JP3188991B2 - Temperature detecting device and semiconductor manufacturing method and device using the temperature detecting device - Google Patents

Temperature detecting device and semiconductor manufacturing method and device using the temperature detecting device

Info

Publication number
JP3188991B2
JP3188991B2 JP11696593A JP11696593A JP3188991B2 JP 3188991 B2 JP3188991 B2 JP 3188991B2 JP 11696593 A JP11696593 A JP 11696593A JP 11696593 A JP11696593 A JP 11696593A JP 3188991 B2 JP3188991 B2 JP 3188991B2
Authority
JP
Japan
Prior art keywords
optical fiber
temperature detecting
detecting device
temperature
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11696593A
Other languages
Japanese (ja)
Other versions
JPH06331457A (en
Inventor
学 枝村
主人 高橋
直行 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11696593A priority Critical patent/JP3188991B2/en
Priority to US08/246,300 priority patent/US5556204A/en
Publication of JPH06331457A publication Critical patent/JPH06331457A/en
Priority to US08/460,600 priority patent/US5673750A/en
Application granted granted Critical
Publication of JP3188991B2 publication Critical patent/JP3188991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置などに
おいて、製造プロセス中のウエハの温度を検出する温度
検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature detecting device for detecting a temperature of a wafer during a manufacturing process in a semiconductor manufacturing apparatus or the like.

【0002】[0002]

【従来の技術】近年、半導体デバイスは、ますます微細
化、集積化が進んでいる。より精密な半導体デバイスを
実現するためには、製造プロセスに影響するさまざまな
条件を適切に維持することが必要である。特に、製造プ
ロセス中のウエハの温度は、重要な要素のひとつであ
り、製造プロセス中のウエハ温度を検出し、このウエハ
温度を制御することが要求されている。
2. Description of the Related Art In recent years, semiconductor devices have been increasingly miniaturized and integrated. In order to realize more precise semiconductor devices, it is necessary to appropriately maintain various conditions affecting the manufacturing process. In particular, the temperature of the wafer during the manufacturing process is one of the important factors, and it is required to detect the temperature of the wafer during the manufacturing process and control the temperature of the wafer.

【0003】半導体製造装置の代表例として、マイクロ
波プラズマエッチング装置を図6に示す。マイクロ波プ
ラズマエッチング装置は、マグネトロン27で発生させ
たマイクロ波21によって、プラズマ24を励起し、プ
ラズマ24のウエハ18に対する物理、化学作用によっ
てエッチングを行う装置である。このようなマイクロ波
プラズマエッチング装置において、ウエハ18の温度を
モニタするためには、いくつかの方法があるが、最も現
実的な方法は、蛍光温度計を用いることである。 蛍光
温度計は、蛍光体を光ファイバの先端に設置し、光ファ
イバを通じて励起光のパルスを照射したときの蛍光体の
発光の特性の温度依存性を利用して、蛍光体の温度を測
定する原理の温度計である。この蛍光温度計を用いて、
ウエハの温度をモニタするためには、蛍光体をウエハの
裏面に塗布または設置するか、または、先端に蛍光体を
取り付けた光ファイバを、ウエハの裏面に密着させる必
要がある。
FIG. 6 shows a microwave plasma etching apparatus as a typical example of a semiconductor manufacturing apparatus. The microwave plasma etching apparatus is an apparatus that excites a plasma 24 by a microwave 21 generated by a magnetron 27 and performs etching by a physical and chemical action of the plasma 24 on the wafer 18. In such a microwave plasma etching apparatus, there are several methods for monitoring the temperature of the wafer 18, but the most practical method is to use a fluorescent thermometer. A fluorescent thermometer measures the temperature of a phosphor by placing the phosphor at the tip of an optical fiber and utilizing the temperature dependence of the emission characteristics of the phosphor when irradiated with a pulse of excitation light through the optical fiber. It is a thermometer of principle. Using this fluorescence thermometer,
In order to monitor the temperature of the wafer, it is necessary to apply or install a fluorescent substance on the back surface of the wafer, or to make an optical fiber having a fluorescent substance attached to the tip adhere to the back surface of the wafer.

【0004】特開平4−58122号公報に記載されたRF
プラズマエッチング装置は、光ファイバの先端に蛍光体
を設置し、蛍光体をさらに保護キャップで覆った先端形
状とし、ウエハの裏面側に、先端が電極の面からわずか
に突き出るようにして取り付けて、ウエハが静電吸着さ
れることにより、保護キャップがウエハの裏面に押し当
てられるものである。
[0004] RF described in Japanese Patent Application Laid-Open No. 4-58122
In the plasma etching apparatus, a phosphor is placed at the tip of the optical fiber, the phosphor is further covered with a protective cap, and the tip is slightly attached to the back side of the wafer so that the tip slightly protrudes from the surface of the electrode. When the wafer is electrostatically attracted, the protective cap is pressed against the back surface of the wafer.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記技
術のウエハの裏面に蛍光体を塗付あるいは設置すること
は、ウエハが蛍光体によって、汚染される恐れがある
し、また、特開平4−58122号公報に記載されたような
構造では、先端部を確実にウエハに接触させ、かつウエ
ハを静電吸着するためには、先端の突き出しの寸法を正
確に調整し設定する必要があるが、この調整及び設定作
業が非常に困難である。
However, applying or arranging a phosphor on the back surface of the wafer according to the above technique may cause contamination of the wafer by the phosphor, and Japanese Unexamined Patent Publication No. 4-58122. In the structure described in Japanese Patent Application Laid-Open Publication No. H10-260, in order to make the front end portion surely contact the wafer and electrostatically attract the wafer, it is necessary to accurately adjust and set the size of the protrusion of the front end. Adjustment and setting operations are very difficult.

【0006】本発明は、光ファイバを用いた蛍光温度計
の温度測定を精度良く、容易に行えるようにすることを
目的とする。
An object of the present invention is to enable accurate and easy temperature measurement of a fluorescent thermometer using an optical fiber.

【0007】[0007]

【課題を解決するための手段】上記の課題は、光ファイ
バを通じて励起光のパルスを照射したときの蛍光体の発
光特性の温度依存性によって被測定物の温度を測定する
原理の蛍光温度計において、前記光ファイバを途中で中
継し、複数とすることにより、被測定物側の光ファイバ
を移動手段で、前記被測定物に対して進退可能とするこ
とにより達成される。
An object of the present invention is to provide a fluorescence thermometer which measures the temperature of an object to be measured based on the temperature dependence of the emission characteristics of a phosphor when a pulse of excitation light is irradiated through an optical fiber. This is achieved by relaying the optical fiber on the way and providing a plurality of optical fibers so that the optical fiber on the device under test side can move forward and backward with respect to the device under test by moving means.

【0008】[0008]

【作用】光ファイバの全てを動かすのではなく、非常に
軽量な被測定物側の光ファイバのみを移動手段で前記被
測定物に対して進退可能とすれば良いので、蛍光体を保
護する保護キャップを確実に被測定物に接触させること
ができ、被測定物の温度を正確に測定することが出来
る。
In this case, not all the optical fibers need to be moved, but only the very lightweight optical fiber on the object to be measured can be moved back and forth with respect to the object by the moving means. The cap can be reliably brought into contact with the object to be measured, and the temperature of the object to be measured can be accurately measured.

【0009】[0009]

【実施例】本発明である温度検出装置の第1の実施例を
図1に示す。該温度検出装置は、被測定物1を載せる面
に静電チャック9を有したホルダ2と、被測定物1側の
端部に蛍光体3と該蛍光体3を覆い保護する保護キャッ
プ4を有した被測定物側の光ファイバ5と、該被測定物
側の光ファイバ5を被測定物1が静電吸着される面に対
して進退させるアクチュエ−タ7と、該アクチュエ−タ
7が作動する作動空間33と、中継部15で光ファイバ
の軸心線を前記被測定物側の光ファイバ5の軸心線と合
致させた測定器側の光ファイバ6と、該測定器側の光フ
ァイバ6が接続されている蛍光温度計の測定器8とで構
成されている。前記アクチュエ−タ7は、被測定物側の
光ファイバ5に同心状に固定され光ファイバ5と共に被
測定物側に進退可能な円板状の鍔29と、該鍔29の測
定器8側の面とホルダ2内の作動空間33の床面とを接
続した二重ベローズで構成され、二重ベローズ内のガス
圧により被測定物1に対して被測定物側の光ファイバ5
を進退させるものである。ホルダ2内の作動空間33の
床面に配置された中継部15は、前記測定器側の光ファ
イバ6を固定し、前記被測定物側の光ファイバ5の軸心
線と合致させ、該光ファイバ5の移動を許容するような
円筒状を形成したものである。
FIG. 1 shows a first embodiment of a temperature detecting device according to the present invention. The temperature detecting device includes a holder 2 having an electrostatic chuck 9 on a surface on which the device 1 is mounted, a phosphor 3 at an end on the device 1 side, and a protective cap 4 for covering and protecting the phosphor 3. The optical fiber 5 on the DUT side having the actuator, the actuator 7 for moving the optical fiber 5 on the DUT side with respect to the surface on which the DUT 1 is electrostatically attracted, and the actuator 7 An operating space 33 that operates, an optical fiber 6 on the measuring instrument side in which the axis of the optical fiber coincides with an axis of the optical fiber 5 on the object side at the relay section 15, and a light on the measuring instrument side. It comprises a measuring device 8 of a fluorescence thermometer to which a fiber 6 is connected. The actuator 7 has a disc-shaped flange 29 fixed concentrically to the optical fiber 5 on the side of the object to be measured and capable of moving forward and backward together with the optical fiber 5 toward the side of the object to be measured. The surface and the floor surface of the working space 33 in the holder 2 are connected to each other.
Is to move forward and backward. The relay section 15 arranged on the floor of the working space 33 in the holder 2 fixes the optical fiber 6 on the measuring instrument side, matches the axis of the optical fiber 5 on the measuring object side, and It has a cylindrical shape that allows the movement of the fiber 5.

【0010】被測定物1は、ホルダ2の静電チャック9
面に載せられ、静電吸着される。このときは、光ファイ
バ5の先端の保護キャップ4は、ホルダ2の静電チャッ
ク9面よりも下にあり被測定物1とは接触していない。
被測定物1の静電チャック9面への吸着後、アクチュエ
−タ7により、前記被測定物側の光ファイバ5は、被測
定物1側に動かされ、先端部の保護キャップ4が被測定
物1に押し付けられて、蛍光体3の温度は被測定物1の
温度になる。この段階で、励起光のパルスが蛍光体3に
照射され、このときの蛍光体3の発光特性の温度依存性
によって被測定物1の温度を検出する。前記被測定物側
の光ファイバ5が、被測定物1側に移動することによっ
て、中継部15で前記被測定物側の光ファイバ5と前記
測定器側の光ファイバ6との間には、隙間が出来ること
になり、光が減衰することが考えられるが、蛍光温度計
による温度測定は、原理上、光の強度の減衰時定数に依
存し、光の強度の絶対値には依存しないので、誤差の原
因にはならない。
The DUT 1 is held on the electrostatic chuck 9 of the holder 2.
It is placed on a surface and electrostatically attracted. At this time, the protective cap 4 at the tip of the optical fiber 5 is below the surface of the electrostatic chuck 9 of the holder 2 and is not in contact with the DUT 1.
After the DUT 1 is attracted to the surface of the electrostatic chuck 9, the optical fiber 5 on the DUT side is moved toward the DUT 1 by the actuator 7, and the protective cap 4 at the tip is measured. When pressed against the object 1, the temperature of the phosphor 3 becomes the temperature of the DUT 1. At this stage, the phosphor 3 is irradiated with a pulse of the excitation light, and the temperature of the DUT 1 is detected based on the temperature dependence of the emission characteristics of the phosphor 3 at this time. By moving the optical fiber 5 on the DUT side to the DUT 1 side, the relay section 15 places a gap between the optical fiber 5 on the DUT side and the optical fiber 6 on the measuring instrument side. It is conceivable that light will attenuate due to the formation of a gap, but temperature measurement by a fluorescence thermometer depends on the decay time constant of light intensity in principle and does not depend on the absolute value of light intensity. , Does not cause errors.

【0011】本実施例でのアクチュエ−タ7は、ガス圧
を用いた2重ベローズにより、光ファイバ5と、光ファ
イバ5に固定された鍔29を移動するものである。前記
光ファイバ5を進退させる方法としては、前記ガス圧の
代わりに、液圧による駆動や形状記憶合金やバイメタル
などの変形量を利用したもの、または、ピエゾ素子やマ
グネットを利用したものなどが考えられる。
The actuator 7 in this embodiment moves the optical fiber 5 and the flange 29 fixed to the optical fiber 5 by a double bellows using gas pressure. As a method of moving the optical fiber 5 forward and backward, instead of the gas pressure, a method using liquid pressure driving or a deformation amount of a shape memory alloy or a bimetal, or a method using a piezo element or a magnet may be considered. Can be

【0012】本発明である温度検出装置の第2の実施例
を図2に示す。該温度検出装置は、第1の実施例のアク
チュエ−タ7の代わりに、被測定物側の光ファイバ5に
同心状に固定され光ファイバ5と共に被測定物側に進退
可能な円板状の鍔29と、該鍔29の測定器8側の面と
ホルダ2内の作動空間33の床面とを接続したばね10
を設けて構成されたものである。前記被測定物側の光フ
ァイバ5の先端の保護キャップ4が、ホルダ2の静電チ
ャック9面よりもわずかに被測定物1側に突き出した状
態に、前記被測定物側の光ファイバ5をばね10で保持
しておく。また、前記被測定物側の光ファイバ5と前記
測定器側の光ファイバ6との間には、中継部15で間隙
を設けておき、ばね10の力を被測定物1の重量より小
さくしておく。前記被測定物1をホルダ2の静電チャッ
ク9面に載せると、前記被測定物側の光ファイバ5が被
測定物1によって押し下げられるとともに、保護キャッ
プ4が被測定物1に押し付けられて、被測定物1の温度
を検出できる。
FIG. 2 shows a second embodiment of the temperature detecting device according to the present invention. The temperature detecting device is a disk-shaped member which is fixed concentrically to the optical fiber 5 on the object to be measured instead of the actuator 7 of the first embodiment, and which can move forward and backward together with the optical fiber 5 toward the object to be measured. A spring 10 that connects a flange 29 with a surface of the flange 29 on the measuring instrument 8 side and a floor surface of the working space 33 in the holder 2.
Is provided. With the protective cap 4 at the tip of the optical fiber 5 on the DUT side slightly protruding toward the DUT 1 from the surface of the electrostatic chuck 9 of the holder 2, the optical fiber 5 on the DUT is moved. It is held by the spring 10. A gap is provided between the optical fiber 5 on the device under test side and the optical fiber 6 on the measuring device side by a relay section 15 so that the force of the spring 10 is made smaller than the weight of the device under test 1. Keep it. When the DUT 1 is placed on the electrostatic chuck 9 of the holder 2, the optical fiber 5 on the DUT side is pushed down by the DUT 1, and the protective cap 4 is pressed against the DUT 1, The temperature of the device under test 1 can be detected.

【0013】本発明である温度検出装置の第3の実施例
を図3に示す。該温度検出装置は、第1の実施例のアク
チュエ−タ7の代わりに、被測定物側の光ファイバ5に
同心状に固定され光ファイバ5と共に被測定物側に進退
可能な円板状の鍔29と、該鍔29の被測定物1側の面
とホルダ2内の作動空間33の天井面とを接続している
小径のベローズ11と、測定器側の光ファイバ6を固定
した中継部15を含んで、前記鍔29の測定器8側の面
とホルダ2内の作動空間33の底面を接続した大径のベ
ローズ12と、前記各々のベローズにガス13を供給す
るガス通路30とで構成されている。前記小径のベロー
ズ11の頭部は、ホルダ2の静電チャツク9面に連通し
ている。
FIG. 3 shows a third embodiment of the temperature detecting device according to the present invention. The temperature detecting device is a disk-shaped member which is fixed concentrically to the optical fiber 5 on the object to be measured instead of the actuator 7 of the first embodiment, and which can move forward and backward together with the optical fiber 5 toward the object to be measured. A flange 29, a small-diameter bellows 11 connecting the surface of the flange 29 on the DUT 1 side and the ceiling surface of the working space 33 in the holder 2, and a relay section fixing the optical fiber 6 on the measuring instrument side. 15, a large-diameter bellows 12 that connects the surface of the flange 29 on the measuring instrument 8 side and the bottom surface of the working space 33 in the holder 2, and a gas passage 30 that supplies gas 13 to each of the bellows. It is configured. The head of the small diameter bellows 11 communicates with the surface of the electrostatic chuck 9 of the holder 2.

【0014】被測定物1を半導体製造装置内の真空中で
加熱あるいは、冷却するときに、被測定物1とホルダ2
の接触面の熱伝導の促進のために、しばしばヘリウムガ
スなどのガス13を導入する。このガス13を被測定物
1と静電チャツク9面の隙間へ導入すると同時に、適切
なばね定数をもった前記大径のベロ−ズ12内にも導入
すると、前記鍔29で区分けされた被測定物側の作動空
間33のガス圧と前記大径のベロ−ズ12内のガス圧と
で差圧が生じ、この差圧を利用することによって、ガス
13の導入時に前記大径のベロ−ズ12が膨らみ、前記
鍔29を被測定物側に移動させ、これによって、光ファ
イバ5を被測定物側に移動させることができる。本実施
例では、径の異なる大小のベロ−ズを用いたが、その
他、ダイヤフラムや弾性体、またはピストンなどを用い
てもおなじ効果が得られる。
When the DUT 1 is heated or cooled in a vacuum in a semiconductor manufacturing apparatus, the DUT 1 and the holder 2 are heated.
A gas 13 such as helium gas is often introduced in order to promote the heat conduction of the contact surface. When the gas 13 is introduced into the gap between the DUT 1 and the surface of the electrostatic chuck 9 and also into the large diameter bellows 12 having an appropriate spring constant, the gas divided by the flange 29 is formed. A differential pressure is generated between the gas pressure in the working space 33 on the measurement object side and the gas pressure in the large-diameter bellows 12, and by utilizing this differential pressure, the large-diameter bellows is introduced when the gas 13 is introduced. The flange 12 is swelled, and the flange 29 is moved to the object to be measured, whereby the optical fiber 5 can be moved to the object to be measured. In this embodiment, large and small bellows having different diameters are used. However, the same effect can be obtained by using a diaphragm, an elastic body, a piston, or the like.

【0015】上記した第1から第3の実施例では、光フ
ァイバを被測定物側の光ファイバ5と測定器側の光ファ
イバ6の2本としたが、光ファイバを複数本中継しても
よい。
In the first to third embodiments described above, the two optical fibers are the optical fiber 5 on the object to be measured and the optical fiber 6 on the measuring instrument side. Good.

【0016】光ファイバの中継部15においては、光フ
ァイバ相互の軸心線のずれやファイバ間の間隙によって
光が減衰する。蛍光温度計の精度は光の強度には依存し
ないが、著しく強度が減衰すると測定不能となる。これ
を防ぐためには、図4に示すように、被測定物側の光フ
ァイバ5と測定器側の光ファイバ6の中継部15の間隙
に、測定に用いる光の波長に対して透過率が高く、かつ
光ファイバのコアの屈折率に近い液体14を充填し、光
の減衰を減少させる方法がある。
In the optical fiber relay section 15, the light is attenuated due to the deviation of the axis between the optical fibers and the gap between the fibers. Although the accuracy of the fluorescence thermometer does not depend on the light intensity, it cannot be measured if the intensity is significantly attenuated. In order to prevent this, as shown in FIG. 4, the gap between the optical fiber 5 on the DUT side and the relay section 15 of the optical fiber 6 on the measuring device has a high transmittance with respect to the wavelength of the light used for measurement. In addition, there is a method of filling the liquid 14 having a refractive index close to the refractive index of the core of the optical fiber to reduce light attenuation.

【0017】本発明の温度検出装置17をマイクロ波プ
ラズマエッチング装置へ使用した実施例を図5に示す。
本マイクロ波プラズマエッチング装置は、マイクロ波2
1を透過する石英ペルジャ23と、本装置に磁場を作る
ソレノイドコイル22と、エッチングガス19を給排気
する中でプラズマ24を励起する空間31と、ウエハ1
8を静電吸着して保持する電極16と、該電極16に内
装された本発明による温度検出装置17と、前記熱伝導
促進のためのヘリウムガス13の通路30と、電極16
を冷却する冷媒26が流れる冷媒通路32と、冷媒26
を制御するウエハの加熱冷却器(図示せず)と、電極1
6に電圧を印加する高周波電源25と、で構成されてい
る。この装置により、ウエハの静電吸着面に、蛍光温度
計の温度検出端(保護キャップ)を接触させてエッチン
グ中のウエハ温度をモニタすることが可能となる。
FIG. 5 shows an embodiment in which the temperature detecting device 17 of the present invention is used in a microwave plasma etching device.
The present microwave plasma etching apparatus uses a microwave 2
1, a solenoid coil 22 for generating a magnetic field in the apparatus, a space 31 for exciting a plasma 24 while supplying and exhausting the etching gas 19, and a wafer 1.
An electrode 16 for electrostatically holding the electrode 8, a temperature detecting device 17 according to the present invention provided inside the electrode 16, a passage 30 for the helium gas 13 for promoting heat conduction, and an electrode 16.
A refrigerant passage 32 through which a refrigerant 26 for cooling the refrigerant flows;
Heating / cooling device (not shown) for controlling wafer and electrode 1
And a high frequency power supply 25 for applying a voltage to the power supply 6. With this apparatus, it is possible to monitor the temperature of the wafer during etching by bringing the temperature detecting end (protective cap) of the fluorescent thermometer into contact with the electrostatic adsorption surface of the wafer.

【0018】また、このようにして、検出したウエハ温
度を用いて、冷媒26の流量と温度を調節して、ウエハ
の温度を制御することにより、正確なエッチング条件を
実現でき、よりよいエッチングが可能となる。
Also, by controlling the temperature of the wafer by controlling the flow rate and temperature of the coolant 26 using the detected wafer temperature in this manner, accurate etching conditions can be realized, and better etching can be achieved. It becomes possible.

【0019】[0019]

【発明の効果】本発明によれば、温度検出装置を設置す
る際に、先端の温度検出端の取付精度を要しないため、
取り付け、組み立てが容易となり、製造コストを低減で
きるという効果があり、温度検出装置をマイクロ波プラ
ズマエッチング装置へ用いれば、半導体プロセス中のウ
エハ温度を正確に測定でき、得られたウエハ温度を正確
に制御することによって、より微細で高性能な半導体が
製造できるようになる。
According to the present invention, when installing the temperature detecting device, the mounting accuracy of the temperature detecting end at the tip is not required.
There is an effect that mounting and assembling become easy, and manufacturing cost can be reduced. If the temperature detecting device is used for a microwave plasma etching device, the wafer temperature during the semiconductor process can be accurately measured, and the obtained wafer temperature can be accurately measured. By controlling, a finer and higher performance semiconductor can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の温度検出装置の断面図
である。
FIG. 1 is a sectional view of a temperature detecting device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の温度検出装置の断面図
である。
FIG. 2 is a sectional view of a temperature detecting device according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の温度検出装置の断面図
である。
FIG. 3 is a sectional view of a temperature detecting device according to a third embodiment of the present invention.

【図4】本発明の実施例の温度検出装置内の光ファイバ
中継部の部分断面図である。
FIG. 4 is a partial sectional view of an optical fiber relay section in the temperature detecting device according to the embodiment of the present invention.

【図5】本発明の実施例を用いたマイクロ波プラズマエ
ッチング装置の断面図である。
FIG. 5 is a sectional view of a microwave plasma etching apparatus using an embodiment of the present invention.

【図6】従来のマイクロ波プラズマエッチング装置の断
面図の例である。
FIG. 6 is an example of a cross-sectional view of a conventional microwave plasma etching apparatus.

【符号の説明】[Explanation of symbols]

1 被測定物 2 ホルダ 3 蛍光体 4 保護キャップ 5 被測定物側の光ファイバ 6 測定器側の光
ファイバ 7 アクチュエータ 8 蛍光温度計の
測定器 9 静電チャック 10 ばね 11 小径のベロ−ズ 12 大径のベロ
−ズ 13 ガス 14 液体 15 中継部 16 電極 17 温度検出装置 18 ウエハ 19 エッチングガス 20 排気される
ガス 21 マイクロ波 22 ソレノイド
コイル 23 石英ベルジャ 24 プラズマ 25 高周波電源 26 冷媒 27 マグネトロン 28 導波管 29 鍔 30 ガス通路 31 プラズマの励起空間 32 冷媒通路 33 作動空間
REFERENCE SIGNS LIST 1 object under test 2 holder 3 phosphor 4 protective cap 5 optical fiber on object side 6 optical fiber on measuring instrument 7 actuator 8 fluorescent thermometer measuring instrument 9 electrostatic chuck 10 spring 11 small diameter bellows 12 large Diameter bellows 13 Gas 14 Liquid 15 Relay 16 Electrode 17 Temperature detector 18 Wafer 19 Etching gas 20 Exhausted gas 21 Microwave 22 Solenoid coil 23 Quartz bell jar 24 Plasma 25 High frequency power supply 26 Refrigerant 27 Magnetron 28 Waveguide 29 Flange 30 Gas passage 31 Plasma excitation space 32 Refrigerant passage 33 Working space

フロントページの続き (56)参考文献 特開 平4−98135(JP,A) 実開 平2−24342(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01K 11/12 Continued on the front page (56) References JP-A-4-98135 (JP, A) JP-A-2-24342 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01K 11 / 12

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光ファイバを通じて励起光のパルスを照
射したときの蛍光体の発光特性の温度依存性によって被
測定物の温度を測定する原理の蛍光温度計において、前
記光ファイバを途中で中継し、複数とすることにより、
被測定物側の光ファイバを移動手段で、前記被測定物に
対して進退可能とするとともに、測定器側の光ファイバ
は前記被測定物に対して進退しないようにしたことを特
徴とする温度検出装置。
1. A fluorescence thermometer that measures the temperature of an object to be measured by the temperature dependence of the emission characteristics of a phosphor when a pulse of excitation light is irradiated through an optical fiber. , By having multiple
The moving means moves the optical fiber on the device under test side with respect to the device under test, and the optical fiber on the measuring device side.
Is a temperature detecting device which does not advance or retreat with respect to the object to be measured .
【請求項2】 被測定物側の光ファイバをばねで支持し
たことを特徴とする請求項1に記載の温度検出装置。
2. The temperature detecting device according to claim 1, wherein the optical fiber on the object to be measured side is supported by a spring.
【請求項3】 光ファイバを通じて励起光のパルスを照
射したときの蛍光体の発光特性の温度依存性によって被
測定物の温度を測定する原理の蛍光温度計において、前
記光ファイバを途中で中継し、複数とすることにより、
被測定物側の光ファイバを移動手段で、前記被測定物に
対して進退可能とするとともに、前記被測定物側の光フ
ァイバの移動手段として、ホルダに内装された径の異な
る大小のベローズ内にガスを導入して、該ベローズの外
部との差圧を利用したことを特徴とする温度検出装置
3. A pulse of excitation light is illuminated through an optical fiber.
Due to the temperature dependence of the emission characteristics of the phosphor when irradiated
In a fluorescence thermometer that measures the temperature of the measured object,
By relaying the optical fiber on the way and making it multiple,
Move the optical fiber on the DUT side to the DUT by moving means.
With a retractable against said as moving means of the optical fiber of the object side, by introducing a gas different large and small into the bellows in diameter is decorated in the holder, utilizing the differential pressure between the outside of the bellows A temperature detecting device characterized in that:
【請求項4】 前記被測定物側の光ファイバと測定器側
の光ファイバの中継部に、光ファイバのコア部の屈折率
に近い液体を充填したことを特徴とする請求項1から3
のうち、いずれか1項に記載の温度検出装置。
4. A liquid junction close to a refractive index of a core portion of an optical fiber is filled in a junction between the optical fiber on the object side and the optical fiber on a measuring device side.
The temperature detecting device according to any one of the above.
【請求項5】 被測定物を保持するためのホルダに内装
され、前記被測定物に先端が接触するように配置された
光ファイバと、該光ファイバの被測定物側の端部に蛍光
体と、該蛍光体を覆い保護する保護キャップとを含んで
なることを特徴とする請求項1から4のうち、いずれか
1項に記載の温度検出装置。
5. An optical fiber which is housed in a holder for holding an object to be measured and which is disposed so that the tip thereof is in contact with the object to be measured, and a fluorescent material is provided at an end of the optical fiber on the side of the object to be measured. The temperature detecting device according to any one of claims 1 to 4, further comprising: a protective cap that covers and protects the phosphor.
【請求項6】 プラズマを発生するプラズマ源と、ウエ
ハを保持するホルダと、プロセスガスの導入路と、ホル
ダを冷却する冷媒通路と、冷媒を制御する加熱冷却器
と、処理室と、真空ポンプとで構成された半導体製造装
置において、前記ホルダに、請求項1から5のうち、い
ずれか1項に記載の温度検出装置が内装されたことを特
徴とする半導体製造装置。
6. A plasma source for generating plasma, a holder for holding a wafer, a passage for introducing a process gas, a refrigerant passage for cooling the holder, a heating / cooling device for controlling the refrigerant, a processing chamber, and a vacuum pump. 6. The semiconductor manufacturing apparatus according to claim 1, wherein the temperature detecting device according to claim 1 is installed in the holder.
【請求項7】 請求項6に記載の半導体製造装置におい
て、前記温度検出装置によって検出したウエハの温度を
用いて、ウエハの加熱冷却器を制御することを特徴とす
る半導体製造方法。
7. The semiconductor manufacturing method according to claim 6, wherein a wafer heating / cooling device is controlled by using a temperature of the wafer detected by the temperature detecting device.
JP11696593A 1990-05-19 1993-05-19 Temperature detecting device and semiconductor manufacturing method and device using the temperature detecting device Expired - Fee Related JP3188991B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11696593A JP3188991B2 (en) 1993-05-19 1993-05-19 Temperature detecting device and semiconductor manufacturing method and device using the temperature detecting device
US08/246,300 US5556204A (en) 1990-07-02 1994-05-19 Method and apparatus for detecting the temperature of a sample
US08/460,600 US5673750A (en) 1990-05-19 1995-06-02 Vacuum processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11696593A JP3188991B2 (en) 1993-05-19 1993-05-19 Temperature detecting device and semiconductor manufacturing method and device using the temperature detecting device

Publications (2)

Publication Number Publication Date
JPH06331457A JPH06331457A (en) 1994-12-02
JP3188991B2 true JP3188991B2 (en) 2001-07-16

Family

ID=14700136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11696593A Expired - Fee Related JP3188991B2 (en) 1990-05-19 1993-05-19 Temperature detecting device and semiconductor manufacturing method and device using the temperature detecting device

Country Status (1)

Country Link
JP (1) JP3188991B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8157951B2 (en) 2005-10-11 2012-04-17 Applied Materials, Inc. Capacitively coupled plasma reactor having very agile wafer temperature control
US8608900B2 (en) 2005-10-20 2013-12-17 B/E Aerospace, Inc. Plasma reactor with feed forward thermal control system using a thermal model for accommodating RF power changes or wafer temperature changes
KR102627303B1 (en) * 2016-03-14 2024-01-18 어플라이드 머티어리얼스, 인코포레이티드 Method for removing residual charge on electrostatic chuck during de-chucking step
US10240986B2 (en) * 2016-09-28 2019-03-26 General Electric Company Thermographic temperature sensor
JP6808596B2 (en) * 2017-03-10 2021-01-06 キオクシア株式会社 Sensing system
KR20190138315A (en) * 2017-05-03 2019-12-12 어플라이드 머티어리얼스, 인코포레이티드 Integrated substrate temperature measurement on high temperature ceramic heaters
US11630001B2 (en) * 2019-12-10 2023-04-18 Applied Materials, Inc. Apparatus for measuring temperature in a vacuum and microwave environment

Also Published As

Publication number Publication date
JPH06331457A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
JP5010610B2 (en) Substrate temperature determination apparatus and determination method thereof
US6353210B1 (en) Correction of wafer temperature drift in a plasma reactor based upon continuous wafer temperature measurements using and in-situ wafer temperature optical probe
US8986494B2 (en) Plasma processing apparatus and temperature measuring method and apparatus used therein
JP3341221B2 (en) Method and apparatus for fixing semiconductor wafer
US20110235675A1 (en) Substrate mounting table
US7374335B2 (en) In situ optical surface temperature measuring techniques and devices
US6572265B1 (en) In situ optical surface temperature measuring techniques and devices
KR101718378B1 (en) Evaluation device and evaluation method for substrate mounting apparatus and evaluation substrate used for the same
JPH11507473A (en) Wafer temperature control method and apparatus
JP3188991B2 (en) Temperature detecting device and semiconductor manufacturing method and device using the temperature detecting device
US5559330A (en) Scanning tunneling microscope
JP4053130B2 (en) Apparatus for measuring pedestal temperature in semiconductor wafer processing equipment
JP2017527987A (en) Bonding assembly with integrated temperature sensing at the bond layer
JP2011210853A (en) Method for measuring wear rate
JP5214513B2 (en) Plasma processing apparatus, temperature measuring method, and temperature measuring apparatus
JP3653879B2 (en) Fluorescent thermometer
US20030112848A1 (en) Temperature sensing in controlled environment
US6086734A (en) Thin-film depositing apparatus
US5985092A (en) Endpoint detection system
US11710614B2 (en) Light interference system and substrate processing apparatus
JP3971617B2 (en) SUBSTRATE TEMPERATURE DETECTING DEVICE FOR VACUUM PROCESSING DEVICE, AND VACUUM PROCESSING DEVICE PROVIDED WITH THE SUBSTRATE TEMPERATURE DETECTING DEVICE
JPH11211580A (en) Optical fiber type fluorescence thermometer
KR19980043531A (en) Wafer Temperature Meter in Semiconductor Plasma Chamber
WO2023215970A1 (en) Fiber optic temperature sensor having encapsulated sensing element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees