operation of the semiconductor device, a material for the gate electrode having a lower electrical resistance is required. I have.

【0003】そこで、図2に示す様に、ゲート電極11
をW膜12で形成した第1従来例や、図3に示す様に、
不純物をドーピングした多結晶Si膜13とTiN膜1
4とW膜15とを順次に積層させた三層膜でゲート電極
11を形成した第2従来例等が提案されている。
[0003] Therefore, as shown in FIG.
As shown in FIG. 3 or a first conventional example in which
Polycrystalline Si film 13 doped with impurities and TiN film 1
A second prior art example in which the gate electrode 11 is formed of a three-layer film in which the gate electrode 4 and the W film 15 are sequentially stacked has been proposed.

【0004】[0004]

【発明が解決しようとする課題】ところが、図2に示し
た第1従来例では、W膜12とゲート酸化膜であるSi
2 膜16との密着性が悪く、W膜12の耐酸化性も低
く、SiO2 膜16の膜質も劣化する。また、図3に示
した第2従来例では、W膜15が層間絶縁膜17と接し
ているので、今度はゲート電極11と層間絶縁膜17と
の密着性が悪く、ゲート電極11が熱的に不安定で、熱
処理を受けると層間絶縁膜17がゲート電極11から剥
離し易い。従って、図2、3に示した第1及び第2従来
例の何れにおいても、信頼性が低かった。
However, in the first prior art shown in FIG. 2, the W film 12 and the gate oxide film Si
The adhesion to the O 2 film 16 is poor, the oxidation resistance of the W film 12 is low, and the quality of the SiO 2 film 16 is also deteriorated. Further, in the second conventional example shown in FIG. 3, since the W film 15 is in contact with the interlayer insulating film 17, the adhesion between the gate electrode 11 and the interlayer insulating film 17 is poor, and the gate electrode 11 is thermally And the interlayer insulating film 17 is easily peeled off from the gate electrode 11 when subjected to a heat treatment. Therefore, the reliability was low in each of the first and second conventional examples shown in FIGS.

【0005】[0005]

【課題を解決するための手段】本願の発明による半導体
装置の製造方法は、半導体膜23と第1の高融点金属窒
化膜24と高融点金属膜25と第2の高融点金属窒化膜
26と被覆膜27とを順次に堆積させる工程と、前記被
覆膜27と前記第2の高融点金属窒化膜26と前記高融
点金属膜25とをゲート電極11のパターンに加工する
工程と、この加工の後に第3の高融点金属窒化膜32を
全面に堆積させる工程と、前記第3及び第1の高融点金
属窒化膜32、24と前記被覆膜27とのエッチング特
性が互いに異なる条件で前記第3及び第1の高融点金属
窒化膜32、24を異方性エッチングして、前記第3の
高融点金属窒化膜32を前記パターンの側面にのみ残す
と共に前記第1の高融点金属窒化膜24を前記高融点金
属膜25の下面にのみ残す工程と、前記異方性エッチン
グの後に前記パターンをマスクにして前記半導体膜23
をパターニングする工程とを有している。
A method of manufacturing a semiconductor device according to the present invention comprises a semiconductor film 23, a first refractory metal nitride film 24, a refractory metal film 25, and a second refractory metal nitride film 26. A step of sequentially depositing a coating film 27, a step of processing the coating film 27, the second refractory metal nitride film 26, and the refractory metal film 25 into a pattern of the gate electrode 11, After the processing, a step of depositing a third refractory metal nitride film 32 on the entire surface, and under the condition that the etching characteristics of the third and first refractory metal nitride films 32 and 24 and the coating film 27 are different from each other. The third and first refractory metal nitride films 32 and 24 are anisotropically etched to leave the third refractory metal nitride film 32 only on the side surfaces of the pattern and to form the first refractory metal nitride film 32. The film 24 is placed on the lower surface of the refractory metal film 25. A step of leaving viewed, the pattern as a mask after said anisotropic etching the semiconductor film 23
Patterning step.

【0006】[0006]

【作用】本願の発明による方法で製造された半導体装置
では、ゲート電極11のうちで下層側の半導体膜23が
ゲート絶縁膜16と接しているのでゲート電極11とゲ
ート絶縁膜16との界面が安定であり、しかもゲート電
極11のうちの上層側が高融点金属膜25であるのでゲ
ート電極11の電気抵抗が低いにも拘らず、高融点金属
膜25の全面を高融点金属窒化膜24、26、32が被
覆しているで、ゲート電極11が熱的に安定で層間絶縁
膜17、34がゲート電極11から剥離しにくい。
In the semiconductor device manufactured by the method according to the invention of the present application , since the lower semiconductor film 23 of the gate electrode 11 is in contact with the gate insulating film 16, the interface between the gate electrode 11 and the gate insulating film 16 is reduced. Since the refractory metal film 25 is on the upper layer side of the gate electrode 11, the entire surface of the refractory metal film 25 is formed of the refractory metal nitride films 24 and 26 despite the low electrical resistance of the gate electrode 11. , 32 are covered, the gate electrode 11 is thermally stable, and the interlayer insulating films 17, 34 are not easily peeled off from the gate electrode 11.

【0007】そして、本願の発明による半導体装置の製
造方法では、第1の高融点金属窒化膜24で高融点金属
膜25の下面を被覆し、第2の高融点金属窒化膜26で
高融点金属膜25の上面を被覆し、第3の高融点金属窒
化膜32で高融点金属膜25の両側面を被覆することが
できる。しかも、第3の高融点金属窒化膜32を異方性
エッチングする際に、第2の高融点金属窒化膜26の上
面を被覆膜27で被覆しているので、第2の高融点金属
窒化膜26も同時に除去されるのを防止している。
In the method of manufacturing a semiconductor device according to the present invention , the lower surface of the refractory metal film 25 is covered with the first refractory metal nitride film 24 and the refractory metal nitride film 26 is covered with the second refractory metal nitride film 26. The upper surface of the film 25 can be covered, and both side surfaces of the refractory metal film 25 can be covered with the third refractory metal nitride film 32. Moreover, when the third refractory metal nitride film 32 is anisotropically etched, since the upper surface of the second refractory metal nitride film 26 is covered with the coating film 27, the second refractory metal nitride film 32 is covered. The film 26 is also prevented from being removed at the same time.

【0008】[0008]

【実施例】以下、本願の発明の一実施例を、図1を参照
しながら説明する。なお、図2、3に示した第1及び第
2従来例と同一の構成部分には、同一の符号を付してあ
る。
An embodiment of the present invention will be described below with reference to FIG. The same components as those of the first and second conventional examples shown in FIGS. 2 and 3 are denoted by the same reference numerals.

【0009】本実施例では、図1(a)に示す様に、P
型のSi基板21の素子分離領域の表面に、LOCOS
法等で厚いSiO2 膜22をまず形成する。そして、素
子活性領域の表面にゲート酸化膜としてのSiO2 膜1
6を形成し、続けて、膜厚が数十〜数百nmの多結晶S
i膜23を減圧CVD法で堆積させる。堆積後の多結晶
Si膜23には不純物をドーピングするが、その一つの
方法として、POCl3 雰囲気中で高温熱処理を施すこ
とによって、Phosを1019cm-3以上の濃度にドー
ピングする方法がある。
In this embodiment, as shown in FIG.
LOCOS on the surface of the element isolation region of the Si substrate 21
First, a thick SiO 2 film 22 is formed by a method or the like. Then, an SiO 2 film 1 as a gate oxide film is formed on the surface of the element active region.
6 and then a polycrystalline S having a film thickness of several tens to several hundreds nm.
An i film 23 is deposited by a low pressure CVD method. The polycrystalline Si film 23 after the deposition is doped with impurities. As one of the methods, there is a method of doping Phos to a concentration of 10 19 cm −3 or more by performing a high-temperature heat treatment in a POCl 3 atmosphere. .

【0010】また、後述する様に多結晶Si膜23上に
TiN膜24を堆積させた後、このTiN膜24を通し
て、BまたはPhosをやはり1019cm-3以上の濃度
になる様にイオン注入法でドーピングしてもよい。更に
また、多結晶Si膜23を堆積させた後、多結晶Si膜
23の表面に薄いSiO2 膜(図示せず)を形成し、こ
のSiO2 膜を通して不純物をイオン注入し、熱処理を
施した後に、SiO2膜を除去してもよい。
After a TiN film 24 is deposited on the polycrystalline Si film 23 as described later, B or Phos is ion-implanted through the TiN film 24 so as to have a concentration of 10 19 cm -3 or more. It may be doped by a method. Furthermore, after depositing the polycrystalline Si film 23, a thin SiO 2 film (not shown) is formed on the surface of the polycrystalline Si film 23, impurities are ion-implanted through the SiO 2 film, and heat treatment is performed. Later, the SiO 2 film may be removed.

【0011】多結晶Si膜23に不純物をドーピングし
た後、膜厚が数〜数十nmのTiN膜24をスパッタ法
かまたはCVD法で多結晶Si膜23上に堆積させる。
その後、膜厚が数十〜数百nmのW膜25をスパッタ法
かまたはCVD法でTiN膜24上に堆積させ、更に膜
厚が数〜数十nmのTiN膜26をTiN膜24と同様
の方法でW膜25上に堆積させる。なお、W膜25の代
わりに、Ti膜やMo膜等を用いてもよい。
After doping the polycrystalline Si film 23 with impurities, a TiN film 24 having a thickness of several to several tens nm is deposited on the polycrystalline Si film 23 by a sputtering method or a CVD method.
Thereafter, a W film 25 having a thickness of several tens to several hundreds nm is deposited on the TiN film 24 by a sputtering method or a CVD method, and a TiN film 26 having a thickness of several to several tens nm is formed in the same manner as the TiN film 24. Is deposited on the W film 25 by the method described above. Note that, instead of the W film 25, a Ti film, a Mo film, or the like may be used.

【0012】そして、膜厚が数十〜数百nmのSiO2
膜27をCVD法でTiN膜26上に堆積させた後、レ
ジスト31をリソグラフィ法でゲート電極11のパター
ンに加工する。次に、このレジスト31をマスクにし
て、図1(b)に示す様に、SiO2 膜27とTiN膜
26とW膜25とを連続的に異方性エッチングし、レジ
スト31を除去した後、膜厚が数〜数十nmのTiN膜
32をスパッタ法かまたはCVD法で再び全面に堆積さ
せる。なお、TiN膜26、32の代わりに、二層膜で
あるTiN/Ti膜を用いてもよい。
Then, SiO 2 having a film thickness of several tens to several hundreds of nm
After depositing the film 27 on the TiN film 26 by the CVD method, the resist 31 is processed into a pattern of the gate electrode 11 by the lithography method. Next, using the resist 31 as a mask, as shown in FIG. 1B, the SiO 2 film 27, the TiN film 26, and the W film 25 are continuously anisotropically etched to remove the resist 31. Then, a TiN film 32 having a film thickness of several to several tens nm is deposited again on the entire surface by a sputtering method or a CVD method. Instead of the TiN films 26 and 32, a two-layer TiN / Ti film may be used.

【0013】次に、TiN膜32の全面を異方性エッチ
ングして、図1(c)に示す様に、W膜25の側面にの
みTiN膜32を側壁状に残す。そして、SiO2 膜2
7をマスクにして、TiN膜24と多結晶Si膜23と
を連続的に異方性エッチングして、全面をTiN膜2
4、26、32に被覆されたW膜25と多結晶Si膜2
3とが組み合わされたゲート電極11を完成させる。
Next, the entire surface of the TiN film 32 is anisotropically etched to leave the TiN film 32 only on the side surface of the W film 25 in a side wall shape as shown in FIG. And the SiO 2 film 2
7 is used as a mask, the TiN film 24 and the polycrystalline Si film 23 are continuously anisotropically etched to form the entire surface of the TiN film 2.
W film 25 and polycrystalline Si film 2 coated on 4, 26 and 32
3 is completed.

【0014】その後、ゲート電極11とSiO2 膜22
とをマスクにして、PhosまたはAsをSi基板21
にイオン注入して、濃度が1017〜1018cm-3である
-型の拡散層33を形成する。そして、SiO2 膜ま
たは多結晶Si膜で、ゲート電極11の側面にLDDス
ペーサ34を形成する。更に、ゲート電極11とLDD
スペーサ34とSiO2 膜22とをマスクにして、Ph
osまたはAsをSi基板21にイオン注入して、濃度
が1019〜1022cm-3であるN+ 型の拡散層35を形
成する。
Thereafter, the gate electrode 11 and the SiO 2 film 22
Is used as a mask, and Phos or As is
Then, an N -type diffusion layer 33 having a concentration of 10 17 to 10 18 cm −3 is formed. Then, an LDD spacer 34 is formed on the side surface of the gate electrode 11 using a SiO 2 film or a polycrystalline Si film. Further, the gate electrode 11 and the LDD
Using the spacer 34 and the SiO 2 film 22 as a mask, Ph
Os or As is ion-implanted into the Si substrate 21 to form an N + type diffusion layer 35 having a concentration of 10 19 to 10 22 cm −3 .

【0015】その後、不純物を含まないSiO2 膜、P
SG膜、BPSG膜、SiN膜またはこれらを組み合わ
せた膜で層間絶縁膜17を形成し、一方の拡散層35に
達するコンタクト孔36を層間絶縁膜17等に開孔す
る。そして、多結晶Si膜、W膜、Ti膜、TiN膜ま
たはこれらを組み合わせた膜でコンタクト孔36を埋め
込んで、プラグ37を形成する。更に、Ti膜、TiN
膜、AlSi膜、AlSiCu膜等の複合膜でAl配線
41を形成し、表面保護膜42を堆積させて、LDD構
造のMOSトランジスタ43を完成させる。
Thereafter, an SiO 2 film containing no impurities, P
The interlayer insulating film 17 is formed of an SG film, a BPSG film, a SiN film or a combination thereof, and a contact hole 36 reaching one of the diffusion layers 35 is formed in the interlayer insulating film 17 or the like. Then, the plug 37 is formed by filling the contact hole 36 with a polycrystalline Si film, a W film, a Ti film, a TiN film, or a combination thereof. Furthermore, Ti film, TiN
An Al wiring 41 is formed of a composite film such as a film, an AlSi film, and an AlSiCu film, and a surface protection film 42 is deposited to complete a MOS transistor 43 having an LDD structure.

【0016】以上の様にして製造したMOSトランジス
タ43では、層間絶縁膜17及びLDDスペーサ34と
W膜25との間にTiN膜26、32またはTiN/T
i膜が介在しているので、ゲート電極11が熱的に安定
で、層間絶縁膜17及びLDDスペーサ34がゲート電
極11から剥離しにくい。
In the MOS transistor 43 manufactured as described above, the TiN films 26 and 32 or the TiN / T
Since the i film is interposed, the gate electrode 11 is thermally stable, and the interlayer insulating film 17 and the LDD spacer 34 are not easily separated from the gate electrode 11.

【0017】[0017]

【発明の効果】本願の発明による半導体装置の製造方法
では、高融点金属膜の全面を高融点金属窒化膜で被覆す
ることができ、しかも第3の高融点金属窒化膜を異方性
エッチングする際に第2の高融点金属窒化膜も同時に除
去されるのを防止している。このため、ゲート電極とゲ
ート絶縁膜との界面が安定であり、しかもゲート電極の
電気抵抗が低いにも拘らず、ゲート電極が熱的に安定で
層間絶縁膜がゲート電極から剥離しにくいので、性能及
び信頼性の何れもが優れている半導体装置を安定的に製
造することができる。
According to the method of manufacturing a semiconductor device according to the present invention, the entire surface of the refractory metal film can be covered with the refractory metal nitride film, and the third refractory metal nitride film is anisotropically etched. At this time, the second refractory metal nitride film is also prevented from being removed at the same time . Therefore, the gate electrode and gate
The interface with the gate insulating film is stable and the gate electrode
Despite the low electrical resistance, the gate electrode is thermally stable
Since the interlayer insulating film is difficult to peel off from the gate electrode,
A semiconductor device having both excellent reliability and reliability can be manufactured stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願の発明の一実施例を工程順に示す側断面図
である。
FIG. 1 is a side sectional view showing an embodiment of the present invention in the order of steps.

【図2】本願の発明の第1従来例の側断面図である。FIG. 2 is a side sectional view of a first conventional example of the present invention.

【図3】本願の発明の第2従来例の側断面図である。FIG. 3 is a side sectional view of a second conventional example of the present invention.

【符号の説明】[Explanation of symbols]

11 ゲート電極 23 多結晶Si膜 24 TiN膜 25 W膜 26 TiN膜 27 SiO2 膜 32 TiN膜Reference Signs List 11 gate electrode 23 polycrystalline Si film 24 TiN film 25 W film 26 TiN film 27 SiO 2 film 32 TiN film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 21/28 301 H01L 29/43 H01L 21/336 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 29/78 H01L 21/28 301 H01L 29/43 H01L 21/336

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体膜と第1の高融点金属窒化膜と高
融点金属膜と第2の高融点金属窒化膜と被覆膜とを順次
に堆積させる工程と、 前記被覆膜と前記第2の高融点金属窒化膜と前記高融点
金属膜とをゲート電極のパターンに加工する工程と、 この加工の後に第3の高融点金属窒化膜を全面に堆積さ
せる工程と、 前記第3及び第1の高融点金属窒化膜と前記被覆膜との
エッチング特性が互いに異なる条件で前記第3及び第1
の高融点金属窒化膜を異方性エッチングして、前記第3
の高融点金属窒化膜を前記パターンの側面にのみ残すと
共に前記第1の高融点金属窒化膜を前記高融点金属膜の
下面にのみ残す工程と、 前記異方性エッチングの後に前記パターンをマスクにし
て前記半導体膜をパターニングする工程とを有する半導
体装置の製造方法。
A step of sequentially depositing a semiconductor film, a first refractory metal nitride film, a refractory metal film, a second refractory metal nitride film, and a coating film; Processing the high-melting point metal nitride film and the high-melting point metal film into a gate electrode pattern; depositing a third high-melting point metal nitride film over the entire surface after the processing; 3 and 1 under conditions that the etching characteristics of the refractory metal nitride film and the coating film are different from each other.
Anisotropically etching the refractory metal nitride film of
Leaving the refractory metal nitride film only on the side surfaces of the pattern and leaving the first refractory metal nitride film only on the lower surface of the refractory metal film, using the pattern as a mask after the anisotropic etching. Patterning the semiconductor film by using the above method.
JP19303692A 1992-06-26 1992-06-26 Method for manufacturing semiconductor device Expired - Fee Related JP3189399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19303692A JP3189399B2 (en) 1992-06-26 1992-06-26 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19303692A JP3189399B2 (en) 1992-06-26 1992-06-26 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0613605A JPH0613605A (en) 1994-01-21
JP3189399B2 true JP3189399B2 (en) 2001-07-16

Family

ID=16301102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19303692A Expired - Fee Related JP3189399B2 (en) 1992-06-26 1992-06-26 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3189399B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW444257B (en) 1999-04-12 2001-07-01 Semiconductor Energy Lab Semiconductor device and method for fabricating the same

Also Published As

Publication number Publication date
JPH0613605A (en) 1994-01-21

Similar Documents

Publication Publication Date Title
US5753546A (en) Method for fabricating metal oxide field effect transistors
JP3128811B2 (en) Method for manufacturing semiconductor device
JPH0817925A (en) Semiconductor device and its manufacture
JP2773072B2 (en) Method of forming metal wiring of semiconductor device
JPH05291343A (en) Semiconductor device
JPH06244185A (en) Wiring structure and its manufacture
JP3189399B2 (en) Method for manufacturing semiconductor device
JP2000514241A (en) Transistor with self-aligned contacts and field insulator and fabrication process for the transistor
JP2762473B2 (en) Method for manufacturing semiconductor device
JP3194793B2 (en) Method for manufacturing semiconductor device
JPH04355951A (en) Semiconductor device and manufacture thereof
JPH0758110A (en) Semiconductor device
JP2518100B2 (en) Method for manufacturing semiconductor device
JP3120750B2 (en) Semiconductor device and manufacturing method thereof
JP2950620B2 (en) Semiconductor device
JP3121777B2 (en) Method for manufacturing semiconductor device
JP3178867B2 (en) Method for manufacturing semiconductor device
JPH02111052A (en) Formation of multilayer interconnection
JP2797367B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0621053A (en) Manufacture of semiconductor device
JPH01287963A (en) Manufacture of semiconductor device
JPH01189950A (en) Semiconductor capacitance element and its manufacture
JPS62262443A (en) Semiconductor device and manufacture thereof
JPH09219494A (en) Semiconductor device and manufacture thereof
JPS58220447A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees