JP3184034U - Container with excavation bit for burying high-level radioactive waste under the deep sea - Google Patents

Container with excavation bit for burying high-level radioactive waste under the deep sea Download PDF

Info

Publication number
JP3184034U
JP3184034U JP2013000498U JP2013000498U JP3184034U JP 3184034 U JP3184034 U JP 3184034U JP 2013000498 U JP2013000498 U JP 2013000498U JP 2013000498 U JP2013000498 U JP 2013000498U JP 3184034 U JP3184034 U JP 3184034U
Authority
JP
Japan
Prior art keywords
container
radioactive waste
bit
level radioactive
excavation bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2013000498U
Other languages
Japanese (ja)
Inventor
稔 富澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013000498U priority Critical patent/JP3184034U/en
Application granted granted Critical
Publication of JP3184034U publication Critical patent/JP3184034U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Earth Drilling (AREA)

Abstract

【課題】高レベル放射性廃棄物のガラス固化体入りの規格キャニスターを内包して、水深5000mを超す深海底下の地層に、埋め戻しの必要のない計画埋設ができる掘削ビット付容器を提供する。
【解決手段】高レベル放射性廃棄物のガラス固化体入り規格キャニスター1を内包するスクリュウ3付き鋼製円筒2を、掘削ビット7付き二重鋼管4,5の中芯位置にある軸受6上に設け、外部の駆動・保持装置から上グリップ蓋8を介して与えられる回転力によって螺子ポンプとしての作用を生じさせ、同時に、下グリップ蓋9に与える逆方向回転力と自重によって掘削ビット7付き二重鋼管4,5が深海底下の岩盤を掘り進む構造とする。掘削の削り屑は、通水スリット11とビット間スリット12を通った海水と共に、上記螺子ポンプ作用によって吸上げられ容器上部に溜るので、埋め戻しは必要がない。
【選択図】図1
Provided is a container with a drill bit that includes a standard canister containing vitrified high-level radioactive waste and can be planned to be buried in a deep layer below a depth of 5000 m and need not be backfilled.
A steel cylinder 2 with a screw 3 enclosing a standard canister 1 containing a high-level radioactive waste containing a solidified glass body is provided on a bearing 6 at a center position of double steel pipes 4 and 5 with a drill bit 7. Rotation force applied from the external drive / holding device through the upper grip lid 8 causes an action as a screw pump, and at the same time, a reverse rotation force applied to the lower grip lid 9 and its own weight double the excavation bit 7 The steel pipes 4 and 5 have a structure that digs through the bedrock beneath the deep sea. The excavated shavings are sucked up by the screw pump action and accumulated in the upper part of the container together with the seawater passing through the water passage slit 11 and the slit 12 between the bits, so that there is no need for backfilling.
[Selection] Figure 1

Description

本考案は、高レベル放射性廃棄物入りの規格キャニスター(缶)を内包しながら、深海底下の岩盤を掘削進行出来る掘削ビット付容器に関するものである。
なお、我が国も批准しているロンドン条約が原則禁止しているのは、産業廃棄物の海洋投棄であるが、本考案が関連する行為は、国際的合意を前提とした産業廃棄物の深海底下への計画的埋設である。
The present invention relates to a vessel with an excavation bit that can excavate a bedrock under the deep sea while containing a standard canister (can) containing high-level radioactive waste.
The London Convention, which has been ratified by Japan, prohibits the dumping of industrial wastes in the ocean, but the actions related to the present invention are under the deep sea floor of industrial wastes based on an international agreement. Is a planned burial.

水深5000mを超す深海底を掘削する技術は、水深約2000mまでの油井掘削技術とは別に、海底下の地層サンプルの採取が目的で開発されたものあり、本考案に関連するような、特定の物品を深海底下に埋設するための技術ではない。The technology for drilling deep seabeds with a depth of more than 5000m was developed for the purpose of collecting geological samples under the seabed, apart from the oil well drilling technology up to a depth of about 2000m. It is not a technique for burying articles under the deep sea.

海底下の地層探査を目的とした海洋掘削は、海上の探査船あるいは掘削リグから海底に向ってドリルパイプを継ぎ足しながら伸ばし、船上あるいはリグ上でパイプに軸廻りの回転を与えることによって、先端に付けた掘削ビットで岩盤を削り穿孔していくものである。
削り屑は、ドリルパイプ内を探査船より圧送されて来て先端のビットから噴出する計画粘度と比重を持った泥水(でいすい)に包含されて、ドリルパイプとその外側に設置されたライザーパイプとの隙間を通って船上に逆送されて行く。
海底下の地層サンプルは、ドリルパイプ内を降下して来たコアバーレル(採取容器)に採取され、容器に取り付けたケーブルによって船上に引き揚げられる。サンプルの大きさは、直径約7cm・長さ約9mの円柱状のものである。
Offshore drilling for the purpose of exploring geological formations beneath the seabed is achieved by extending the drill pipe from the marine exploration ship or drilling rig toward the seabed and extending the pipe around the ship or on the rig. The rock is drilled and drilled with the attached excavation bit.
The shavings are contained in muddy water with a planned viscosity and specific gravity that is pumped from the exploration ship through the drill pipe and ejected from the bit at the tip, and the drill pipe and the riser installed outside it. It is sent back to the ship through the gap with the pipe.
A subsurface sample is collected in a core barrel (collecting container) that has descended in the drill pipe, and is pulled up on the ship by a cable attached to the container. The size of the sample is a cylindrical shape having a diameter of about 7 cm and a length of about 9 m.

仮に、高レベル放射性廃棄物のガラス固化体入りのキャニスターがコアバーレルに収容できる程度の大きさであったら、上述のような海洋掘削技術をそのまま利用して、キャニスターを、水深5000mを超す深海底下に計画埋設することが出来よう。
ところがキャニスターは、直径43cm・長さ134cmのステンレス円筒容器に規格化され、2012年現在、高レベル放射性廃棄物のガラス固化体入りの規格キャニスターが、数千本のオーダーで放射能に起因した発熱の冷却のため国内で一時保管されている。
従って、既存の海洋掘削技術を利用する限り、採りうる選択肢は二つ考えられる。一つは、現有の内容物入りキャニスターを全部再処理工場に戻し、新規に処理する分と共に、コアバーレルに収容できる大きさのステンレス容器に入れ替えるというものである。
他の一つは、現行のキャニスターが入れる大きさにコアバーレルを作り変え、そのコアバーレルが通過できるくらいの太さのドリルパイプを用い、それに伴う掘削システム全体を改造することである。
しかし、これら二つの選択肢はいずれも掛ける費用が大きい割りにコスト・パフォーマンスが悪いし、達成できるかどうか大いに疑問である多くの技術開発を必要とする。
If the canister containing the vitrified high-level radioactive waste is of a size that can be accommodated in the core barrel, the canister can be placed under the deep sea floor with a depth of more than 5000 m using the ocean drilling technology as described above. Planned burial will be possible.
However, the canister was standardized to a stainless steel cylindrical container with a diameter of 43cm and a length of 134cm. As of 2012, standard canisters containing vitrified high-level radioactive waste are heated due to radioactivity on the order of thousands. Temporarily stored in Japan for cooling.
Therefore, as long as existing offshore drilling technology is used, there are two possible options. One is to return all existing canisters with contents to the reprocessing plant and replace them with new stainless steel containers that can be accommodated in the core barrels.
The other is to remodel the core barrel to the size that the current canister can fit, use a drill pipe that is thick enough to pass through the core barrel, and modify the entire drilling system.
However, these two options are both costly and performance-intensive for the cost of both, and require a lot of technology development that is highly questionable whether they can be achieved.

そこで、海底下の地層探査を目的とした海洋掘削技術から離れて、現行の放射性廃棄物入りのキャニスターを内包しながら深海底下の岩盤を掘削進行出来る掘削ビット付容器を作り、それを駆動・保持装置を備えたプラットフォームに載せ、海上の母船からケーブルでそのプラットフォームを海底に降ろし、其処から掘削ビット付容器を深海底下の地層へ計画的に埋設することを目的とする。 本考案は、そのような掘削ビット付容器の具体的提案である。なお、プラットフォームに備えた掘削ビット付容器駆動・保持装置への電力供給は、母船からのアンビリカル・コードを通じて行なう。Therefore, apart from offshore drilling technology for the purpose of geological exploration under the seabed, a vessel with a drilling bit that can be used to excavate the bedrock under the deep seabed while enclosing the current canister containing radioactive waste, and driving and holding it The purpose of this project is to place the platform with a drill bit into the formation beneath the deep sea floor. The present invention is a concrete proposal of such a vessel with a drill bit. Electric power is supplied to the vessel driving / holding device with excavation bit provided in the platform through an umbilical cord from the mother ship.

本考案による掘削ビット付容器は、概略、規格キャニスターが収まるスクリュウ付鋼製円筒と、掘削ビット付二重鋼管の二つの部分から成立っている(図1)。掘削ビットは固定刃ビットであるが、予め海底地質調査の結果、最適なビットが用意される。従って、海底下の地層探査を目的とする場合のように、地層に応じた様々な掘削ビットを用意する必要はない。A container with a drill bit according to the present invention is roughly composed of two parts: a steel cylinder with a screw in which a standard canister fits and a double steel pipe with a drill bit (FIG. 1). The excavation bit is a fixed blade bit, but an optimum bit is prepared in advance as a result of the seabed geological survey. Accordingly, there is no need to prepare various excavation bits according to the formation, as in the case of the purpose of geological exploration under the seabed.

海底に着地した本考案による掘削ビット付容器は、駆動・保持装置から二重鋼管の外筒に与えられる回転と自重で掘削が開始される。同時に、スクリュウ付鋼製円筒に逆方向の回転が駆動・保持装置から与えられ、本考案による容器内部は、海水を吸い上げる螺子ポンプの作用を持つ。掘削による削り屑は、このポンプ作用によって海水と共に上方へ運ばれ、容器上方内部に溜まる。従って、従来の海洋掘削技術のように、泥水を用いる必要は無い。また、容器上方内部に蓄積する削り屑は、自動的にキャニスターに対する埋め戻し土砂の役割をする。The container with the excavation bit according to the present invention that has landed on the seabed starts excavation by the rotation and its own weight given to the outer tube of the double steel pipe from the driving / holding device. At the same time, a reverse rotation is given to the steel cylinder with screw from the drive / holding device, and the inside of the container according to the present invention has a function of a screw pump for sucking up seawater. The shavings from the excavation are transported upward together with the seawater by this pump action, and accumulate in the upper part of the container. Therefore, it is not necessary to use muddy water as in the conventional offshore drilling technology. Further, the shavings accumulated in the upper part of the container automatically serve as backfill earth and sand for the canister.

本考案による掘削ビット付容器は、縦断面図(図1)に示すように、現行の高レベル放射性廃棄物のガラス固化体入り規格キャニスター1を複数本収容出来る大きさで外周にスクリュウ3が溶接された鋼製円筒2を、掘削ビット7を備え通水スリット11およびビット間スリット12を有する二重鋼管(4&5)の中芯位置にある軸受6の直上に設置する。As shown in the longitudinal sectional view (Fig. 1), the container with a drill bit according to the present invention is large enough to accommodate a plurality of standard canisters 1 containing vitrified high-level radioactive waste. The formed steel cylinder 2 is installed directly above the bearing 6 at the center position of the double steel pipe (4 & 5) provided with the excavation bit 7 and having the water passage slit 11 and the inter-bit slit 12.

平歯車15を持つ下グリップ蓋9に、プラットフォーム上の駆動・保持装置から、(図では左回りの)回転ドライブが掛かると二重鋼管(4&5)は回転運動を始め、自重と掘削ビット7の効果で岩盤への穿孔が始まる。同時に、平歯車16を持つ上グリップ蓋8に逆方向(図では右回りの)回転ドライブが掛かるとスクリュウ3が溶接された鋼製円筒2が逆回転運動を始め、海水螺子ポンプとして作動し始める。When the lower grip lid 9 having the spur gear 15 is subjected to a rotational drive (counterclockwise in the figure) from the driving / holding device on the platform, the double steel pipes (4 & 5) start rotating, The drilling into the bedrock begins with the effect. At the same time, when the reverse grip (clockwise in the figure) is applied to the upper grip cover 8 having the spur gear 16, the steel cylinder 2 to which the screw 3 is welded starts a reverse rotational motion and starts operating as a seawater screw pump. .

掘削ビットによる削り屑は、主として通水スリット11を通りビット間スリット12を経て吸い上げられた海水と共に、二重鋼管(4&5)の上方の貯屑槽10に溜る。もし削り屑が貯屑槽10に入り切れない場合は、調節孔13(図2)から外部へ流出させる。この時、削り屑が循環しないように通水スリット11の入口に金網14を設置する。The shavings produced by the excavating bit accumulate in the waste storage tank 10 above the double steel pipe (4 & 5) together with the seawater sucked up through the water passage slit 11 and the inter-bit slit 12. If the shavings cannot enter the waste storage tank 10, the shavings are discharged from the adjustment hole 13 (FIG. 2) to the outside. At this time, a wire mesh 14 is installed at the entrance of the water passage slit 11 so that the shavings do not circulate.

本考案に係る掘削ビット付容器の、縦断面図である。It is a longitudinal cross-sectional view of the container with an excavation bit which concerns on this invention. 図1中に示した、A−A’位置から見た断面図である。It is sectional drawing seen from the A-A 'position shown in FIG. 図1中に示した、B−B’位置から見た断面図である。It is sectional drawing seen from the B-B 'position shown in FIG. 図1中に示した、C−C’位置から見た見上げ図である。FIG. 2 is a look-up view seen from the C-C ′ position shown in FIG. 1.

1 高レベル放射性廃棄物のガラス固化体入り規格キャニスター
2 スクリュウ付鋼製円筒
3 スクリュウ
4 二重鋼管の内筒
5 二重鋼管の外筒
6 軸受
7 掘削ビット
8 上グリップ蓋
9 下グリップ蓋
10 貯屑槽
11 通水スリット
12 ビット間スリット
13 調節孔
14 金網
15 平歯車その1
16 平歯車その2
1 Standard canister containing high-level radioactive waste in solidified glass 2 Steel cylinder with screw 3 Screw 4 Inner cylinder of double steel pipe 5 Outer cylinder of double steel pipe 6 Bearing 7 Drilling bit 8 Upper grip lid 9 Lower grip lid 10 Storage Waste tank 11 Water passage slit 12 Slit between bits 13 Adjustment hole 14 Wire mesh 15 Spur gear 1
16 Spur gear 2

Claims (3)

高レベル放射性廃棄物のガラス固化体入りの規格キャニスターを内包できるスクリュウ付鋼製円筒と、掘削ビット付二重鋼管から成り立ち、外部からの回転駆動力によって、掘り屑を自力で処理しながら海底下岩盤を掘り進み、放射性廃棄物入りキャニスターを計画深さに埋設できる掘削ビット付容器。  It consists of a steel cylinder with a screw that can contain standard canisters containing vitrified high-level radioactive waste and a double steel pipe with a drilling bit. A vessel with an excavation bit that can dig into the bedrock and embed a radioactive waste canister to the planned depth. 請求項1の掘削ビット付容器で、穿孔壁の摩擦抵抗を低減するのに有効な容器外周の水みちを確保するため、固定掘削ビットを容器外周より強度上可能な限りはみ出して取り付ける事。  In order to secure a water channel on the outer periphery of the container, which is effective for reducing the frictional resistance of the perforated wall in the container with the excavating bit according to claim 1, the fixed excavating bit should be mounted as far as possible from the outer periphery of the container. 請求項1の掘削ビット付容器を計画深さに埋設した後、容器の駆動・保持装置を直上に切り離すことができるように、平歯車となっている上グリップ蓋の直径を、やはり平歯車となっている下グリップ蓋の直径より充分に小さくする事。  After embedding the container with the excavation bit according to claim 1 to the planned depth, the diameter of the upper grip lid, which is a spur gear, can be separated from the spur gear so that the container drive / holding device can be separated immediately above. Make it sufficiently smaller than the diameter of the lower grip lid.
JP2013000498U 2013-01-15 2013-01-15 Container with excavation bit for burying high-level radioactive waste under the deep sea Expired - Lifetime JP3184034U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013000498U JP3184034U (en) 2013-01-15 2013-01-15 Container with excavation bit for burying high-level radioactive waste under the deep sea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013000498U JP3184034U (en) 2013-01-15 2013-01-15 Container with excavation bit for burying high-level radioactive waste under the deep sea

Publications (1)

Publication Number Publication Date
JP3184034U true JP3184034U (en) 2013-06-13

Family

ID=50427940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013000498U Expired - Lifetime JP3184034U (en) 2013-01-15 2013-01-15 Container with excavation bit for burying high-level radioactive waste under the deep sea

Country Status (1)

Country Link
JP (1) JP3184034U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108678678A (en) * 2018-06-06 2018-10-19 中国矿业大学 A kind of mine double-layer dry type dust suction drill bit
CN111946268A (en) * 2020-08-24 2020-11-17 盐城加美机电科技有限公司 Rotational flow drilling bit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108678678A (en) * 2018-06-06 2018-10-19 中国矿业大学 A kind of mine double-layer dry type dust suction drill bit
CN108678678B (en) * 2018-06-06 2024-04-02 中国矿业大学 Mining double-layer dry dust collection drill bit
CN111946268A (en) * 2020-08-24 2020-11-17 盐城加美机电科技有限公司 Rotational flow drilling bit

Similar Documents

Publication Publication Date Title
Freudenthal et al. Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo
JP6985747B2 (en) Hazardous substance storage bank, storage method, spent nuclear fuel storage system
US8933289B2 (en) Method for temporary or permanent disposal of nuclear waste
JP4654324B2 (en) Water bottom rock drilling system and method for rock drilling under the water bottom
KR100880675B1 (en) Closed type underground heat exchanger device and construction method using double insertion geothermal tube
KR101238454B1 (en) Enclosed upper guard return head unit for open underground heat exchanger
JP2009228419A (en) Construction method for geothermal heat exchanger, hollow pipe body used in this method, and casing
CA2840607C (en) Abyssal sequestration of nuclear waste and other types of hazardous waste
JP7366433B2 (en) Hazardous substance canister
JP2014159710A (en) Methane hydrate production facility
CN106149683A (en) A kind of cast-in-place pile construction method using double casing to pass through deep metalling
JP3184034U (en) Container with excavation bit for burying high-level radioactive waste under the deep sea
Freudenthal et al. Scientific drilling with the sea floor drill rig MeBo
Georgiopoulou Seafloor sediment and rock sampling
Williams Slant well intake systems: design and construction
US20180306008A1 (en) Seal Flow and Pressure Control
JP2019002174A (en) Methane hydrate drilling method
JP5637376B2 (en) Method of burying radioactive waste
RU2435922C1 (en) Device for direction drilling with circulation and soil protection in well construction
JP3488887B2 (en) Well drilling method
Valent et al. Feasibility of subseafloor emplacement of nuclear waste
Talalay Geological and scientific offshore drilling and core sampling in ice-covered waters
Edmunds et al. Development of the rovdrill mk. 2 seabed push sampling, rotary coring and in-situ testing system
JP6135001B2 (en) Construction method of drainage material
CN213086777U (en) Ultra-long rotary digging cast-in-place pile

Legal Events

Date Code Title Description
R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150