JP3186281B2 - AC electric vehicle control device - Google Patents

AC electric vehicle control device

Info

Publication number
JP3186281B2
JP3186281B2 JP34386692A JP34386692A JP3186281B2 JP 3186281 B2 JP3186281 B2 JP 3186281B2 JP 34386692 A JP34386692 A JP 34386692A JP 34386692 A JP34386692 A JP 34386692A JP 3186281 B2 JP3186281 B2 JP 3186281B2
Authority
JP
Japan
Prior art keywords
pulse width
width modulation
electric vehicle
power
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34386692A
Other languages
Japanese (ja)
Other versions
JPH06197402A (en
Inventor
豊 井手
亙 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34386692A priority Critical patent/JP3186281B2/en
Publication of JPH06197402A publication Critical patent/JPH06197402A/en
Application granted granted Critical
Publication of JP3186281B2 publication Critical patent/JP3186281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Protection Of Static Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主回路にパルス幅変調
コンバータ回路を用い、交流電力回生機能を有する交流
電気車の制御装置に係り、特に、交流電源の停電を検知
する機能を備えた交流電気車の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control apparatus for an AC electric vehicle having a pulse width modulation converter circuit as a main circuit and having an AC power regeneration function, and more particularly to a control device for detecting a power failure of an AC power supply. The present invention relates to a control device for an AC electric vehicle.

【0002】[0002]

【従来の技術】交流電気車の架線停電を検知する方式と
して、従来、特開平1−248968 号公報に示されているよ
うに、直流ステージ電圧(平滑コンデンサの両端電圧)
を監視し、予定の条件内の時、停電検知信号を送出する
ものがあった。
2. Description of the Related Art As a method for detecting an overhead line power failure of an AC electric vehicle, a DC stage voltage (a voltage across a smoothing capacitor) has conventionally been disclosed in Japanese Patent Application Laid-Open No. 1-248968.
In some cases, a power failure detection signal is sent out when the conditions are within the predetermined conditions.

【0003】また、変圧器の2次巻線電圧と2次電流と
の位相差が、停電時に自動的に180°になってしまう
ことを利用して停電を検知する特開平1−252173号公報
があった。
Japanese Patent Application Laid-Open No. HEI 1-252173 discloses that a power failure is detected by utilizing the fact that the phase difference between the secondary winding voltage and the secondary current of the transformer automatically becomes 180 ° at the time of the power failure. was there.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来技術
の前者では、同一き電区間内に回生車両が存在する場合
について考慮されてない。
However, in the former of the prior art, no consideration is given to the case where a regenerative vehicle exists in the same power supply section.

【0005】また、後者においては、回生運転時におい
て力率が−1、すなわちφが180°となるように2次電
流パターンIspを設定しているため、制御偏差が存在
すると実際の2次電流Isは、2次電流パターンIsp
に比べ位相が遅れてしまう。実際の2次電流Isが、2
次電流パターンIspに比べ位相が遅れる理由を、以下
に述べる。
In the latter case, the secondary current pattern Isp is set so that the power factor becomes −1, that is, φ becomes 180 ° during regenerative operation. Is is the secondary current pattern Isp
Phase is delayed as compared with. The actual secondary current Is is 2
The reason why the phase is delayed as compared with the next current pattern Isp will be described below.

【0006】回生運転を行なうためには、コンバータ入
力電圧Vcが変圧器2次巻線電圧Vsより位相が進みで
ないと回生電流が流れないので、図6に示すように、V
cとVsの間には常に位相差が存在し、同相になること
は無い。よって、Vs−ACR出力がVcであるから、
ACR出力は常に存在する。
In order to perform the regenerative operation, the regenerative current does not flow unless the converter input voltage Vc has a phase advance from the secondary winding voltage Vs of the transformer. Therefore, as shown in FIG.
There is always a phase difference between c and Vs, and they are never in phase. Therefore, since the Vs-ACR output is Vc,
The ACR output is always present.

【0007】ACR出力をACRのゲインGを割るとA
CR入力εIsとなる。厳密に言えば、ACR自身が遅
れ要素を持つので位相もわずかに変換するが、無視でき
る程度なので、ACR入力εIsは、ACR出力と同相
と考えてよい。また、ACRのゲインGは、制御系を安
定に動作させるため、有限な値である。従って、εIsと
いう偏差は必ず存在している。
When the ACR output is divided by the gain G of the ACR, A
It becomes CR input εIs. Strictly speaking, the phase is slightly converted because the ACR itself has a delay element, but since it is negligible, the ACR input εIs may be considered to be in phase with the ACR output. Further, the gain G of the ACR is a finite value in order to operate the control system stably. Therefore, there always exists a deviation of εIs.

【0008】Isp−Is=εIsであるからIsとI
spの関係は図6のようになり、実際の2次電流Is
は、2次電流パターンIspに比べ位相が遅れることに
なる。まず、力行運転を行なっている電気車Aの主回路
方式を、抵抗制御車や位相制御車と想定する。この場
合、電気車Aの等価回路は、純抵抗負荷分の誘導性負荷
分との直列回路で表すことが出来る。この時の等価回路
図を図9に示す。
Since Isp-Is = εIs, Is and I
FIG. 6 shows the relationship between sp and the actual secondary current Is.
Is delayed in phase as compared with the secondary current pattern Isp. First, it is assumed that the main circuit system of the electric vehicle A performing the power running operation is a resistance control vehicle or a phase control vehicle. In this case, the equivalent circuit of the electric vehicle A can be represented by a series circuit with a pure resistance load and an inductive load. FIG. 9 shows an equivalent circuit diagram at this time.

【0009】従来の制御方式では、回生車の供給するI
sによって力行車側で純抵抗負荷分による電圧降下V
r′と誘導性負荷分による電圧降下V1′が発生する。
運転状態によって、そのベクトル図が図4のようになる
と、あたかも停電前の変圧器2次巻線電圧Vsと等しく
なってしまう。
In the conventional control method, I
The voltage drop V due to the pure resistance load on the powering vehicle side due to s
A voltage drop V1 'occurs due to r' and the inductive load.
If the vector diagram becomes as shown in FIG. 4 depending on the operation state, the voltage becomes equal to the transformer secondary winding voltage Vs before the power failure.

【0010】このとき純抵抗負荷分による電圧降下V
r′と誘導性負荷分による電圧降下V1′の合成による
変圧器2次巻線電圧Vsに対し、再び、2次電流パター
ンIspを発生するのでパワーバランスが崩れない限
り、車上側からみると、あたかも停電していないように
見える状態が続く。
At this time, the voltage drop V due to the pure resistance load
A secondary current pattern Isp is generated again for the secondary winding voltage Vs of the transformer by combining r ′ and the voltage drop V1 ′ due to the inductive load, so that the power balance is maintained, so that as seen from the vehicle upper side, The state that looks as if no power outage continues.

【0011】減速により回生側の発生する電力が減少し
ても、力行電気車が、抵抗制御車や位相制御車の場合、
架線電圧の低下により、力行側の消費する電力も減少す
るので、このベクトル図は相似形を保ったままであり、
バランス状態が継続することになる。
[0011] Even if the electric power generated on the regenerative side decreases due to deceleration, if the powering electric vehicle is a resistance control vehicle or a phase control vehicle,
Since the power consumption on the powering side also decreases due to the decrease in overhead line voltage, this vector diagram remains similar,
The balance state will continue.

【0012】このバランス状態が継続するとき、直流ス
テージ電圧の変動を検出して、停電を検知する方式の場
合、直流ステージ電圧は変動しないので停電検知が困難
であるという問題があった。
[0012] In the case of detecting the power failure by detecting the fluctuation of the DC stage voltage when the balance state continues, there is a problem that the power failure is difficult to detect because the DC stage voltage does not fluctuate.

【0013】また、停電時に位相差が自動的にφが18
0°になってしまうことを利用して検知しようとする方
式では、図4のようなバランス状態が生じた場合は、φ
=180°にはならないので、検知困難であるという問
題があった。
When a power failure occurs, the phase difference automatically becomes 18
In the method of detecting by using the fact that the angle becomes 0 °, when a balance state as shown in FIG.
= 180 °, it is difficult to detect.

【0014】いずれにしても上記従来技術では、同一給
電区間内に力行電気車と回生電気車とがある場合で、か
つ変電所に停電が生じたとき、力行電気車と回生電気車
の間にパワーバランスが発生した場合には、停電を速や
かに検知できない問題があった。
In any case, according to the above-mentioned prior art, when there is a power running electric vehicle and a regenerative electric vehicle in the same power supply section, and when a power outage occurs in a substation, the power running electric vehicle and the regenerative electric vehicle are located between the power running electric vehicle and the regenerative electric vehicle. When a power balance occurs, there is a problem that a power failure cannot be detected immediately.

【0015】本発明の目的は、停電を検知するのが困難
な条件下でも停電を確実に検知することのできる交流電
気車の制御装置を提供することにある。
An object of the present invention is to provide a control device for an AC electric vehicle that can reliably detect a power failure even under conditions where it is difficult to detect the power failure.

【0016】[0016]

【課題を解決するための手段】上記目的は、パルス幅変
調コンバータの回生運転時、2次巻線に流れる2次電流
を交流電源電圧に対し位相角を180°より大きい進み
角となるように制御する手段と、交流電源電圧の周期を
検出し、その検出された周期が設定された周期内に入っ
ているかどうかより停電を検知し停電検知出力信号を出
力する手段とを備えることにより達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a pulse width changing device.
Current flowing through the secondary winding during regenerative operation of the tone converter
Lead the phase angle to the AC power supply voltage by more than 180 °
Means to control the angle and the cycle of the AC power supply voltage.
Detected and the detected cycle falls within the set cycle
Power failure detection output signal
Means for exerting force.

【0017】[0017]

【作用】本発明による制御方法では、2次電流パターン
Ispを少なくとも制御偏差の分あるいはそれ以上、進
ませる(力行電気車が誘導性負荷の場合)ように制御す
る。
According to the control method of the present invention, the secondary current pattern Isp is controlled so as to advance at least by the control deviation or more (when the powering electric vehicle is an inductive load).

【0018】図7に示す回生電気車Bにこの制御方法を
採用した交流電気車の制御装置を搭載して運転している
とき、変電所の停電が発生した場合を考察する。図8に
各部の瞬時波形図を示す。停電発生以前は、交流電源電
圧Esが優勢であるため、変圧器2次巻線電圧の位相
は、交流電源電圧Esによって支配される。停電発生時
には、回生電車Bの発生する実際の2次電流Isによ
り、力行電気車Aの純抵抗負荷分による電圧降下Vr′
と誘導性負荷分による電圧降下Vl′の合成である変圧
器2次巻線電圧Vsが発生する。このとき、実際の2次
電流Isは、交流電源電圧Esに対しφが180゜ある
いは、それ以上進みとなるように制御されているので、
力行電車Aの純抵抗負荷分による電圧降下Vr′と誘導
性負荷分による電圧降下Vl′の合成による変圧器2次
巻線電圧Vsは、交流電源電圧Esに対し、少なくとも
誘導性負荷分による電圧降下Vl′の分だけ進むことに
なる。よって、停電時には、変圧器2次巻線電圧Vsの
位相が変化する。
Consider a case where a power outage occurs in a substation when the regenerative electric vehicle B shown in FIG. 7 is operated with a control device for an AC electric vehicle employing this control method. FIG. 8 shows an instantaneous waveform diagram of each part. Before the occurrence of the power failure, the AC power supply voltage Es is dominant, so that the phase of the transformer secondary winding voltage is controlled by the AC power supply voltage Es. When a power outage occurs, the actual secondary current Is generated by the regenerative train B causes a voltage drop Vr ′ due to the pure resistance load of the powering electric vehicle A.
And the secondary winding voltage Vs of the transformer, which is a combination of the voltage drop Vl 'due to the inductive load. At this time, since the actual secondary current Is is controlled such that φ advances by 180 ° or more with respect to the AC power supply voltage Es,
The transformer secondary winding voltage Vs obtained by combining the voltage drop Vr ′ due to the pure resistance load and the voltage drop Vl ′ due to the inductive load of the power train A is at least a voltage due to the inductive load relative to the AC power supply voltage Es. It will advance by the amount of the drop Vl '. Therefore, at the time of a power failure, the phase of the transformer secondary winding voltage Vs changes.

【0019】パルス幅変調コンバータを運転していると
き交流電源が停電すると、上述のように位相関係が変化
し、ゼロクロス周期が変化する。この結果、停電検知装
置から停電検知信号が出力される。したがって、この信
号を使ってパルス幅変調コンバータ及びパルス幅変調イ
ンバータの運転を直ちに停止させることが可能となる。
When the AC power supply is interrupted while the pulse width modulation converter is operating, the phase relationship changes as described above, and the zero-cross period changes. As a result, a power failure detection signal is output from the power failure detection device. Therefore, the operation of the pulse width modulation converter and the pulse width modulation inverter can be immediately stopped using this signal.

【0020】回生電気車Bが停電を検知すれば、パルス
幅変調コンバータ及びパルス幅変調インバータの運転を
停止して、機械ブレーキ等により速やかに電気車を停止
させるなどの必要な処置を講じることができる。また力
行電気車Aも、エネルギが断たれるので、停電の検知が
可能となり、同様に必要な処置を講じることができる。
When the regenerative electric vehicle B detects a power outage, the pulse width modulation converter and the pulse width modulation inverter may be stopped to take necessary measures such as stopping the electric vehicle promptly by a mechanical brake or the like. it can. In addition, since the power running electric vehicle A also loses its energy, it is possible to detect a power failure, and similarly, it is possible to take necessary measures.

【0021】[0021]

【実施例】図10は、本発明が適用される交流電気車の
制御装置の一実施例を示す図である。
FIG. 10 is a diagram showing an embodiment of a control device for an AC electric vehicle to which the present invention is applied.

【0022】変電所で交流電源11から架線1に供給さ
れた交流電力は、パンタグラフ2により電気車に受電さ
れる。この交流電力は、変圧器3,変圧器の漏れインダ
クタンスを利用したリアクトル4を介してパルス幅変調
コンバータ本体5へ供給され、パルス幅変調コンバータ
本体5で直流電力に変換されるとともに平滑コンデンサ
6で平滑されてパルス幅変調インバータ7に供給され
る。このパルス幅変調インバータ7によって交流電動機
8が駆動される。
The AC power supplied from the AC power supply 11 to the overhead line 1 at the substation is received by the electric vehicle by the pantograph 2. This AC power is supplied to the pulse width modulation converter main body 5 via the transformer 3 and the reactor 4 utilizing the leakage inductance of the transformer, and is converted into DC power by the pulse width modulation converter main body 5 and is also converted by the smoothing capacitor 6 to the DC power. The signal is smoothed and supplied to the pulse width modulation inverter 7. The AC motor 8 is driven by the pulse width modulation inverter 7.

【0023】パルス幅変調コンバータ本体5は、電気車
の力行運転時には、交流→直流変換(順変換)動作とな
り、回生運転時には、直流→交流変換(逆変換)動作と
なる。両動作中、パルス幅変調コンバータ本体5は、一
般的には、平滑コンデンサ6の両端電圧Vdを一定値に
保つとともに変圧器3の2次巻線電圧Vsと変圧器3の
2次電流Isとの位相差φで決まる力率cosφ を制御す
る。力率は、通常、最高値のcosφ =±1、つまりφが
0°または180°となるように制御される。図2は、
力行運転時に力率が1、すなわち、φ=0°となるよう
にパルス幅変調コンバータ本体5を動作させたときの交
流回路の電圧と電流Isとのベクトル図である。図3
は、回生運転時に力率が−1、すなわち、φが180°
となるようにパルス幅変調コンバータ本体5を動作させ
たときの交流回路の電圧と電流Isとのベクトル図であ
る。
The pulse width modulation converter main body 5 performs an AC → DC conversion (forward conversion) operation during power running operation of the electric vehicle, and performs a DC → AC conversion (reverse conversion) operation during regenerative operation. During both operations, the pulse width modulation converter main body 5 generally keeps the voltage Vd across the smoothing capacitor 6 at a constant value, and outputs the secondary winding voltage Vs of the transformer 3 and the secondary current Is of the transformer 3. Is controlled by the power factor cos φ determined by the phase difference φ. The power factor is usually controlled so that the maximum value cos φ = ± 1, that is, φ is 0 ° or 180 °. FIG.
FIG. 4 is a vector diagram of a voltage and a current Is of an AC circuit when the pulse width modulation converter main body 5 is operated so that a power factor becomes 1, that is, φ = 0 ° during power running operation. FIG.
Has a power factor of −1 during regenerative operation, that is, φ is 180 °
FIG. 7 is a vector diagram of a voltage and a current Is of the AC circuit when the pulse width modulation converter main body 5 is operated such that

【0024】パルス幅変調コンバータを用いた交流電気
車では、つぎのような問題が生じる。即ち、パルス幅変
調コンバータは自己消弧能力素子を用いているため、停
電中にもその動作が可能である。このため、もし同一給
電区間内に力行電気車と回生電気車とがあって停電が生
じた場合、両電気車間でエネルギの授受を行なってしま
い、変電所の停電を知らずに走行してしまう恐れがあ
る。
In an AC electric vehicle using a pulse width modulation converter, the following problem occurs. That is, since the pulse width modulation converter uses the self-extinguishing capability element, the operation can be performed even during a power failure. For this reason, if there is a power running electric vehicle and a regenerative electric vehicle in the same power supply section and a power outage occurs, energy is exchanged between the two electric vehicles, and the vehicle may travel without knowing the power outage at the substation. There is.

【0025】図7に示すように、同一変電所から架線電
源を供給する区間(以下同一セクションと称する。)に
A,B2本の電気車が存在し、電気車Bが図1に示した
システムの車両で回生運転をおこない、電気車Aが、力
行運転を行なっていた場合、架線が停電、即ち、変電所
が送電を中断した場合でも電気車Bから電気車Aに電力
を供給する状態で運転が続くことがあるが、この状態を
保安上避ける必要がある。地震などによる地上設備の異
常の際、架線停電させることで電気車を止める方式を採
用している鉄道では特に重要な問題となる。
As shown in FIG. 7, there are two electric vehicles A and B in a section (hereinafter referred to as the same section) in which overhead power is supplied from the same substation, and electric vehicle B is the system shown in FIG. In the state where power is supplied from the electric car B to the electric car A even when the overhead line is out of power, that is, when the substation interrupts the power transmission, Driving may continue, but this condition must be avoided for security reasons. This is a particularly important problem for railways that use a system that stops electric vehicles by stopping power lines when an abnormality occurs on ground equipment due to an earthquake or the like.

【0026】以下、図面を参照しながら実施例を説明す
る。図1は本発明の一実施例の制御方法を採用した交流
電気車制御装置を搭載した電気車の回路図の一例であ
る。
Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is an example of a circuit diagram of an electric vehicle equipped with an AC electric vehicle control device employing a control method according to an embodiment of the present invention.

【0027】変電所で交流電源11から架線1に供給さ
れている交流電力は、パンタグラフ2を介して電気車に
受電される。この交流電力は変圧器3,変圧器の漏れイ
ンダクタンスを利用したリアクトル4を介して自己消弧
能力素子によって構成されたパルス幅変調コンバータ本
体5へ供給され、パルス幅変調コンバータにより直流電
力に変換され平滑コンデンサ6で平滑されて、パルス幅
変調インバータ7に供給される。このパルス幅変調イン
バータ7によって交流電動機8が駆動される。パルス幅
変調コンバータ本体5は、力行運転時には、交流→直流
変換(順変換)動作を行ない、回生運転時には、直流→交
流変換(逆変換)動作を行なう。両動作中、パルス幅変
調コンバータ本体5は、一般的には、平滑コンデンサ6
の両端電圧Vdを一定値に保つとともに交流電源電圧E
sと変圧器3の2次電流Isとの位相差φで決まる力率
cosφ が高い値に維持されるように交流入力電圧Vcが
制御される。
The AC power supplied from the AC power supply 11 to the overhead line 1 at the substation is received by the electric vehicle via the pantograph 2. This AC power is supplied to a pulse width modulation converter main body 5 composed of a self-extinguishing capability element via a transformer 3 and a reactor 4 utilizing the leakage inductance of the transformer, and is converted into DC power by the pulse width modulation converter. It is smoothed by the smoothing capacitor 6 and supplied to the pulse width modulation inverter 7. The AC motor 8 is driven by the pulse width modulation inverter 7. The pulse width modulation converter main body 5 performs an AC → DC conversion (forward conversion) operation during the power running operation, and performs a DC → AC conversion (reverse conversion) operation during the regenerative operation. During both operations, the pulse width modulation converter body 5 generally includes a smoothing capacitor 6
And the AC power supply voltage E
power factor determined by phase difference φ between s and secondary current Is of transformer 3
AC input voltage Vc is controlled such that cosφ is maintained at a high value.

【0028】変圧器3の電圧Epを、電源に含まれるノ
イズや高調波を除去する目的で設置された同期電源フィ
ルタ30を通して導入し、ゼロクロス検出器31によっ
てゼロクロスパルスを得る。このゼロクロスパルスの周
期を周期検出装置40によって測定し、比較器41で設
定値と比較する。このゼロクロスパルスの周期と設定値
との差が、ある一定範囲を越えると停電検知信号をPW
M回路26及び27に出力する。
The voltage Ep of the transformer 3 is introduced through a synchronous power supply filter 30 provided for the purpose of removing noise and harmonics contained in the power supply, and a zero cross pulse is obtained by a zero cross detector 31. The period of the zero-cross pulse is measured by the period detecting device 40, and is compared with the set value by the comparator 41. When the difference between the cycle of the zero-cross pulse and the set value exceeds a certain range, the power failure detection signal is output to PW
Output to the M circuits 26 and 27.

【0029】クロック信号をカウントし、ゼロクロスパ
ルスによってリセットされるカウンタ33により正弦波
ROMのアドレスが決定されるが、2次電流パターンI
spの位相を変えるため位相設定器37の出力をカウン
タ33の出力に加算器34によって加算することで、ア
ドレスにオフセットを加えている。このオフセットを加
えたアドレスを正弦波ROM35に与えることにより正
弦波のデジタルデータが得られる。この正弦波ROMの
デジタル出力信号をD/Aコンバータ36に入力しアナ
ログ信号に変換する。但し、デジタル制御とすれば、D
/Aコンバータ36は不要である。
The address of the sine wave ROM is determined by the counter 33 which counts the clock signal and is reset by the zero cross pulse.
The offset is added to the address by adding the output of the phase setting device 37 to the output of the counter 33 by the adder 34 in order to change the phase of sp. By providing the offset-added address to the sine wave ROM 35, sine wave digital data is obtained. The digital output signal of the sine wave ROM is input to the D / A converter 36 and converted into an analog signal. However, if digital control is used, D
The / A converter 36 is unnecessary.

【0030】直流電圧の目標値Vdpと測定値Vdとを
加算器20で比較し、その差をAVR(電圧調節器)21
に入力する。このAVR(電圧調節器)21の出力と、
正弦波ROM35のデジタル出力信号をアナログ信号に
変換したものとを乗算器22で掛け合わせると2次電流
パターンIspが得られる。
The target value Vdp of the DC voltage and the measured value Vd are compared by an adder 20, and the difference is compared with an AVR (voltage regulator) 21.
To enter. The output of this AVR (voltage regulator) 21;
When a digital output signal of the sine wave ROM 35 is converted into an analog signal by a multiplier 22, the secondary current pattern Isp is obtained.

【0031】この2次電流パターンIspと変流器9の
出力とを加算器23で比較し、その結果をACR(電流
調節器)24に入力する。ACR(電流調節器)24の
出力と変圧器3の2次巻線電圧Vsとを加算器25で比
較し、その出力をPWM回路26に入力し所定のゲート
信号を得る。
The secondary current pattern Isp is compared with the output of the current transformer 9 by an adder 23, and the result is input to an ACR (current controller) 24. The output of the ACR (current controller) 24 and the secondary winding voltage Vs of the transformer 3 are compared by the adder 25, and the output is input to the PWM circuit 26 to obtain a predetermined gate signal.

【0032】図8は、停電時における各部電圧・電流の
瞬時波形図を示す。停電が発生すると、まず変圧器2次
巻線電圧Vsの位相が変化する。これは、通常時、交流
電源電圧Esが優勢であり、変圧器2次巻線電圧Vsも
交流電源電圧Esに支配されていたものが、停電によ
り、力行電気車の純抵抗負荷分による電圧降下Vr′と
誘導性負荷分による電圧降下Vl′の合成で生じる変圧
器2次巻線電圧Vsとなるためである。
FIG. 8 shows instantaneous waveform diagrams of the voltage and current of each part at the time of a power failure. When a power failure occurs, first, the phase of the transformer secondary winding voltage Vs changes. This is because the AC power supply voltage Es is normally dominant and the transformer secondary winding voltage Vs is also dominated by the AC power supply voltage Es, but the voltage drop due to the pure resistance load of the power running electric vehicle due to the power failure. This is because the transformer secondary winding voltage Vs is generated by combining Vr 'and the voltage drop Vl' due to the inductive load.

【0033】この時、本制御法では実際の2次電流Is
の位相角を交流電源電圧Esに対しφが180゜あるい
は、それ以上の進みとなるように制御されているので、
Vsの位相は、停電前に対して少なくとも誘導性負荷分
による電圧降下Vl′の分だけ進むことになる。
At this time, in the present control method, the actual secondary current Is
Is controlled so that φ advances by 180 ° or more with respect to the AC power supply voltage Es.
The phase of Vs is advanced by at least the voltage drop Vl 'due to the inductive load from before the power failure.

【0034】その結果、ゼロクロス周期が短くなり、2
次電流パターンIspが変化する。この2次電流パター
ンIspに対し実際の2次電流Isが流れ、再び純抵抗
負荷分による電圧降下Vr′と誘導性負荷分による電圧
降下Vl′の合成で生じる変圧器2次巻線電圧Vsが発
生する。
As a result, the zero-cross period becomes shorter,
The next current pattern Isp changes. The actual secondary current Is flows through this secondary current pattern Isp, and the secondary winding voltage Vs of the transformer, which is generated by combining the voltage drop Vr ′ due to the pure resistance load and the voltage drop Vl ′ due to the inductive load again, is obtained. appear.

【0035】よって、ゼロクロスの周期は、短くなった
ままであり、周期検出器40の出力が、比較器41の範
囲を超えた状態が継続する。この時、比較器41から、
停電検知信号が出力される。
Therefore, the period of the zero crossing remains short, and the state where the output of the period detector 40 exceeds the range of the comparator 41 continues. At this time, from the comparator 41,
A power failure detection signal is output.

【0036】この停電検知信号が、26及び27のパル
ス幅変調回路に入力され、パルス幅変調コンバータ及び
パルス幅変調インバータの動作が停止する。
This power failure detection signal is input to the pulse width modulation circuits 26 and 27, and the operations of the pulse width modulation converter and the pulse width modulation inverter are stopped.

【0037】このような構成であると、図7に示すよう
に、同一給電区間内に力行電気車Aと回生電気車Bとが
あり、変電所Cに停電が生じ、給電が停止すると前述の
ように、変圧器2次電圧Vsの位相が変化し、ゼロクロ
ス周期が変化するため比較器41より停電検知信号が出
力される。したがって、回生電気車B側のパルス幅変調
コンバータ本体5及びパルス幅変調インバータ本体7の
動作が停止する。また、力行電気車Aは電源が完全に断
たれるので、通常の検出系の動作によって停電を検知す
ることが出来る。
With such a configuration, as shown in FIG. 7, when the power running electric vehicle A and the regenerative electric vehicle B are present in the same power supply section, a power outage occurs in the substation C, and when the power supply is stopped, the aforementioned power supply is stopped. As described above, since the phase of the transformer secondary voltage Vs changes and the zero-cross period changes, the comparator 41 outputs a power failure detection signal. Therefore, the operation of the pulse width modulation converter main body 5 and the pulse width modulation inverter main body 7 on the regenerative electric vehicle B side stops. In addition, since the power of the powering electric vehicle A is completely cut off, the power failure can be detected by the operation of the normal detection system.

【0038】[0038]

【発明の効果】本発明によれば、従来の方法では検知が
困難であったような条件での停電、例えば同一給電区間
内に力行電気車と回生電気車が存在し、それぞれの電力
がバランスするような条件下でも停電が検知可能となり
鉄道システムとしての保安度が大きく向上する。また、
本発明の制御方法は、従来の制御回路にわずかな修正を
加えるだけで実現可能である。
According to the present invention, a power outage under conditions that were difficult to detect with the conventional method, for example, a power running electric vehicle and a regenerative electric vehicle exist in the same power supply section, and the respective powers are balanced. Under such conditions, a power outage can be detected, greatly improving the security of the railway system. Also,
The control method of the present invention can be realized by making only a slight modification to a conventional control circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による交流電気車の制御装置の回路図。FIG. 1 is a circuit diagram of a control device for an AC electric vehicle according to the present invention.

【図2】力行時の交流回路の電圧と電流とのベクトル
図。
FIG. 2 is a vector diagram of voltage and current of an AC circuit during power running.

【図3】回生時の交流回路の電圧と電流とのベクトル
図。
FIG. 3 is a vector diagram of a voltage and a current of an AC circuit during regeneration.

【図4】従来制御による回生運転中に停電した場合でバ
ランスした状態における交流回路の電圧と電流のベクト
ル図。
FIG. 4 is a vector diagram of voltage and current of an AC circuit in a balanced state when a power failure occurs during regenerative operation by conventional control.

【図5】本発明制御法を適用した場合で回生運転中に停
電した場合の交流回路の電圧と電流のベクトル図。
FIG. 5 is a vector diagram of voltage and current of an AC circuit when a power failure occurs during regenerative operation when the control method of the present invention is applied.

【図6】2次電流パターンIspと2次電流Isの関係
を表すベクトル図および制御ブロック図。
FIG. 6 is a vector diagram and a control block diagram showing a relationship between a secondary current pattern Isp and a secondary current Is.

【図7】同一給電区間内に力行電気車Aと回生電気車B
とがある場合を示した説明図。
FIG. 7 shows a powering electric vehicle A and a regenerative electric vehicle B in the same power supply section.
FIG.

【図8】本発明制御法を適用した場合の停電時における
各部電圧・電流の瞬時波形図。
FIG. 8 is an instantaneous waveform diagram of voltages and currents of respective parts at the time of a power failure when the control method of the present invention is applied.

【図9】力行運転を行なっている電気車Aの主回路方式
を、抵抗制御車や位相制御車と想定し、電気車Aの等価
回路及び回生電気車Bの間の極性を示した回路図。
FIG. 9 is a circuit diagram showing the equivalent circuit of the electric vehicle A and the polarity between the regenerative electric vehicle B, assuming that the main circuit system of the electric vehicle A performing power running operation is a resistance control vehicle or a phase control vehicle. .

【図10】従来からある交流電気車の制御装置の回路
図。
FIG. 10 is a circuit diagram of a conventional control device for an AC electric vehicle.

【符号の説明】[Explanation of symbols]

1…架線、2…パンタグラフ、3…変圧器、4…リアク
トル、5…パルス幅変調コンバータ、6…平滑コンデン
サ、7…パルス幅変調インバータ、8…交流電動機、9
…電流検出装置、10…真空遮断機、11…交流電源、
20,23…加算器、21…AVR、22…乗算器、2
4…ACR、25,34,41…比較器、26及び27
…パルス幅変調回路、30…同期電源フィルタ、31…
ゼロクロス検出器、32…クロックパルス発生器、33
…カウンタ、35…正弦波ROM、36…D/Aコンバ
ータ、37…位相設定器、40…周期検出器。
DESCRIPTION OF SYMBOLS 1 ... overhead wire, 2 ... pantograph, 3 ... transformer, 4 ... reactor, 5 ... pulse width modulation converter, 6 ... smoothing capacitor, 7 ... pulse width modulation inverter, 8 ... AC motor, 9
... current detector, 10 ... vacuum breaker, 11 ... AC power supply,
20, 23 ... adder, 21 ... AVR, 22 ... multiplier, 2
4 ACR, 25, 34, 41 Comparators, 26 and 27
... Pulse width modulation circuit, 30 ... Synchronous power supply filter, 31 ...
Zero-cross detector, 32 ... clock pulse generator, 33
... Counter, 35 ... Sine wave ROM, 36 ... D / A converter, 37 ... Phase setting device, 40 ... Period detector.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60L 3/00 B60L 3/04 B60L 9/24 H02H 7/122 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B60L 3/00 B60L 3/04 B60L 9/24 H02H 7/122

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】交流電源に1次巻線が接続された変圧器の
2次巻線に接続されたパルス幅変調コンバータと、該パ
ルス幅変調コンバータの直流側に接続された平滑コンデ
ンサと、該平滑コンデンサに直流側が接続されたパルス
幅変調インバータと、該パルス幅変調インバータの交流
側に接続された交流電動機とにより構成された交流電気
車の制御装置において、 前記パルス幅変調コンバータの回生運転時、前記2次巻
線に流れる2次電流を前記交流電源電圧に対し位相角を
180°より大きい進み角となるように制御する手段
と、前記交流電源電圧の周期を検出し、その検出された
周期が設定された周期内に入っているかどうかより停電
を検知し停電検知出力信号を出力する手段と、停電検知
信号により前記パルス幅変調コンバータ並びに前記パル
ス幅変調インバータを停止するための制御信号を出力す
る制御手段を備えたことを特徴とする交流電気車の制御
装置。
1. A pulse width modulation converter connected to a secondary winding of a transformer having a primary winding connected to an AC power supply; a smoothing capacitor connected to a DC side of the pulse width modulation converter; In a control device for an AC electric vehicle, comprising a pulse width modulation inverter having a DC side connected to a smoothing capacitor, and an AC motor connected to an AC side of the pulse width modulation inverter, the regenerative operation of the pulse width modulation converter Means for controlling a secondary current flowing through the secondary winding so that the phase angle of the secondary current is greater than 180 ° with respect to the AC power supply voltage, and detecting a cycle of the AC power supply voltage, and Means for detecting a power failure based on whether the cycle is within a set cycle and outputting a power failure detection output signal, and the pulse width modulation converter and the AC electric vehicle control apparatus characterized by comprising a control means for outputting a control signal for stopping the pulse width modulation inverter.
JP34386692A 1992-12-24 1992-12-24 AC electric vehicle control device Expired - Lifetime JP3186281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34386692A JP3186281B2 (en) 1992-12-24 1992-12-24 AC electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34386692A JP3186281B2 (en) 1992-12-24 1992-12-24 AC electric vehicle control device

Publications (2)

Publication Number Publication Date
JPH06197402A JPH06197402A (en) 1994-07-15
JP3186281B2 true JP3186281B2 (en) 2001-07-11

Family

ID=18364845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34386692A Expired - Lifetime JP3186281B2 (en) 1992-12-24 1992-12-24 AC electric vehicle control device

Country Status (1)

Country Link
JP (1) JP3186281B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167608A3 (en) * 2000-06-21 2003-11-19 Whirlpool Corporation A method and apparatus for power loss detection and saving of operation settings in an appliance
JP2006320139A (en) * 2005-05-13 2006-11-24 Railway Technical Res Inst Vehicle braking method and braking system
AT504106B1 (en) * 2006-08-24 2008-03-15 Elin Ebg Traction Gmbh METHOD FOR CONTROLLING A POWER SUPPLY FOR RAIL VEHICLES
JP4964215B2 (en) * 2008-11-06 2012-06-27 三菱電機株式会社 AC electric vehicle control device
JP5806446B2 (en) * 2009-03-31 2015-11-10 パナソニックエコソリューションズ電路株式会社 Electricity meter
JP5578972B2 (en) * 2010-07-15 2014-08-27 株式会社東芝 AC train converter controller
JP6122356B2 (en) * 2013-06-27 2017-04-26 株式会社日立製作所 Converter control device

Also Published As

Publication number Publication date
JPH06197402A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
JP3890924B2 (en) Electric car drive system
JP3186281B2 (en) AC electric vehicle control device
JPH06292304A (en) Power converter for electric vehicle driving system
JP2672911B2 (en) Blackout detection method for AC electric vehicles
JP2003189631A (en) Power failure detector of power conversion circuit
JP3186495B2 (en) Power converter for AC electric vehicles
KR100758979B1 (en) Regenerative inverter system for DC railway system and method thereof
JP3687335B2 (en) Power failure detection device for power converter
JP3351631B2 (en) Electric car control device
JP3477068B2 (en) Electric car power supply
JP3057332B2 (en) Instantaneous interruption power switching method and instantaneous interruption uninterruptible power supply
JP2994892B2 (en) Electric vehicle power converter
WO2024084668A1 (en) Power conversion device for railroad car
JP2672885B2 (en) Power failure detection device for AC electric vehicles
JPS61273103A (en) Ac and dc electric railcar
JP2560375Y2 (en) Power regeneration device
JP2023042118A (en) Power converter control device and control method
JP2766584B2 (en) AC electric vehicle control device
KR19990047300A (en) Motor Drive Control
JPH07212909A (en) Electric vehicle controller
JPS6311001A (en) Controller for electric rolling stock
JP3153655B2 (en) Electric car control device
JP2787519B2 (en) Method and apparatus for driving electric motor
JPS60200790A (en) Drive device for ac motor
JPS62290302A (en) Induction motor-type electric rolling stock controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12