JP3186337B2 - Endoscope with focus function - Google Patents

Endoscope with focus function

Info

Publication number
JP3186337B2
JP3186337B2 JP13077493A JP13077493A JP3186337B2 JP 3186337 B2 JP3186337 B2 JP 3186337B2 JP 13077493 A JP13077493 A JP 13077493A JP 13077493 A JP13077493 A JP 13077493A JP 3186337 B2 JP3186337 B2 JP 3186337B2
Authority
JP
Japan
Prior art keywords
focus
endoscope
distance
brightness
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13077493A
Other languages
Japanese (ja)
Other versions
JPH06342122A (en
Inventor
政広 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP13077493A priority Critical patent/JP3186337B2/en
Publication of JPH06342122A publication Critical patent/JPH06342122A/en
Application granted granted Critical
Publication of JP3186337B2 publication Critical patent/JP3186337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、フォーカス機能を有し
た内視鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an endoscope having a focusing function.

【0002】[0002]

【従来の技術】従来の内視鏡においては、手術中の繁雑
さを避けるために光学系のピント,絞り,焦点距離等を
一切変えずに使用するものが主流となっている。そのた
め、最低限必要な遠点物点(数10mm)と近点物点が観
察できるように明るさ絞りを予め絞ってかなり広い範囲
の被写界深度を確保し、実用されている。しかしなが
ら、明るさと被写界深度とは相反する関係にあり、更に
広い深度を得ようとすると明るさが減少し、明るさを増
せば深度が不足するという問題が生じる。
2. Description of the Related Art In order to avoid complications during surgery, conventional endoscopes are mainly used without changing the focus, aperture, focal length and the like of an optical system. Therefore, the aperture stop is previously narrowed down so that the minimum necessary far-point object point (several tens of mm) and the near-point object point can be observed, and a considerably wide range of depth of field is ensured. However, the brightness and the depth of field are in a contradictory relationship, and there is a problem in that the brightness decreases when a wider depth is to be obtained, and the depth becomes insufficient when the brightness is increased.

【0003】又、近年、固体撮像素子(以下、CCDと
称す)を用いた電子内視鏡では、更なる高画質化が望ま
れ、多画素化の方向に進んでいる。しかし、内視鏡の場
合、先端部に設けるCCDの大きさには制約があり、画
素数を増やすためには、一画素当たりの単位面積を減ら
さなくてはならない。そして、画素を小さくすると、C
CDの感度が低下し暗くなってしまうし、又、光学的に
は、許容錯乱円径が小さくなる程深度が浅くなってしま
うという、二重の欠点が浮き彫りにされる。つまり、高
画質で且つ実用上問題とならない明るさを確保し得る内
視鏡を得るためには、フォーカス機能を持った光学系が
必要不可欠となる。そこで、特開昭62−229112
号公報ではフォーカスレンズを光軸に対し前後に移動さ
せる方法、又、特開平2−18513号公報ではCCD
ユニットを前後に移動させてフォーカシングを行う方法
が開示されている。
In recent years, electronic endoscopes using solid-state imaging devices (hereinafter referred to as CCDs) have been demanded to have higher image quality, and the number of pixels has been increasing. However, in the case of an endoscope, the size of the CCD provided at the distal end portion is limited, and in order to increase the number of pixels, the unit area per pixel must be reduced. When the pixel is made smaller, C
The double disadvantages are highlighted: the sensitivity of the CD is reduced and the CD becomes darker, and optically, the depth becomes shallower as the permissible circle of confusion becomes smaller. That is, an optical system having a focus function is indispensable in order to obtain an endoscope capable of ensuring high image quality and brightness that does not pose a practical problem. Therefore, Japanese Patent Application Laid-Open No. 62-229112
Japanese Patent Application Laid-Open No. 2-18513 discloses a method of moving a focus lens back and forth with respect to an optical axis.
A method of performing focusing by moving a unit back and forth is disclosed.

【0004】一方、ビデオカメラやスチールカメラのよ
うに、内視鏡にも、被写体の距離に応じたピント合わせ
を自動的に行い得うるオートフォーカス機能を設けるこ
とも考えられる。このときの代表的な被写体の距離を求
める焦点検出手段として、赤外線や超音波等を被写体へ
向けてカメラ側から射出しその反射光(波)を利用して
距離を測定する方法(アクティブ型)と、被写体から放
出される自然光だけを捉えて測定する方法(パッシブ
型)との2つに大別される。しかし、前者の方法は、先
端部に赤外線等の発生装置と受光素子とが必要とされる
ため、内視鏡としては実用的ではない。一方、後者の方
法でも、被写体を撮像するCCDとは別にラインセンサ
の如きオートフォーカス用の別センサを組み込む三角測
量方式であるため、やはり前者同様実用的であるとは云
えない。
On the other hand, it is also conceivable to provide an endoscope, such as a video camera or a still camera, with an autofocus function capable of automatically performing focusing according to the distance to a subject. At this time, as a focus detection means for obtaining a typical distance to the subject, a method of emitting infrared light, ultrasonic waves, or the like from the camera side toward the subject and measuring the distance using reflected light (wave) (active type) And a method of measuring only natural light emitted from a subject (passive type). However, the former method is not practical as an endoscope because a device for generating infrared rays or the like and a light receiving element are required at the distal end. On the other hand, the latter method is not as practical as the former method, because it is a triangulation method in which a separate sensor for autofocus such as a line sensor is incorporated in addition to a CCD for imaging a subject.

【0005】そこで、内視鏡等の場合には、映像信号か
ら直接焦点情報を得てオートフォーカスを実行する映像
信号利用方式(所謂山登りサーボ方式)を採用するの
が、先端部を最もコンパクトにまとめられるため最適で
ある。この方式は、図9に示すように、映像信号の高域
成分の電圧レベルが再生画像の精細度に対応しているこ
と、即ち、合焦点において映像信号の高域出力が最大と
なることに着目して、前記映像信号の高域出力が最大レ
ベルとなるように、レンズ位置等を調整してフォーカシ
ングが行われるものである。尚、図9には、異なる被写
体についてのデフォーカス量(ピントのずれ量)と映像
信号高域出力との関係を示している。又、図示されたよ
うに、一般的に被写体によって前記高域出力の曲線は変
化する。
Therefore, in the case of an endoscope or the like, adopting a video signal utilizing system (so-called hill-climbing servo system) in which focus information is directly obtained from a video signal and auto-focusing is performed is adopted. It is optimal because it can be put together. According to this method, as shown in FIG. 9, the voltage level of the high frequency component of the video signal corresponds to the definition of the reproduced image, that is, the high frequency output of the video signal is maximized at the focal point. Focusing is performed by adjusting the lens position and the like so that the high-frequency output of the video signal becomes the maximum level. FIG. 9 shows the relationship between the defocus amount (the amount of defocus) and the video signal high-frequency output for different subjects. Further, as shown in the figure, the curve of the high-frequency output generally changes depending on the subject.

【0006】[0006]

【発明が解決しようとする課題】ところで、通常のオー
トフォーカスでは、焦点検出は当該画面の中央部で行っ
ている。なぜなら、ビデオカメラ等で撮影を行う際、被
写体は画面の中央部に位置するように設定されるのが普
通であり、従って、画面中央部での焦点検出さえ行え
ば、必要な部分にピントの合った画像を得られるためで
ある。しかし、内視鏡の場合、対象となる被写体は平面
とは限らず、特に、大腸や気管支等では管腔状をなして
いる。よって、画面の中央部で測距を実行してしまうと
実際に観察したい部分が画面中央から外れている場合に
は遠方にピントを合わせてしまうことになり、正確な観
察ができなくなるという問題が生じてしまう。
By the way, in normal auto focus, focus detection is performed at the center of the screen. This is because when shooting with a video camera or the like, the subject is usually set so as to be located at the center of the screen. This is because a matched image can be obtained. However, in the case of an endoscope, the subject to be processed is not limited to a flat surface, and in particular, has a luminal shape in the large intestine, bronchi, and the like. Therefore, if the distance measurement is performed at the center of the screen, if the part to be actually observed is out of the center of the screen, it will focus on a distant place, making it impossible to perform accurate observation. Will happen.

【0007】又、従来のフォーカス付き内視鏡の場合、
前述のように、単にフォーカスレンズ若しくはCCDユ
ニットの移動によるピント調整であるため、明るさ絞り
の径は変わらずFno. は一定である。そのため、近点側
にピントを合わせると被写界深度が浅くなってしまい、
観察範囲が狭くなる。更に、体腔内は常に動いており、
被写界深度が狭いとたちどころに画像がボケてしまうた
め、診断や処置等で非常に使いにくいものであった。
In the case of a conventional endoscope with a focus,
As described above, since the focus adjustment is simply performed by moving the focus lens or the CCD unit, the diameter of the aperture stop does not change and F no. Is constant. Therefore, when focusing on the near point side, the depth of field becomes shallow,
The observation range becomes narrow. Furthermore, the body cavity is constantly moving,
If the depth of field is small, the image blurs out of the box, which makes it very difficult to use for diagnosis and treatment.

【0008】そこで、特開昭63−78119号公報で
は、対物光学系内の明るさ絞り近傍のレンズにレンズ面
内で焦点距離が複数状態に変化するように異なった曲率
を有する面を設け、更に、可変の明るさ絞りを設けるこ
とで、明るさ絞りを絞ったときにベスト距離(正確にピ
ントが合っている物体距離)も近点側へシフトする光学
系が示されている。この光学系を用いれば、近点観察時
はFno. が大きくなり被写界深度が深くなるため、従来
のフォーカス式内視鏡に較べて近接時の観察での不具合
は軽減される。しかし、絞りを開いた遠点観察時に球面
収差が悪化しないようにするためには、遠点観察時と近
点観察時双方の被写界深度の遠点側物体距離を予め合わ
せておく必要がある。そのため、むやみに2つの焦点距
離を離すことができず、フォーカス可能な物体距離の幅
を拡げることが難しい。又、近点観察時の被写界深度を
非常に深くしなければならないため、明るさ絞りの絞り
込み量が大きくなる。その結果、ピントは合っていても
遠方は暗くて観察できないという問題が生じる。
In Japanese Patent Application Laid-Open No. 63-78119, a lens having a different curvature is provided on a lens near the aperture stop in the objective optical system so that the focal length changes to a plurality of states in the lens plane. Further, an optical system in which a variable brightness stop is provided to shift a best distance (an object distance that is accurately focused) to the near point side when the brightness stop is stopped down. When this optical system is used, F no. Becomes large at the time of near point observation, and the depth of field becomes deep, so that the problem at the time of close observation is reduced as compared with the conventional focus type endoscope. However, in order to prevent the spherical aberration from deteriorating at the time of far-point observation with the aperture opened, it is necessary to previously match the far-point object distance of the depth of field at both the far-point observation and the near-point observation. is there. Therefore, the two focal lengths cannot be separated unnecessarily, and it is difficult to increase the width of the focusable object distance. Further, since the depth of field at the time of near point observation must be made very deep, the aperture stop of the aperture stop increases. As a result, there is a problem that the distant place is dark and cannot be observed even though the subject is in focus.

【0009】本発明は、上記のような従来技術の有する
問題点に鑑み、フォーカス機能と絞り動作とを適切に連
動させることにより、被写界深度の範囲を無駄なく観察
できる内視鏡を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and provides an endoscope capable of observing the range of the depth of field without waste by appropriately interlocking a focus function and an aperture operation. The purpose is to do.

【0010】[0010]

【課題を解決するための手段及び作用】上記目的を達成
するために、本発明による内視鏡は、被写体までの物体
距離の変動に伴い合焦位置を調整できるフォーカス機能
と光学系の明るさ調整できる可変明るさ絞りとを有し、
任意の物体距離での合焦位置にある物体のピント調整が
可能な内視鏡において、被写体までの距離の変動に伴う
フォーカスレンズ若しくは撮像ユニットの変動量を検出
するフォーカス位置検出手段と、その検出手段により検
出された値に基づいてその時の被写界深度の最遠点の明
るさが常に一定となるように明るさ絞りを調整する駆動
装置を備え、又、フォーカシングと同時にFナンバー
が、条件式 0.9A≦Fno. ’≦1.2A を満足するようにしたことを特徴としている。但し、 A=Fno. ×{(fl 2 −ΔxB ’・xB0)/fl 2 } であり、 又、 fl :内視鏡光学系全系の焦点距離 ΔxB ’:物体距離の変化に伴うガウス像面のシフト量 xB0 :前側焦点位置fF からフォーカス前のベスト
物点までの距離(XB0<0) Fno. :フォーカス前のFナンバー Fno. ’:フォーカス後のFナンバー である。
In order to achieve the above object, an endoscope according to the present invention is provided with a focus function and a brightness of an optical system capable of adjusting a focus position in accordance with a change in an object distance to a subject. With a variable brightness aperture that can be adjusted,
In an endoscope capable of adjusting the focus of an object at an in-focus position at an arbitrary object distance, a focus position detecting means for detecting an amount of change of a focus lens or an imaging unit due to a change in a distance to a subject, and the detection thereof A driving device that adjusts the aperture stop so that the brightness at the farthest point in the depth of field at that time is always constant based on the value detected by the means. It is characterized by satisfying the following equation: 0.9A ≦ F no . However, A = F no 'is {(· x B0 / f l 2, also, f l: focal length of the endoscope optical system as a whole system Δx B × f l 2 -Δx B )}':. Object distance shift amount of the Gaussian image plane accompanying the change in x B0: distance from the front focal distance f F to the best object point before focusing (X B0 <0) F no :. focus before F-number F no ':. after focus This is the F-number.

【0011】更に、本発明による装置は、撮像手段に固
体撮像素子を用いたフォーカス機能を有する内視鏡にお
いて、固体撮像素子から得られた映像信号の特定周波数
を抽出し、その抽出周波数成分の電圧レベルを撮像面全
域で積分し、その積分値が最大となるようにフォーカシ
ングを行うオートフォーカス機能を設けたことを特徴と
している。
Further, according to the apparatus of the present invention, a specific frequency of a video signal obtained from a solid-state imaging device is extracted by an endoscope having a focusing function using a solid-state imaging device as an imaging means, and the extracted frequency component is extracted. It is characterized in that an autofocus function for integrating a voltage level over the entire imaging surface and performing focusing so that the integrated value becomes maximum is provided.

【0012】以下、作用を述べる。先ず、被写界深度と
no. との関係式を以下に示す。 (1/xF0)−(1/xB0)=φ(Fno. /fl 2 ) ・・・(1) (1/xB0)−(1/xN0)=φ(Fno. /fl 2 ) ・・・(2) 但し、xB0:前側焦点位置からベスト物点までの距離
(xB0<0) xF0:前側焦点位置から被写界深度の最遠点までの距離
(xF0<0) xN0:前側焦点位置から被写界深度の最近点までの距離
(xN0<0) fl :焦点距離 φ :許容錯乱円径 である。上記式(1),(2)の概念図を図8に示す
(符号の向きは右向きが正)。図中、(a)はベスト物
点,(b)は近点,(c)は遠点での光学系の状態を夫
々示し、61は前側焦点位置,62は対物レンズ,63
は後側焦点位置,64は評価面である。ここで、フォー
カシングにより前側焦点位置から被写界深度の最遠点
(遠点物点)までの距離xF0がxF に変化したとき、以
下の関係式が成立するものとする。 xF =kxF0(k:係数) ・・・(3) 前側焦点位置は内視鏡の場合ではほぼ0と考えられるの
で、対物レンズから遠点物点までの距離の変化量(比)
をそのままkとおける。つまり、前側焦点から物点まで
の距離と物体距離とを同一視することができる。従っ
て、被写体が同一であると仮定すると、フォーカス変更
後の遠点物点距離xF で変更前の遠点物点距離xF0と同
じ明るさを得るには、物体距離とFno. との間には反比
例の関係があるため Fno. ’=(xF0/xF )Fno. =(1/k)Fno. (Fno. ’:フォーカス変更後のFナンバー) ・・・(4) の関係が成立するようにすればよい。
The operation will be described below. First, the relational expression between the depth of field and F no. Is shown below. (1 / x F0 ) − (1 / x B0 ) = φ (F no. / Fl 2 ) (1) (1 / x B0 ) − (1 / x N0 ) = φ (F no./ f l 2 ) (2) where x B0 : the distance from the front focal point to the best object point (x B0 <0) x F0 : the distance from the front focal point to the farthest point in the depth of field ( x F0 <0) x N0 : distance from the front focal position to the nearest point of the depth of field (x N0 <0) fl : focal length φ: allowable confusion circle diameter FIG. 8 is a conceptual diagram of the above formulas (1) and (2) (the direction of the sign is positive in the right direction). In the figure, (a) shows the state of the optical system at the best object point, (b) shows the state of the near point, (c) shows the state of the optical system at the far point, 61 indicates the front focal position, 62 indicates the objective lens, 63
Denotes a rear focal position, and 64 denotes an evaluation surface. Here, when the distance x F0 from the front focal distance to the farthest point of the depth of field (far point object point) is changed to x F by focusing, it is assumed that the following relationship is established. x F = kx F0 (k: coefficient) (3) Since the front focal position is considered to be almost 0 in the case of an endoscope, the amount of change in the distance to the far point object point from the objective lens (ratio)
Can be replaced with k. That is, the distance from the front focus to the object point can be identified with the object distance. Therefore, assuming that the object is identical, to obtain the same brightness as the far point object point distance x F0 before change in far point object point distance x F after the focus change object distance and F no. And the Since there is an inverse relationship between them, F no. '= (X F0 / x F ) F no. = (1 / k) F no. (F no. ': F number after focus change) ・ ・ ・ ( 4) It is sufficient that the relationship of is satisfied.

【0013】このとき、フォーカス変更後の前側焦点位
置からベスト物点までの距離xB 及び被写界深度の最近
点(近点物点)までの距離xN は、上記式(1)乃至
(4)より (1/xF )−(1/xB )=φ(Fno. ’/fl 2 ) =φ(Fno. /k/f1 2) =(1/k)(1/xF0−1/xB0) =(1/xF )−(1/xB0) ∴1/xB =1/kxB0 ∴xB =kxB0 ・・・(5) 同様に xN =kxN0 ・・・(6) の関係が導かれる。以上をまとめると、 Fno. ’=(1/k)Fno. のとき xN =kxN0,xB =kxB0,xF =kxF0 ・・・(7) の関係が成立し、フォーカシングの前後で被写界深度の
遠点側の明るさの一致する光学系が得られる。
At this time, the distance x B from the front focus position after the focus change to the best object point and the distance x N from the closest point of depth of field (near-point object point) are expressed by the above equations (1) to (1). 4) from the (1 / x F) -. . (1 / x B) = φ (F no '/ f l 2) = φ (F no / k / f 1 2) = (1 / k) (1 / x F0 −1 / x B0 ) = (1 / x F ) − (1 / x B0 ) ∴1 / x B = 1 / kx B0 ∴x B = kx B0 (5) Similarly, x N = kx N0 (6) is derived. In summary, F no. '= (1 / k) F no. Relations x N = kx N0, x B = kx B0, x F = kx F0 ··· (7) is satisfied when the focusing An optical system having the same brightness on the far point side of the depth of field before and after is obtained.

【0014】ここで、ベスト距離の変化に伴うガウス像
面のシフト量の関係式を求める。前側焦点位置からベス
ト物点までの距離xB に対する後側焦点位置からガウス
像面までの距離をxB ’とすると xB ・xB ’=−fl 2 となり、又、フォーカス変更後のガウス像面のシフト量
をΔxB ’とすると ΔxB ’=−fl 2 {(1/xB )−(1/xB0)} =−(fl 2 /xB0){(1/k)−1} ・・・(8) となる。これより、 k=fl 2 /(fl 2 −ΔxB ’・xB0) ・・・(9) という関係式が求まる。
Here, a relational expression of the shift amount of the Gaussian image plane with the change of the best distance is obtained. Distance x B 'to the x B · x B' = -f l 2 next to the rear side focal point position to the Gaussian image plane with respect to the distance x B from the front focal position to the best object point, also Gaussian after focus change 'When [Delta] x B' of the shift amount of the image plane Δx B = -f l 2 {( 1 / x B) - (1 / x B0)} = - (f l 2 / x B0) {(1 / k) -1} (8) From this, k = f l 2 / ( f l 2 -Δx B '· x B0) relational expression (9) is obtained.

【0015】式(9)より、フォーカシングにより像面
が移動しても被写界深度の遠点の明るさを一定にするた
めには、 Fno. ’=Fno. (fl 2 −ΔxB ’・xB0)/fl 2 ・・・(10) となるように内視鏡対物系のフォーカス調整とFナンバ
ー変更との関係を設定することが望ましい。但し、実際
にはFno. ’とFno. との関係は厳密に式(10)を満
足しなければならないのではなく、 Fno. (fl 2 −ΔxB ’・xB0)/fl 2 =A とすると、Fno. ’が 0.9A≦Fno. ’≦1.2A の範囲であれば実用上問題となることはない。この範囲
を外れると深度が浅くなり観察範囲が狭くなったり、又
暗くなり過ぎたりして遠点が見えない等の不具合が生じ
ることになる。
From equation (9), to keep the brightness at a distant point in the depth of field even when the image plane moves due to focusing, F no. '= F no. (F l 2 -Δx It is desirable to set the relationship between the focus adjustment of the endoscope objective system and the F-number change so that B ′ · x B0 ) / fl 12 (10) However, actually F no. 'And F no. Relationship with strictly rather than having to satisfy Equation (10), F no. ( F l 2 -Δx B' · x B0) / f Assuming that l 2 = A, there is no practical problem if F no. ′ is in the range of 0.9A ≦ F no. ′ ≦ 1.2A. If the distance is out of this range, the depth becomes shallow and the observation range becomes narrow, or the distance becomes too dark so that a far point cannot be seen.

【0016】ここで、フォーカシングから明るさ絞りの
駆動までの処理を行う回路の概要を図7に示す。図中、
1は対物レンズ、2は明るさ絞り、3はCCD、71は
フォーカス駆動及びフォーカス位置検出手段、72は演
算・制御手段、73は明るさ絞り駆動手段、74は映像
信号処理手段である。図示しない物体は、対物レンズ1
によりCCD3上に結像される。CCD3の出力信号は
映像信号処理手段74による所定の処理を経て図示しな
いモニター手段に表示される。又、映像信号の一部は演
算・制御手段72に供給される。演算・制御手段72で
はこの映像信号に基づいて焦点検出が行われ、その結果
がフォーカス駆動・フォーカス位置検出手段71に供給
されて、CCD3を前後に移動させることによりフォー
カシングが行われる。このCCD3の移動はフォーカス
駆動・フォーカス位置検出手段71により検出され、フ
ォーカス位置を示す信号が演算・制御手段72に供給さ
れる。演算・制御手段72では、この信号に基づいて遠
点の明るさを一定にするためのFナンバーを算出する。
明るさ絞り駆動手段73では、この信号を受けて明るさ
絞り2の開口を所定の大きさに変更する。尚、ここでは
フォーカシングを自動的に行うようにしてあるが、必ず
しもオートフォーカス機能は必要ではなく、手動により
フォーカス調整をしてもよい。又、CCD3の代わりに
対物レンズ全体又はその一部のレンズを移動させてフォ
ーカシングしてもよいことは云までもない。
FIG. 7 shows an outline of a circuit for performing processing from focusing to driving of the aperture stop. In the figure,
1 is an objective lens, 2 is a brightness stop, 3 is a CCD, 71 is focus drive and focus position detection means, 72 is calculation / control means, 73 is brightness stop drive means, and 74 is video signal processing means. The object not shown is the objective lens 1
To form an image on the CCD 3. The output signal of the CCD 3 is displayed on monitor means (not shown) through predetermined processing by the video signal processing means 74. Further, a part of the video signal is supplied to the arithmetic / control means 72. The calculation / control means 72 performs focus detection based on this video signal, and the result is supplied to the focus drive / focus position detection means 71, and the focusing is performed by moving the CCD 3 back and forth. The movement of the CCD 3 is detected by the focus driving / focus position detecting means 71, and a signal indicating the focus position is supplied to the arithmetic / control means 72. The calculation / control means 72 calculates an F number for keeping the brightness at the far point constant based on this signal.
In response to this signal, the aperture stop driving means 73 changes the aperture of the aperture stop 2 to a predetermined size. Although the focusing is performed automatically here, the auto focus function is not necessarily required, and the focus may be adjusted manually. Needless to say, focusing may be performed by moving the entire objective lens or a part of the objective lens instead of the CCD 3.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。先ず、図
1,2に基づいてオートフォーカスシステムについて説
明する。内視鏡においては、図面全体の広い範囲が鮮明
に見えないと、診断に時間を要したり、治療の際に誤っ
た場所を傷つけたりする等の不具合が生じやすい。この
ため、観察対象物が画面のどの位置にあっても対応可能
なように測距範囲を撮像面全域とし、そこから得られた
映像信号の高域成分の電圧レベルを撮像面全域で積分
し、その値が最大となるようにレンズ(若しくはCC
D)の位置等を調整してフォーカシングを行うことが好
ましい。このような制御を行う回路の概要を図1に示
す。図中、81はプリアンプ,82はCCD3から得ら
れた映像信号を色差信号と輝度信号Yとに分離する色分
離部,83は色差プロセス部,84は輝度信号Yプロセ
ス部,85はNTSCエンコーダ,86は水平走査線毎
に輝度信号波形のエッジ検出を行う微分回路,87は微
分回路86で得られた映像信号の高域成分の電圧レベル
を撮像面全域での積分を行う積分回路,88はシステム
全体を制御する制御部である。更に、89はCCD3を
駆動する駆動手段である。
Embodiments of the present invention will be described below. First, an autofocus system will be described with reference to FIGS. In the endoscope, if a wide range of the entire drawing is not clearly seen, problems such as a long time required for diagnosis and damage to an incorrect place during treatment are likely to occur. For this reason, the ranging range is set to the entire imaging surface so that the observation target can be handled at any position on the screen, and the voltage level of the high frequency component of the video signal obtained therefrom is integrated over the entire imaging surface. , The lens (or CC
It is preferable to perform focusing by adjusting the position and the like of D). FIG. 1 shows an outline of a circuit for performing such control. In the figure, 81 is a preamplifier, 82 is a color separation section for separating a video signal obtained from the CCD 3 into a color difference signal and a luminance signal Y, 83 is a color difference processing section, 84 is a luminance signal Y processing section, 85 is an NTSC encoder, Reference numeral 86 denotes a differentiating circuit for detecting the edge of the luminance signal waveform for each horizontal scanning line, 87 denotes an integrating circuit for integrating the voltage level of the high-frequency component of the video signal obtained by the differentiating circuit 86 over the entire imaging surface, and 88 denotes a integrating circuit. A control unit that controls the entire system. Further, 89 is a driving means for driving the CCD 3.

【0018】上記において、図示しない物体は対物レン
ズ1によりCCD3上に結像される。CCD3の出力信
号はプリアンプ81で増幅された後、色分離部82で輝
度信号Yと色信号Cに分離される。そして色信号Cは色
差プロセス部83で信号処理された後、NTSCエンコ
ーダ85に供給される。一方、輝度信号Yはプロセス部
84で信号処理された後、NTSCエンコーダ85に供
給され、色差信号Y,同期信号等と合成されてNTSC
映像信号となり、図示しないモニターTVに供給され
る。又、輝度信号Yの一部はプロセス部84で処理され
た後微分回路86に供給され、ここでエッヂ検出、即ち
輝度信号中の高域成分の検出が行われる。積分回路87
は画面内でピントが合っている部分が最も広くなるよう
にするために、画面全体にわたって微分回路86の出力
信号を積分する。即ち、シャープにピントが合っている
ところでは物体の輪郭が明瞭に現れるため、エッヂ信号
が大きい程ピントが合っている部分が多いことになるの
である。更に、積分出力は制御部88に供給される。
In the above, an object not shown is imaged on the CCD 3 by the objective lens 1. After the output signal of the CCD 3 is amplified by the preamplifier 81, it is separated into a luminance signal Y and a chrominance signal C by a color separation section 82. Then, the color signal C is subjected to signal processing in the color difference processing section 83, and then supplied to the NTSC encoder 85. On the other hand, the luminance signal Y is subjected to signal processing in the processing section 84, and then supplied to the NTSC encoder 85, where it is combined with the color difference signal Y, a synchronizing signal, etc.
The video signal is supplied to a monitor TV (not shown). A part of the luminance signal Y is supplied to a differentiating circuit 86 after being processed by the processing section 84, where edge detection, that is, detection of a high-frequency component in the luminance signal is performed. Integration circuit 87
Integrates the output signal of the differentiating circuit 86 over the entire screen in order to maximize the focused portion in the screen. That is, since the outline of the object appears sharply in sharp focus, the larger the edge signal, the more the focused part. Further, the integrated output is supplied to the control unit 88.

【0019】次に、制御部88からの制御信号を受け
て、駆動手段89はCCD3をその可動範囲全体にわた
って移動せさる。移動とともに上記の動作を行わせる
と、制御部88において積分出力信号の大きさとレンズ
位置との関係を検知することができる。従って、可動範
囲全体の移動が終了した後改めてCCD3を積分出力が
ピークとなった位置まで移動させれば、画面の広いピン
トが合う位置へとオートフォーカス調整を行うことがで
きる。
Next, upon receiving a control signal from the control unit 88, the driving means 89 moves the CCD 3 over the entire movable range. When the above operation is performed together with the movement, the control unit 88 can detect the relationship between the magnitude of the integrated output signal and the lens position. Therefore, if the CCD 3 is moved again to the position where the integrated output has peaked after the movement of the entire movable range is completed, the autofocus adjustment can be performed to a position where a wide screen is focused.

【0020】しかし、上記撮像面全域で測距を行いフォ
ーカシングをする方法にも欠点が存在する。それは、近
点側にフォーカスを合わせたときと遠点側にフォーカス
を合わせたときで、高域成分の電圧レベルの積分値が同
値になってしまう場合である。つまり、内視鏡対物光学
系では、基本的には被写界深度が広いため深度内に被写
体が存在する場合に、その範囲内での積分値は同じ値に
なってしまうのである。こうなると、フォーカス位置を
どこに設定したらよいか求まらず、その設定可能な範囲
内をフォーカスレンズが前後に動き続けることになる。
更に、フォーカスと明るさ絞りとの間には上記式(1
0)の関係が成立しているため、絞りの開閉も前記フォ
ーカスレンズ同様動き続け、画面の明るさが変化し続け
観察しにくいものとなる。
However, the method of performing distance measurement and focusing over the entire imaging surface also has a disadvantage. That is, the integrated value of the voltage level of the high-frequency component becomes the same when focusing on the near point side and when focusing on the far point side. That is, in the endoscope objective optical system, since the depth of field is basically large, when a subject exists within the depth, the integrated value within that range becomes the same value. In this case, it is not determined where to set the focus position, and the focus lens keeps moving forward and backward within the settable range.
Further, the above equation (1) is provided between the focus and the aperture stop.
Since the relationship 0) is established, the opening and closing of the aperture continue to move similarly to the focus lens, and the brightness of the screen continues to change, making it difficult to observe.

【0021】そこで、上記のような状態の場合には、遠
点側にフォーカスを合わせるようにオートフォーカスの
駆動装置を設定しておくとよい。これは、特にCCDを
用いた内視鏡において、CCDの感度が低いために絶対
的な明るさ不足の解消に効果を有する。即ち、フォーカ
スを遠点側に合わせるようにフォーカシングを行うこと
によってFno. が小さくなり、従って、明るい観察像が
得られるのである。しかし、常に遠点側にピントを会わ
せていれば良いとは限らない。例えば、大腸等に存在す
るポリープと呼ばれる突起物の表面を観察しようとする
場合、フォーカスを遠点側にシフトするオートフォーカ
スでは、見たい部分の面積が小さいためピントを合わせ
にくいということが発生する虞がある。
Therefore, in the case of the above state, it is preferable to set an auto-focus driving device so as to focus on the far point side. This is particularly effective for endoscopes using a CCD, because the sensitivity of the CCD is low, and the absolute lack of brightness is eliminated. That is, by performing focusing so as to focus on the far point side, F no. Is reduced, and thus a bright observation image is obtained. However, it is not always necessary to always focus on the far point side. For example, when observing the surface of a projection called a polyp existing in the large intestine or the like, it may be difficult to focus on an auto focus that shifts the focus to a far point because the area of a desired portion is small. There is a fear.

【0022】そこで、通常は遠点側へのフォーカシング
設定をしておき、マニュアルの微調整ツマミを設け、フ
ォーカス駆動装置を手動で任意に調整できる機構を設け
ることによって近点側へ合焦範囲を任意にシフトできる
ようになる。内視鏡にとっては、従来のオートフォーカ
スの如き完全自動化よりも、任意に微調整が可能なシス
テムが必要とされるのである。
Therefore, usually, focusing is set to the far point side, a manual fine adjustment knob is provided, and a mechanism capable of manually adjusting the focus driving device arbitrarily is provided so that the focusing range can be set to the near point side. You can shift arbitrarily. For the endoscope, a system that can be arbitrarily fine-tuned is required, compared to conventional full-automation such as autofocus.

【0023】図2は、本発明の第一実施例による内視鏡
先端部の対物光学系部分であり、(a)は後述する初期
状態(Fno. 2.7)、(b)はFno. 10.8の状態
の光学系を夫々示している。このとき、対物レンズ1中
に絞り径が可変で可動の明るさ絞り2と、対物レンズ1
の後に、CCD3,水晶フィルタ5,色温度補正フィル
タ4を有する撮像ユニット6とが配設されている。又、
対物レンズ1は5つのレンズ成分から構成され、前の2
つ(前群)のレンズはレンズ保持部材10に、又、後の
3つ(後群)のレンズはレンズ保持部材11に夫々取り
付けられている。そして、これらレンズ保持部材は、図
示しない内視鏡本体に固定されている。更に、撮像ユニ
ット6には、光軸7に対し平行して図の矢印の方向に移
動可能な圧電素子8が設けられており、図示しない駆動
装置によりフォーカシングが行われるように構成されて
いる。圧電素子8へ供給する電圧は、図1に示した制御
部88によって決定される。前記駆動装置としては、ワ
イヤによるもの,モータによるもの等様々あるが、特に
駆動の応答性やコンパクト性を考慮して、本実施例で
は、複数個の圧電素子を光軸方向に積層してなる積層圧
電素子を用いている。従って、圧電素子8は駆動電圧が
印加されると光軸方向に伸縮し、撮像ユニット6の位置
を変化させフォーカシングが行われる。圧電素子8の変
化量は印加電圧により決定されるため、フォーカシング
による撮像ユニット6の位置変化ΔxB’(式(8)に
よって示される)は、印加電圧の変化を換算することに
よって求めることができる。更に、それから上記式(1
0)にΔxB ’の値を代入してF no. の変化量を求め、
図示しない駆動回路によって可変明るさ絞り2の絞り径
が調整される。
FIG. 2 is an endoscope according to a first embodiment of the present invention.
This is the objective optical system portion at the tip, and FIG.
State (Fno.2.7), (b) is Fno.State of 10.8
Are shown respectively. At this time, in the objective lens 1
Aperture diaphragm 2 with variable aperture diameter and objective lens 1
After, CCD3, crystal filter 5, color temperature correction filter
And an image pickup unit 6 having a filter 4. or,
The objective lens 1 is composed of five lens components,
One (front group) lens is attached to the lens holding member 10 and
The three (rear group) lenses are mounted on the lens holding member 11 respectively.
It is attached. These lens holding members are
It is fixed to an endoscope body not shown. Furthermore, the imaging unit
In the direction of the arrow in FIG.
A movable piezoelectric element 8 is provided,
The device is configured to perform focusing
I have. The voltage supplied to the piezoelectric element 8 is controlled by the control shown in FIG.
It is determined by the unit 88. As the driving device,
There are various things such as by ear and by motor, but especially
In consideration of the drive response and compactness,
Is the lamination pressure of multiple piezoelectric elements laminated in the optical axis direction.
An electric element is used. Therefore, the driving voltage of the piezoelectric element 8 is
When applied, it expands and contracts in the optical axis direction, and the position of the imaging unit 6
Is changed to perform focusing. Change of piezoelectric element 8
Focusing amount is determined by the applied voltage.
Change Δx of the imaging unit 6 due toB’(In equation (8)
Is shown) is to convert the change in applied voltage
Therefore, it can be obtained. Further, the above equation (1)
0) to ΔxB no.Find the amount of change in
Aperture diameter of variable brightness diaphragm 2 by drive circuit not shown
Is adjusted.

【0024】尚、明るさ絞り2としては、カメラ等で周
知のアイリス絞りを使用できる。更に、液晶,エレクト
ロクロミック素子等を利用した電気光学絞りも用いるこ
とが可能で、これらは機械的な移動部分がないため好都
合でもある。又、Fno. を求める演算及び明るさ絞り2
の制御は、何れも制御部88によって制御される。
As the brightness stop 2, an iris stop known in cameras and the like can be used. Further, an electro-optical stop using a liquid crystal, an electrochromic element, or the like can be used, and these are convenient because there is no mechanical moving portion. In addition, calculation for obtaining F no.
Are controlled by the control unit 88.

【0025】ここで、Fno. 2.7で遠点深度1000
mmを初期状態としたときのΔxB’とFno. ,被写界
深度との関係を次の表1に示す。 許容錯乱円径 φ=10μm 焦点距離 fl =1.0 前側焦点位置 fF =0.438 xB0=−(初期状態のベスト距離)−(前側焦点位置) =−35.277−0.438 =−35.718(mm)
Here, a far point depth of 1000 at F no.
Table 1 below shows the relationship between Δx B ′, F no. , and depth of field when mm is the initial state. Permissible circle of confusion diameter phi = 10 [mu] m focal length f l = 1.0 front focal point f F = 0.438 x B0 = - (Best Distance initial state) - (the front focal point) = -35.277-0.438 = -35.718 (mm)

【0026】表1において、遠点深度の変化とFno.
変化との間には式(4)の関係が成立しているため、遠
点での明るさは常に一定であることが分かる。更に本装
置では、前述したようなCCD3から得られた映像信号
の高域成分の電圧レベルを撮像面全域で積分し、その取
り得る値が最大となる撮像ユニット6の位置を求める焦
点検出回路に圧電素子8に駆動電圧を送出する回路を含
めることで、オートフォーカスが可能となる。
In Table 1, it can be seen that the brightness at the far point is always constant because the relationship of equation (4) is established between the change in the far point depth and the change in F no. . Further, in the present apparatus, the above-described focus detection circuit for integrating the voltage level of the high frequency component of the video signal obtained from the CCD 3 over the entire imaging surface and determining the position of the imaging unit 6 at which the possible value is maximum. By including a circuit for sending a drive voltage to the piezoelectric element 8, autofocus can be performed.

【0027】以下、本実施例における初期状態のレンズ
データを示す。 r1 =9999.0000 d1 =0.2538 n1 =1.69680 ν1 =55.52 r2 =0.6493 d2 =0.2115 n2 =1.00000 ν2 =0.00 r3 =1.2525 d3 =0.2221 n3 =1.80518 ν3 =25.43 r4 =-2.7483 d4 =0.1058 n4 =1.53172 ν4 =48.90 r5 =0.8388 d5 =0.2602 n5 =1.00000 ν5 =0.00 r6 =9999.0000 d6 =0.0212 n5 =1.00000 ν6 =0.00 r7 =3.0571 d7 =0.8101 n7 =1.72916 ν7 =54.68 r8 =-1.1269 d8 =0.0254 n8 =1.00000 ν8 =0.00 r9 =-5.3369 d9 =0.1058 n9 =1.84666 ν9 =23.78 r10=1.2443 d10=0.5753 n10=1.51633 ν10=64.15
Hereinafter, the lens data in the initial state in this embodiment will be shown. r 1 = 9999.0000 d 1 = 0.2538 n 1 = 1.69680 v 1 = 55.52 r 2 = 0.6493 d 2 = 0.2115 n 2 = 1.00000 v 2 = 0.00 r 3 = 1.2525 d 3 = 0.2221 n 3 = 1.805518 v 3 = 25.43 r 4 = -2.7483 d 4 = 0.1058 n 4 = 1.53172 ν 4 = 48.90 r 5 = 0.8388 d 5 = 0.2602 n 5 = 1.00000 ν 5 = 0.00 r 6 = 9999.0000 d 6 = 0.0212 n 5 = 1.00000 ν 6 = 0.00 r 7 = 3.0571 d 7 = 0.8101 n 7 = 1.72916 ν 7 = 54.68 r 8 = -1.1269 d 8 = 0.0254 n 8 = 1.0000 ν 8 = 0.00 r 9 = -5.3369 d 9 = 0.1058 n 9 = 1.84666 ν 9 = 23.78 r 10 = 1.2443 d 10 = 0.5753 n 10 = 1.51633 ν 10 = 64.15

【0028】r11=-1.5550 d11=0.4547 n11=1.00000 ν11=0.00 r12=1.7422 d12=0.6345 n12=1.58913 ν12=60.97 r13=9999.0000 d13=0.6607 n13=1.00000 ν13=0.00 r14=9999.0000 d14=0.3137 n14=1.52000 ν14=74.00 r15=9999.0000 d15=0.5436 n15=1.54869 ν15=45.55 r16=9999.0000 d16=0.1058 n16=1.51633 ν16=64.15 r17=9999.0000 d17=0.0000 n17=1.00000 ν17=0.00[0028] r 11 = -1.5550 d 11 = 0.4547 n 11 = 1.00000 ν 11 = 0.00 r 12 = 1.7422 d 12 = 0.6345 n 12 = 1.58913 ν 12 = 60.97 r 13 = 9999.0000 d 13 = 0.6607 n 13 = 1.00000 ν 13 = 0.00 r 14 = 9999.0000 d 14 = 0.3137 n 14 = 1.52000 v 14 = 74.00 r 15 = 9999.0000 d 15 = 0.5436 n 15 = 1.54869 v 15 = 45.55 r 16 = 9999.0000 d 16 = 0.1058 n 16 = 1.51633 v 16 = 64.15 r 17 = 9999.0000 d 17 = 0.0000 n 17 = 1.00000 ν 17 = 0.00

【0029】次に、図3,4に基づいて本発明による第
二実施例を説明する。本実施例は、映像信号の高域成分
の電圧レベルがある一定値以上である領域を取り出し、
当該領域の面積が一番広くなるようにフォーカシングを
行うものである。図3において、CCD3から得られた
映像信号は色分離部82により色差信号と輝度信号Yに
分離され、更に、微分回路86により水平走査線毎に輝
度信号波形(図3中のA)のエッジ検出(ΔY=dY/
dt)が行われる。ここで得られた信号波形(図3中の
B)をリミッタ回路91にて低出力レベル(図3中のvi
の波形に相当)をカットした信号波形(図3中のC)を
出力させ、これをカウンタ92により検出する。このラ
インの場合、 となり、これを1フィールドについて行う。即ち、 を求め、この値が最大となるようにレンズ1(若しくは
CCD3)を駆動させるものである。
Next, a second embodiment according to the present invention will be described with reference to FIGS. In the present embodiment, an area where the voltage level of the high frequency component of the video signal is equal to or higher than a certain value is extracted,
Focusing is performed so that the area of the region becomes the largest. 3, a video signal obtained from the CCD 3 is separated into a color difference signal and a luminance signal Y by a color separation section 82. Further, an edge of a luminance signal waveform (A in FIG. 3) is obtained for each horizontal scanning line by a differentiating circuit 86. Detection (ΔY = dY /
dt) is performed. The signal waveform (B in FIG. 3) obtained here is converted to a low output level (vi in FIG. 3) by the limiter circuit 91.
A signal waveform (C in FIG. 3) obtained by cutting the corresponding waveform is output, and this is detected by the counter 92. For this line, This is performed for one field. That is, Is calculated, and the lens 1 (or the CCD 3) is driven so that this value becomes maximum.

【0030】図4は、本発明による第二実施例における
硬性鏡光学系21(途中リレー系の図は省略)の後に外
付けテレビカメラ23を配設した光学系を示している。
又、図5は、硬性鏡接眼レンズ22の後に配設された外
付けテレビカメラ23の部分だけを抜き出して示したも
のであり、図中、(a)は後述する初期状態(F
no.6.3)、(b)はFno. 12.5での近点側へフ
ォーカスされた状態の光学系を夫々示している。外付け
テレビカメラ23は、可変絞り2を含む結像光学系9と
CCD3,水晶フィルタ5,色温度補正フィルタ4を有
する撮像ユニット6とにより構成されている。本来、硬
性鏡側には明るさ絞りは存在せず、リレー光学系の径に
よって明るさが決定されるため、外付けカメラ側に明る
さ絞りの代用となり得る可変絞り2を結像光学系9の瞳
位置の近傍に配設している。この位置に絞りを配設する
ことで、絞りを開閉しても周辺の光量は変わらず、中心
から周辺にかけて一様に絞り込むことが可能となる。
尚、撮像ユニット6の駆動装置,その他の方式等は第一
実施例に示したものと同様である。
FIG. 4 shows an optical system in which an external television camera 23 is provided after the rigid endoscope optical system 21 (a relay system is not shown) in the second embodiment according to the present invention.
FIG. 5 shows only the portion of the external television camera 23 disposed after the rigid endoscope eyepiece 22, and FIG. 5A shows an initial state (F) described later.
No. 6.3) and (b) show the optical system focused on the near point at F no. 12.5, respectively. The external television camera 23 includes an imaging optical system 9 including the variable diaphragm 2 and an imaging unit 6 having a CCD 3, a crystal filter 5, and a color temperature correction filter 4. Originally, there is no brightness stop on the rigid endoscope side, and the brightness is determined by the diameter of the relay optical system. Therefore, the variable stop 2 which can be used as a substitute for the brightness stop is provided on the external camera side by the imaging optical system 9. In the vicinity of the pupil position. By disposing the aperture at this position, even when the aperture is opened and closed, the amount of light in the periphery does not change, and the aperture can be uniformly reduced from the center to the periphery.
Incidentally, the driving device of the image pickup unit 6 and other systems are the same as those shown in the first embodiment.

【0031】ここで、Fno. 6.3で遠点深度200m
mを初期状態としたときのΔxB ’とFno. ,被写界深
度との関係を次の表2に示す。 許容錯乱円径 φ=10μm 焦点距離 fl =1.0 前側焦点位置 fF =0.47 xB0=−14.71(mm)
Here, at F no. 6.3, the far point depth is 200 m.
Table 2 below shows the relationship between Δx B ′, F no. and depth of field when m is in the initial state. Permissible circle of confusion diameter phi = 10 [mu] m focal length f l = 1.0 front focal point f F = 0.47 x B0 = -14.71 (mm)

【0032】以下、本実施例における初期状態のレンズ
データを示す。 (硬性鏡) r1 =9999.0000 d1 =0.1069 n1 =1.51633 ν1 =64.15 r2 =9999.0000 d2 =0.0428 n2 =1.00000 ν2 =0.00 r3 =9999.0000 d3 =0.2352 n3 =1.78472 ν3 =25.71 r4 =-1.7539 d4 =0.0855 n4 =1.69350 ν4 =53.23 r5 =0.3846 d5 =0.2352 n5 =1.00000 ν5 =0.00 r6 =9999.0000 d6 =1.3962 n5 =1.78800 ν6 =47.43 r7 =9999.0000 d7 =0.0747 n7 =1.80610 ν7 =40.95 r8 =9999.0000 d8 =0.5475 n8 =1.80610 ν8 =40.95 r9 =-1.0616 d9 =0.1411 n9 =1.00000 ν9 =0.00 r10=5.4691 d10=0.6778 n10=1.65844 ν10=50.86
Hereinafter, the lens data in the initial state in this embodiment will be shown. (Rigid endoscope) r 1 = 9999.0000 d 1 = 0.1069 n 1 = 1.51633 ν 1 = 64.15 r 2 = 9999.0000 d 2 = 0.0428 n 2 = 1.0000 ν 2 = 0.00 r 3 = 9999.0000 d 3 = 0.2352 n 3 = 1.78472 ν 3 = 25.71 r 4 = -1.7539 d 4 = 0.0855 n 4 = 1.69350 ν 4 = 53.23 r 5 = 0.3846 d 5 = 0.2352 n 5 = 1.00000 ν 5 = 0.00 r 6 = 9999.0000 d 6 = 1.3962 n 5 = 1.78800 ν 6 = 47.43 r 7 = 9999.0000 d 7 = 0.0747 n 7 = 1.80610 ν 7 = 40.95 r 8 = 9999.0000 d 8 = 0.5475 n 8 = 1.80610 ν 8 = 40.95 r 9 = -1.0616 d 9 = 0.1411 n 9 = 1.00000 ν 9 = 0.00 r 10 = 5.4691 d 10 = 0.6778 n 10 = 1.65844 ν 10 = 50.86

【0033】r11=-0.6367 d11=0.1668 n11=1.80518 ν11=25.43 r12=-4.4618 d12=1.7682 n12=1.00000 ν12=0.00 r13=2.6427 d13=2.3284 n13=1.62004 ν13=36.25 r14=-2.6427 d14=0.2437 n14=1.00000 ν14=0.00 r15=9999.0000 d15=9.1298 n15=1.62004 ν15=36.25 r16=9999.0000 d16=0.5516 n16=1.00000 ν16=0.00 r17=3.0205 d17=0.2138 n17=1.80610 ν17=40.95 r18=1.3799 d18=0.6414 n18=1.65160 ν18=58.67 r19=-5.4050 d19=0.3849 n19=1.00000 ν19=0.00 r20=9999.0000 d20=9.3436 n20=1.62004 ν20=36.25R 11 = -0.6367 d 11 = 0.1668 n 11 = 1.80518 ν 11 = 25.43 r 12 = -4.4618 d 12 = 1.7682 n 12 = 1.0000 ν 12 = 0.00 r 13 = 2.6427 d 13 = 2.3284 n 13 = 1.62004 ν 13 = 36.25 r 14 = -2.6427 d 14 = 0.2437 n 14 = 1.00000 ν 14 = 0.00 r 15 = 9999.0000 d 15 = 9.1298 n 15 = 1.62004 ν 15 = 36.25 r 16 = 9999.0000 d 16 = 0.5516 n 16 = 1.00000 ν 16 = 0.00 r 17 = 3.0205 d 17 = 0.2138 n 17 = 1.80610 v 17 = 40.95 r 18 = 1.3799 d 18 = 0.6414 n 18 = 1.65160 v 18 = 58.67 r 19 = -5.4050 d 19 = 0.3849 n 19 = 1.00000 v 19 = 0.00 r 20 = 9999.0000 d 20 = 9.3436 n 20 = 1.62004 ν 20 = 36.25

【0034】r21=-4.0473 d21=1.7105 n21=1.00000 ν21=0.00 r22=4.0473 d22=9.3436 n22=1.62004 ν22=36.25 r23=9999.0000 d23=0.5516 n23=1.00000 ν23=0.00 r24=3.0205 d24=0.2138 n24=1.80610 ν24=40.95 r25=1.3799 d25=0.6414 n25=1.65160 ν25=58.67 r26=-5.4050 d26=0.3849 n26=1.00000 ν26=0.00 r27=9999.0000 d27=9.3436 n27=1.62004 ν27=36.25 r28=-4.0473 d28=1.7105 n28=1.00000 ν28=0.00 r29=4.0473 d29=9.3436 n29=1.62004 ν29=36.25 r30=9999.0000 d30=0.5516 n30=1.00000 ν30=0.00R 21 = -4.0473 d 21 = 1.7105 n 21 = 1.00000 ν 21 = 0.00 r 22 = 4.0473 d 22 = 9.3436 n 22 = 1.62004 ν 22 = 36.25 r 23 = 9999.0000 d 23 = 0.5516 n 23 = 1.00000 ν 23 = 0.00 r 24 = 3.0205 d 24 = 0.2138 n 24 = 1.80610 v 24 = 40.95 r 25 = 1.3799 d 25 = 0.6414 n 25 = 1.65160 v 25 = 58.67 r 26 = -5.4050 d 26 = 0.3849 n 26 = 1.00000 v 26 = 0.00 r 27 = 9999.0000 d 27 = 9.3436 n 27 = 1.62004 v 27 = 36.25 r 28 = -4.0473 d 28 = 1.7105 n 28 = 1.00000 v 28 = 0.00 r 29 = 4.0473 d 29 = 9.3436 n 29 = 1.62004 v 29 = 36.25 r 30 = 9999.0000 d 30 = 0.5516 n 30 = 1.00000 ν 30 = 0.00

【0035】r31=3.0205 d31=0.2138 n31=1.80610 ν31=40.95 r32=1.3799 d32=0.6414 n32=1.65160 ν32=58.67 r33=-5.4050 d33=0.3849 n33=1.00000 ν33=0.00 r34=9999.0000 d34=9.3436 n34=1.62004 ν34=36.25 r35=-3.0205 d35=5.2897 n35=1.00000 ν35=0.00 r36=6.9773 d36=0.1860 n36=1.78472 ν36=25.71 r37=2.3519 d37=0.3891 n37=1.67003 ν37=47.25 r38=-4.5914 d38=0.4276 n38=1.00000 ν38=0.00 r39=9999.0000 d39=0.2138 n39=1.51633 ν39=64.15 r40=9999.0000 d40=1.2380 n40=1.00000 ν40=0.00R 31 = 3.0205 d 31 = 0.2138 n 31 = 1.80610 v 31 = 40.95 r 32 = 1.3799 d 32 = 0.6414 n 32 = 1.65160 v 32 = 58.67 r 33 = -5.4050 d 33 = 0.3849 n 33 = 1.00000 v 33 = 0.00 r 34 = 9999.0000 d 34 = 9.3436 n 34 = 1.62004 v 34 = 36.25 r 35 = -3.0205 d 35 = 5.2897 n 35 = 1.00000 v 35 = 0.00 r 36 = 6.9773 d 36 = 0.1860 n 36 = 1.78472 v 36 = 25.71 r 37 = 2.3519 d 37 = 0.3891 n 37 = 1.67003 v 37 = 47.25 r 38 = -4.5914 d 38 = 0.4276 n 38 = 1.00000 v 38 = 0.00 r 39 = 9999.0000 d 39 = 0.2138 n 39 = 1.51633 v 39 = 64.15 r 40 = 9999.0000 d 40 = 1.2380 n 40 = 1.00000 ν 40 = 0.00

【0036】(以下、外付けテレビカメラ) r41=9999.0000 d41=0.2138 n41=1.51633 ν41=64.15 r42=9999.0000 d42=0.6719 n42=1.00000 ν42=0.00 r43=1.2463 d43=0.4854 n43=1.71300 ν43=53.84 r44=-23.0552 d44=0.3806 n44=1.00000 ν44=0.00 r45=-1.7967 d45=0.3143 n45=1.75520 ν45=27.51 r46=1.0802 d46=0.7056 n46=1.00000 ν46=0.00 r47=6.3720 d47=0.4062 n47=1.59270 ν47=35.29 r48=-2.1668 d48=1.8068 n48=1.00000 ν48=0.00 r49=9999.0000 d49=0.2138 n49=1.51633 ν49=64.15 r50=9999.0000 d50=0.1710 n50=1.00000 ν50=0.00(Hereinafter referred to as an external television camera) r 41 = 9999.0000 d 41 = 0.2138 n 41 = 1.51633 v 41 = 64.15 r 42 = 9999.0000 d 42 = 0.6719 n 42 = 1.00000 v 42 = 0.00 r 43 = 1.2463 d 43 = 0.4854 n 43 = 1.71300 v 43 = 53.84 r 44 = -23.0552 d 44 = 0.3806 n 44 = 1.00000 v 44 = 0.00 r 45 = -1.7967 d 45 = 0.3143 n 45 = 1.75520 v 45 = 27.51 r 46 = 1.0802 d 46 = 0.7056 n 46 = 1.0000 ν 46 = 0.00 r 47 = 6.3720 d 47 = 0.4062 n 47 = 1.59270 ν 47 = 35.29 r 48 = -2.1668 d 48 = 1.8068 n 48 = 1.0000 ν 48 = 0.00 r 49 = 9999.0000 d 49 = 0.2138 n 49 = 1.51633 v 49 = 64.15 r 50 = 9999.0000 d 50 = 0.1710 n 50 = 1.00000 v 50 = 0.00

【0037】r51=9999.0000 d51=1.9179 n51=1.54869 ν51=45.55 r52=9999.0000 d52=0.2138 n52=1.52630 ν52=51.17 r53=9999.0000 d53=0.0855 n53=1.51633 ν53=64.15 r54=9999.0000 d54=0.0000 n54=1.00000 ν54=0.00R 51 = 9999.0000 d 51 = 1.9179 n 51 = 1.54869 ν 51 = 45.55 r 52 = 9999.0000 d 52 = 0.2138 n 52 = 1.52630 ν 52 = 51.17 r 53 = 9999.0000 d 53 = 0.0855 n 53 = 1.51633 ν 53 = 64.15 r 54 = 9999.0000 d 54 = 0.0000 n 54 = 1.00000 ν 54 = 0.00

【0038】図6は、本発明の第三実施例であり、プリ
ズム32,33を用いてCCD3を斜めに配設した光学
系を示している。図中、(a)は後述する初期状態(F
NO.5.0)、(b)はFno. 20.0でフォーカスレ
ンズスニット31を近点側へフォーカスした状態の光学
系を夫々示している。これは、大きいCCDを使用する
ときに用いられる構成である。しかし、この場合、撮像
ユニットとしてCCD3を光軸方向に移動させることは
困難であるため、フォーカスレンズとしての光学系の焦
点距離fl は殆ど変化せずフォーカス位置のみ変えるこ
とのできるレンズユニット31を光軸方向に対して前後
に駆動させてフォーカシングを行う。CCDを移動させ
てフォーカシングを行う場合とは異なり、レンズユニッ
トによってフォーカシングをする場合は、ベスト距離の
変化に伴うガウス像面の変位量ΔxB ’とレンズユニッ
ト31の変位量ΔxB2’とは符号が逆になる。よって、
近点側へフォーカスする際、CCDユニットを動かす場
合には物体側から離れる方向(+方向)へ移動させる
が、レンズユニットを動かす場合には物体側(−方向)
へ移動させてフォーカシングを行うことになる。尚、フ
ォーカスレンズユニット31の駆動方法その他オートフ
ォーカスについては、第一実施例と同様である。
FIG. 6 shows a third embodiment of the present invention, which shows an optical system in which the CCDs 3 are arranged obliquely by using prisms 32 and 33. In the figure, (a) shows an initial state (F
NO. 5.0) and (b) respectively show the optical system in a state where the focus lens unit 31 is focused on the near point side at F no. 20.0. This is a configuration used when a large CCD is used. In this case, however, possible to move the CCD3 as an imaging unit in the optical axis direction is difficult, the lens unit 31 that can only be changed focal length f l is the focus position hardly changes of the optical system as a focusing lens Focusing is performed by driving back and forth in the optical axis direction. Unlike the case where focusing is performed by moving the CCD, when focusing is performed by the lens unit, the displacement amount Δx B ′ of the Gaussian image plane due to the change in the best distance and the displacement amount Δx B2 ′ of the lens unit 31 are the same. Is reversed. Therefore,
When moving to the near point side, when moving the CCD unit, it is moved in the direction away from the object side (+ direction), but when moving the lens unit, it is moved toward the object side (-direction).
To perform focusing. Note that the driving method of the focus lens unit 31 and other auto-focusing operations are the same as in the first embodiment.

【0039】ここで、Fno. 5.0で遠点深度200m
mを初期状態としたときのΔxB ’,ΔxB2’,
no. ,被写界深度夫々の関係を次の表3に示す。 許容錯乱円径 φ=10μm 焦点距離 fl =1.0 前側焦点位置 fF =0.433 xB0=−18.186(mm)
Here, at F no. 5.0, the far point depth is 200 m.
Δx B ′, Δx B2 ′ when m is the initial state,
Table 3 below shows the relationship between F no. And the depth of field. Permissible circle of confusion diameter phi = 10 [mu] m focal length f l = 1.0 front focal point f F = 0.433 x B0 = -18.186 (mm)

【0040】以下、本実施例における初期状態のレンズ
データを示す。 r1 =9999.0000 d1 =0.1836 n1 =1.88300 ν1 =40.78 r2 =0.7810 d2 =1.1854 n2 =1.00000 ν2 =0.00 r3 =11.7498 d3 =0.3698 n3 =1.78590 ν3 =44.18 r4 =1.2730 d4 =0.9179 n4 =1.64769 ν4 =33.80 r5 =-1.6084 d5 =0.2439 n5 =1.00000 ν5 =0.00 r6 =9999.0000 d6 =0.1311 n5 =1.51633 ν6 =64.15 r7 =9999.0000 d7 =0.4373 n7 =1.00000 ν7 =0.00 r8 =4.0241 d8 =0.3672 n8 =1.53256 ν8 =45.91 r9 =-0.9415 d9 =0.1311 n9 =1.84666 ν9 =23.78 r10=-1.5783 d10=0.0262 n10=1.00000 ν10=0.00
Hereinafter, the lens data in the initial state in this embodiment will be shown. r 1 = 9999.0000 d 1 = 0.1836 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7810 d 2 = 1.1854 n 2 = 1.00000 ν 2 = 0.00 r 3 = 11.7498 d 3 = 0.3698 n 3 = 1.78590 ν 3 = 44.18 r 4 = 1.2730 d 4 = 0.9179 n 4 = 1.64769 ν 4 = 33.80 r 5 = −1.6084 d 5 = 0.2439 n 5 = 1.0000 ν 5 = 0.00 r 6 = 9999.0000 d 6 = 0.1311 n 5 = 1.51633 ν 6 = 64.15 r 7 = 9999.0000 d 7 = 0.4373 n 7 = 1.00000 ν 7 = 0.00 r 8 = 4.0241 d 8 = 0.3672 n 8 = 1.53256 ν 8 = 45.91 r 9 = -0.9415 d 9 = 0.1311 n 9 = 1.84666 ν 9 = 23.78 r 10 = - 1.5783 d 10 = 0.0262 n 10 = 1.00000 ν 10 = 0.00

【0041】r11=1.8500 d11=0.4144 n11=1.72916 ν11=54.68 r12=-1.8500 d12=0.1311 n12=1.72825 ν12=28.46 r13=1.2754 d13=0.2656 n13=1.00000 ν13=0.00 r14=9999.0000 d14=0.6740 n14=1.54869 ν14=45.55 r15=9999.0000 d15=0.3934 n15=1.51633 ν15=64.15 r16=9999.0000 d16=2.0241 n16=1.69500 ν16=42.16 r17=9999.0000 d17=0.0003 n17=1.00000 ν17=0.00 r18=9999.0000 d18=0.2838 n18=1.69500 ν18=42.16 r19=9999.0000 d19=0.0004 n19=1.00000 ν19=0.00 r20=9999.0000 d20=0.1311 n20=1.51633 ν20=64.15 r21=9999.0000 d21=0.0000 n21=1.00000 ν21=0.00R 11 = 1.8500 d 11 = 0.4144 n 11 = 1.72916 v 11 = 54.68 r 12 = -1.8500 d 12 = 0.1311 n 12 = 1.72825 v 12 = 28.46 r 13 = 1.2754 d 13 = 0.2656 n 13 = 1.00000 v 13 = 0.00 r 14 = 9999.0000 d 14 = 0.6740 n 14 = 1.54869 ν 14 = 45.55 r 15 = 9999.0000 d 15 = 0.3934 n 15 = 1.51633 ν 15 = 64.15 r 16 = 9999.0000 d 16 = 2.0241 n 16 = 1.69500 ν 16 = 42.16 r 17 = 9999.0000 d 17 = 0.0003 n 17 = 1.00000 ν 17 = 0.00 r 18 = 9999.0000 d 18 = 0.2838 n 18 = 1.69500 ν 18 = 42.16 r 19 = 9999.0000 d 19 = 0.0004 n 19 = 1.00000 ν 19 = 0.00 r 20 = 9999.0000 d 20 = 0.1311 n 20 = 1.51633 ν 20 = 64.15 r 21 = 9999.0000 d 21 = 0.0000 n 21 = 1.00000 ν 21 = 0.00

【0042】但し、上記各実施例中のr1 ,r2 ,・・
・・は各レンズ面の曲率半径、d1,d2 ,・・・・は
各レンズ間の間隔、n1 ,n2 ・・・・は各レンズの屈
折率、ν1 ,ν2 ,・・・・は各レンズのアツベ数であ
る。又、上記各実施例に記載の何れの装置についても、
オートフォーカス装置及び可変絞りを簡略化するために
フォーカシングのステップを荒くする、即ち、2〜4段
階の切換え方式にすることも可能である。その場合、遠
点側での明るさについては、光源側で調光して対応させ
ることになる。
However, r 1 , r 2 ,...
··· is the radius of curvature of each lens surface, d 1 , d 2 , ··· is the distance between the lenses, n 1 , n 2 ··· is the refractive index of each lens, v 1 , v 2 , ···. ... is the hot number of each lens. Further, for any of the devices described in the above embodiments,
It is also possible to make the focusing step rough in order to simplify the autofocus device and the variable aperture, that is, to use a two- to four-step switching system. In this case, the brightness on the far point side is adjusted by adjusting the light on the light source side.

【0043】[0043]

【発明の効果】本発明は、上述のように構成されている
ので、フォーカシングとFナンバーの制御とを連動させ
ることにより、ピントが合った範囲を無駄なく観察する
ことができるという実用上重要な利点を有する。
Since the present invention is constructed as described above, by linking the focusing and the control of the F-number, it is practically important that the in-focus range can be observed without waste. Has advantages.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による第一実施例の回路構成図である。FIG. 1 is a circuit configuration diagram of a first embodiment according to the present invention.

【図2】本発明による第一実施例の光学系の構成を示
し、(a)は初期状態(Fno. 2.7)、(b)はF
no. 10.8で撮像ユニット6が近点側へフォーカスさ
れた状態を夫々示した図である。
FIGS. 2A and 2B show the configuration of an optical system according to a first embodiment of the present invention, wherein FIG. 2A shows an initial state (F no. 2.7), and FIG .
It is the figure which each showed the state in which the imaging unit 6 was focused on the near point side at no. 10.8.

【図3】本発明による第二実施例の回路構成図である。FIG. 3 is a circuit configuration diagram of a second embodiment according to the present invention.

【図4】本発明による第二実施例の光学系の構成を示し
た図である。
FIG. 4 is a diagram showing a configuration of an optical system according to a second embodiment of the present invention.

【図5】第二実施例の光学系中の外付けテレビカメラ部
の構成を示し、(a)は初期状態(Fno. 6.3)、
(b)はFno. 12.5で近点側へフォーカスされた状
態を夫々示した図である。
5A and 5B show a configuration of an external television camera unit in the optical system according to the second embodiment, wherein FIG. 5A shows an initial state (F no. 6.3),
(B) is a diagram showing a state in which the lens is focused on the near point side at F no. 12.5.

【図6】本発明による第三実施例の光学系の構成を示
し、(a)は初期状態(Fno. 5.0)、(b)はF
no. 20.0でフォーカスレンズユニット31を近点側
へフォーカスされた状態を夫々示した図である。
6A and 6B show the configuration of an optical system according to a third embodiment of the present invention, wherein FIG. 6A is an initial state (F no. 5.0), and FIG .
It is the figure which each showed the state which focused the focus lens unit 31 to the near point side by no. 20.0.

【図7】内視鏡光学系において、フォーカシングから明
るさ絞りの駆動までを制御し得る装置の回路構成図であ
る。
FIG. 7 is a circuit configuration diagram of an apparatus capable of controlling from focusing to driving of a brightness stop in the endoscope optical system.

【図8】式(1),(2)に基づき、(a)はベスト物
点、(b)は近点、(c)は遠点での夫々光学系の状態
を示した図である。
8A and 8B are diagrams showing states of an optical system at a vest object point, at a near point, and at a far point, respectively, based on equations (1) and (2).

【図9】異なる被写体についてのデフォーカス量と映像
信号高域出力との関係を示した図である。
FIG. 9 is a diagram illustrating a relationship between a defocus amount and a video signal high frequency output for different subjects.

【符号の説明】[Explanation of symbols]

1 対物レンズ 2 明るさ絞り 3 CCD 4 色温度補正フィルタ 5 水晶フィルタ 6 撮像ユニット 7 光軸 8 圧電素子 9 結像光学系 10,11 レンズ保持部材 21 硬性光学系 22 硬性鏡接眼レンズ 23 外付けテレビカメラ 31 レンズユニット 32,33 プリズム 61 前側焦点位置 62 対物レンズ 63 後側焦点位置 64 評価面 71 フォーカス検出器 72 深度演算回路 73 明るさ絞り 74 映像信号処理手段 81 プリアンプ 82 色分離回路 83 色差プロセス部 84 輝度信号Yプロセス部 85 NTSCエンコーダ 86 微分回路 87 積分回路 88 ピーク検波回路 89 駆動手段 91 リミッタ 92 カウンタ xB0 前側焦点位置からフォーカス前のベスト物
点までの距離 xN0 前側焦点位置から被写界深度の最近点まで
の距離 xF0 前側焦点位置から被写界深度の最遠点まで
の距離 ΔxB ’ ガウス像面の変位量 ΔxB2’ レンズユニット31の変位量 φ 許容錯乱円径
DESCRIPTION OF SYMBOLS 1 Objective lens 2 Brightness aperture 3 CCD 4 Color temperature correction filter 5 Crystal filter 6 Imaging unit 7 Optical axis 8 Piezoelectric element 9 Imaging optical system 10, 11 Lens holding member 21 Hard optical system 22 Hard mirror eyepiece 23 External television Camera 31 Lens unit 32, 33 Prism 61 Front focus position 62 Objective lens 63 Rear focus position 64 Evaluation surface 71 Focus detector 72 Depth calculation circuit 73 Brightness stop 74 Video signal processing means 81 Preamplifier 82 Color separation circuit 83 Color difference processing section 84 the luminance signal Y process unit 85 NTSC encoder 86 scene from the distance x N0 front focal position of the differentiation circuit 87 integration circuit 88 a peak detection circuit 89 drive means 91 limiter 92 counter x B0 front focal position to the best object point before focus Distance to nearest point of depth x F0 displacement φ permissible circle of confusion of the lens unit 31 'displacement amount [Delta] x B2 of the Gaussian image plane' distance [Delta] x B from the front focal distance to the farthest point of the depth of field

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 23/24 A61B 1/04 362 A61B 1/04 372 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) G02B 23/24 A61B 1/04 362 A61B 1/04 372

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被写体までの距離の変動に伴い合焦位置
を調整できるフォーカス機能と、光学系の明るさを調整
できる可変絞りとを有する内視鏡光学系において、 被写体までの物体距離の変動に伴うフォーカスレンズ若
しくは撮像ユニットの変動量を検出するフォーカス位置
検出手段と、該検出手段により検出された値に基づいて
その時の被写界深度の最遠点の明るさが常に一定となる
ように明るさ絞りを調整する駆動手段とを備えたことを
特徴とするフォーカス機能を備えた内視鏡。
1. An endoscope optical system having a focus function capable of adjusting a focus position in accordance with a change in distance to a subject and a variable aperture capable of adjusting brightness of an optical system, wherein an object distance to a subject is changed. Focus position detecting means for detecting the amount of fluctuation of the focus lens or the imaging unit associated with, and the brightness of the farthest point of the depth of field at that time is always constant based on the value detected by the detecting means. An endoscope having a focus function, comprising: a driving means for adjusting a brightness stop.
【請求項2】 フォーカス機能及び可変明るさ絞りを有
する内視鏡において、 フォーカス位置とFナンバーとが以下の条件式を満足す
るように変化することを特徴とする請求項1に記載の内
視鏡。 0.9A≦Fno. ’≦1.2A 但し、 A=Fno. ×{(fl 2 −ΔxB ’・xB0)/fl 2 } であり、又、 fl :内視鏡光学系全系の焦点距離 ΔxB ’:物体までの距離の変化に伴うガウス像面のシ
フト量 xB0 :前側焦点位置からフォーカス調整前のベスト
物点までの距離 Fno. :フォーカス前のFナンバー Fno. ’:フォーカス後のFナンバー である。
2. An endoscope having a focus function and a variable brightness stop, wherein a focus position and an F-number change so as to satisfy the following conditional expression. mirror. . 0.9A ≦ F no '. ≦ 1.2A where, A = F no × {( f l 2 -Δx B' is a · x B0) / f l 2 }, also, f l: an endoscope optical Focal length of the entire system Δx B ': shift amount of Gaussian image plane due to change in distance to object x B0 : distance from front focal position to best object point before focus adjustment F no .: F-number before focus F no. ': F number after focus.
【請求項3】 撮像手段に固体撮像素子を用いたフォー
カス機能を備えた内視鏡において、 固体撮像素子から得られた映像信号の特定周波数成分を
抽出し、該抽出周波数成分の電圧レベルを撮像面全域で
積分し、該積分値が最大となるようにフォーカシングを
行うオートフォーカス機能を設けたことを特徴とする請
求項1に記載の内視鏡。
3. An endoscope provided with a focusing function using a solid-state imaging device as an imaging means, extracts a specific frequency component of a video signal obtained from the solid-state imaging device, and images a voltage level of the extracted frequency component. 2. The endoscope according to claim 1, further comprising an autofocus function for integrating over the entire surface and performing focusing such that the integrated value is maximized.
JP13077493A 1993-06-01 1993-06-01 Endoscope with focus function Expired - Fee Related JP3186337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13077493A JP3186337B2 (en) 1993-06-01 1993-06-01 Endoscope with focus function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13077493A JP3186337B2 (en) 1993-06-01 1993-06-01 Endoscope with focus function

Publications (2)

Publication Number Publication Date
JPH06342122A JPH06342122A (en) 1994-12-13
JP3186337B2 true JP3186337B2 (en) 2001-07-11

Family

ID=15042351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13077493A Expired - Fee Related JP3186337B2 (en) 1993-06-01 1993-06-01 Endoscope with focus function

Country Status (1)

Country Link
JP (1) JP3186337B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058860B1 (en) * 1997-07-30 2003-10-08 LINOS Photonics GmbH &amp; Co. KG Camera and, in particular, modular dental camera
JP4110141B2 (en) * 2002-07-03 2008-07-02 株式会社松風 Instrument system control system
JP2010162166A (en) * 2009-01-15 2010-07-29 Olympus Corp Image pickup device and endoscope apparatus using the same
JP5698476B2 (en) 2010-08-06 2015-04-08 オリンパス株式会社 ENDOSCOPE SYSTEM, ENDOSCOPE SYSTEM OPERATING METHOD, AND IMAGING DEVICE
EP2570070B1 (en) * 2010-08-30 2016-10-05 Olympus Corporation Endoscope
JP5663331B2 (en) * 2011-01-31 2015-02-04 オリンパス株式会社 Control apparatus, endoscope apparatus, diaphragm control method, and program
US11307430B2 (en) * 2016-06-07 2022-04-19 Karl Storz Se & Co. Kg Optical device and method for providing improved depth of field and resolution modes
CN114326090B (en) * 2022-02-28 2023-12-15 山东威高手术机器人有限公司 Binocular endoscope with extended depth of field, binocular endoscope system and binocular imaging method

Also Published As

Publication number Publication date
JPH06342122A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
US7916194B2 (en) Image pickup apparatus
EP2749923B1 (en) Focus control device, endoscope device, and focus control method
JP5973708B2 (en) Imaging apparatus and endoscope apparatus
US6749561B2 (en) Autofocusing endoscopic system
JP5415973B2 (en) IMAGING DEVICE, ENDOSCOPE SYSTEM, AND OPERATION METHOD OF IMAGING DEVICE
US6685631B2 (en) Electronic endoscope system having variable power function
US8134635B2 (en) Manual focus adjustment assistance apparatus
JPS5846308A (en) Zoom lens for endoscope with moving solid-state image pickup element
EP0625332B1 (en) Viewing apparatus
JP2007060647A (en) Imaging apparatus and imaging method
JP2010008873A (en) Focus detecting device and imaging device
JPH10286217A (en) Visual field changing system of hard scope
JPH11177873A (en) High-speed focusing electronic camera
JP2001083400A (en) Image pickup optical system
JP3186337B2 (en) Endoscope with focus function
US20070223898A1 (en) Endoscopic apparatus
JP5341214B2 (en) Camera system
JP2004294788A (en) Electronic endoscope device provided with automatic focusing function
JPH0980323A (en) Endoscope device
JP4448277B2 (en) Endoscope autofocus method
JP4336166B2 (en) Electronic endoscope device with autofocus function
JP2003140030A (en) Autofocusing device for endoscope
KR20220047656A (en) Electronic device, electronic device control method, and computer-readable storage medium
JP2021125867A (en) Image processing device, imaging device, control method of image processing device, and program
JP2009081522A (en) Imaging apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees