JP3180927B2 - Phase fluctuation measurement device - Google Patents

Phase fluctuation measurement device

Info

Publication number
JP3180927B2
JP3180927B2 JP06597892A JP6597892A JP3180927B2 JP 3180927 B2 JP3180927 B2 JP 3180927B2 JP 06597892 A JP06597892 A JP 06597892A JP 6597892 A JP6597892 A JP 6597892A JP 3180927 B2 JP3180927 B2 JP 3180927B2
Authority
JP
Japan
Prior art keywords
phase
optical
measuring
signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06597892A
Other languages
Japanese (ja)
Other versions
JPH05273049A (en
Inventor
誠史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP06597892A priority Critical patent/JP3180927B2/en
Publication of JPH05273049A publication Critical patent/JPH05273049A/en
Application granted granted Critical
Publication of JP3180927B2 publication Critical patent/JP3180927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コヒーレント光通信等
に用いられる光位相変調器に信号を印加した際の位相変
動量を測定する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a phase variation when a signal is applied to an optical phase modulator used for coherent optical communication or the like.

【0002】[0002]

【従来の技術】コヒーレント光通信方式の変調方式の一
つとして光位相変調方式がある。この光位相変調方式に
用いる光位相変調器の変調特性の測定には2つの光路の
いずれか一方に光位相変調器を挿入して位相変調を行う
光路と、位相変調を行わない光路の干渉を利用したマッ
ハツェンダー干渉計が用いられている。
2. Description of the Related Art An optical phase modulation system is one of the modulation systems of the coherent optical communication system. In order to measure the modulation characteristics of the optical phase modulator used in this optical phase modulation method, interference between an optical path that performs phase modulation by inserting an optical phase modulator into one of two optical paths and an optical path that does not perform phase modulation is performed. The utilized Mach-Zehnder interferometer is used.

【0003】図5に従来のマッハツェンダー干渉計の構
成を示すブロック図を、図6に従来の測定装置のブロッ
ク図を示す。
FIG. 5 is a block diagram showing the configuration of a conventional Mach-Zehnder interferometer, and FIG. 6 is a block diagram of a conventional measuring device.

【0004】このマッハツェンダー干渉計は図6(a)
に示すように入力ポート21、出力ポート27を有する
光路24と、入力ポート22、出力ポート28を有する
光路25とから成り、光路24および25の間には、光
信号を相互に干渉、結合させる第1および第2の結合回
路23および26が設けられている。従っていずれか一
方の入力ポート21または22に光を入力すると第1の
結合回路23で、光は2つの光路24および25に分岐
して各光路中を伝搬することになる。ここで光路24お
よび25は光路長が等しくなく光路長差があるため、各
光路24および25を伝搬する光には、光路長差に応じ
た伝搬時間差τを生じることになる。そして、第2の結
合回路26で相互に干渉を受け合波した光は各出力ポー
ト27および28で入力光信号の位相に従って強度が周
期的に変化するいわゆる縞模様の光として出力されるこ
とになる。このようなマッハツェンダー干渉計により位
相変調特性の測定を行うには図5(b)に示すように一
方の光路25に被測定位相変調器2を挿入して行う。
This Mach-Zehnder interferometer is shown in FIG.
As shown in FIG. 7, the optical path 24 has an input port 21 and an output port 27, and an optical path 25 has an input port 22 and an output port 28. Optical signals interfere and couple with each other between the optical paths 24 and 25. First and second coupling circuits 23 and 26 are provided. Therefore, when light is input to one of the input ports 21 or 22, the light is split into two optical paths 24 and 25 by the first coupling circuit 23 and propagates in each optical path. Here, the optical paths 24 and 25 have unequal optical path lengths and an optical path length difference, so that light propagating through the optical paths 24 and 25 has a propagation time difference τ corresponding to the optical path length difference. The lights multiplexed by the mutual interference in the second coupling circuit 26 are output as so-called striped light whose intensity periodically changes at each output port 27 and 28 according to the phase of the input optical signal. Become. In order to measure the phase modulation characteristics using such a Mach-Zehnder interferometer, the measured phase modulator 2 is inserted into one optical path 25 as shown in FIG.

【0005】即ち、図6に示す測定装置において、光源
1から入力ポート22へ下式で示されるコヒーレントな
光を入力する。
That is, in the measuring apparatus shown in FIG. 6, coherent light represented by the following formula is input from the light source 1 to the input port 22.

【0006】[0006]

【数1】 S(t)=A(t)cos ωt (1) 但しA(t)は光の電界であり出力強度が時間的に変動
することを仮定している。ωは光の角周波数である。第
1の結合回路23で相互干渉し、被測定位相変調器2を
通過した後、第2の結合回路26の直前における各光路
24および25の光信号はそれぞれ下式で示される。
S (t) = A (t) cos ωt (1) where A (t) is an electric field of light, and it is assumed that the output intensity varies with time. ω is the angular frequency of light. After interfering with each other in the first coupling circuit 23 and passing through the phase modulator 2 to be measured, the optical signals in the respective optical paths 24 and 25 immediately before the second coupling circuit 26 are expressed by the following equations.

【0007】[0007]

【数2】 S1(t) =(A(t)/√2)sin{ωt + θ(t)} (2) S 1 (t) = (A (t) / √2) sin {ωt + θ (t)} (2)

【0008】[0008]

【数3】 S(t) =(A(t)/√2)cos{ωt + τ}
(3) 但し、θ(t)は位相変調信号、τは光路24と25の
光路長差による伝搬時間差である。そして第2の結合回
路26により合波した後、各出力ポート27および28
に現われる光信号はそれぞれ下式で示される。
S 2 (t) = (A (t) / √2) cos {ωt + τ}
(3) where θ (t) is a phase modulation signal, and τ is a propagation time difference due to a difference in optical path length between the optical paths 24 and 25. After being multiplexed by the second coupling circuit 26, each of the output ports 27 and 28
Are represented by the following equations.

【0009】[0009]

【数4】 S3(t) =(A(t)/2) sinω( t+τ)+(A(t)/2)sin{ωt+θ(t)} (4) S 3 (t) = (A (t) / 2) sinω (t + τ) + (A (t) / 2) sin {ωt + θ (t)} (4)

【0010】[0010]

【数5】 S4(t) =(A(t)/2) cosω( t+τ)+(A(t)/2)cos{ωt+θ(t)} (5) そしてこのような光信号を図6(a)の測定装置に示す
光電変換器14で2乗検波し、高周波成分をおとすこと
により、下式に示す電気信号とする。なお、図6におい
て、20は前述のマッハツェンダー干渉計、16は増幅
器、29は出力端子である。
S 4 (t) = (A (t) / 2) cosω (t + τ) + (A (t) / 2) cos {ωt + θ (t)} (5) The signal is square-detected by the photoelectric converter 14 shown in the measuring device of FIG. 6A, and the high-frequency component is reduced to obtain an electric signal represented by the following equation. In FIG. 6, reference numeral 20 denotes the aforementioned Mach-Zehnder interferometer, 16 denotes an amplifier, and 29 denotes an output terminal.

【0011】[0011]

【数6】 S5(t) =(A2(t)/4)+(A2(t)/2) cos{ωτ- θ(t)} (6) S 5 (t) = (A 2 (t) / 4) + (A 2 (t) / 2) cos {ωτ−θ (t)} (6)

【0012】[0012]

【数7】 S6(t) =(A2(t)/4)+(A2(t)/2) cos{ωτ- θ(t)} (7) ここで、位相ωτが(8)式の条件を満足すれば、
(6)および(7)式はそれぞれ(9)および(10)
式のように変形される。但し、nは0を含む整数であ
る。
S 6 (t) = (A 2 (t) / 4) + (A 2 (t) / 2) cos {ωτ−θ (t)} (7) where the phase ωτ is (8) If the condition of the formula is satisfied,
Equations (6) and (7) are (9) and (10), respectively.
It is transformed like the expression. Here, n is an integer including 0.

【0013】[0013]

【数8】 ωτ=π/2+2πn (8) Ωτ = π / 2 + 2πn (8)

【0014】[0014]

【数9】 S(t) =(A2(t)/4)+(A2(t)/2) cos{π/2 -θ(t)} (9) S 5 (t) = (A 2 (t) / 4) + (A 2 (t) / 2) cos {π / 2−θ (t)} (9)

【0015】[0015]

【数10】 S6(t) =(A2(t)/4)+(A2(t)/2) cos{π/2 -θ(t)} (10) 図7は(10)式で表されるマッハツェンダー干渉計の
光透過特性図であって、横軸に光の位相をとり、縦軸に
透過光の光強度をとっている。このグラフから明らかな
ように位相変調信号θ(t)の時間的な変化に対してマ
ッハツェンダー干渉計の透過光が図中で示すように時間
的に変化する様子がわかる。
S 6 (t) = (A 2 (t) / 4) + (A 2 (t) / 2) cos {π / 2−θ (t)} (10) FIG. Is a light transmission characteristic diagram of the Mach-Zehnder interferometer represented by the following equation, in which the horizontal axis represents light phase and the vertical axis represents light intensity of transmitted light. As is clear from this graph, it can be seen that the transmitted light of the Mach-Zehnder interferometer changes with time as the phase modulation signal θ (t) changes with time.

【0016】さらに図6(b)に示すように光電変換器
14および15からの電気信号の差分をとると下式に示
すように、位相変調信号θ(t)に無関係な成分である
(9),(10)式の第1項は除去され、出力特性が得
られる。
Further, when the difference between the electric signals from the photoelectric converters 14 and 15 is calculated as shown in FIG. 6 (b), as shown in the following equation, it is a component irrelevant to the phase modulation signal θ (t) (9) ), The first term in equation (10) is eliminated, and output characteristics are obtained.

【0017】[0017]

【数11】 S5(t)-S6 2(t)= A2(t)cos{π/2 -θ(t)}= A2(t)sinθ(t) (11) コヒーレント光通信に用いられる光位相変調器には大き
く分けて二つのタイプがある。一つはLiNbO3 等の
強誘電結晶に電界を印加した際の1次の電気光学効果に
よる屈折率変化を利用したものであり、他の一つは電界
吸収型変調器と呼ばれる半導体に逆バイアス電圧を印加
した際の吸収係数の変化に伴う屈折率の変化を利用して
位相変調を行うものである。
Equation 11] S 5 (t) -S 6 2 (t) = A 2 (t) cos {π / 2 -θ (t)} = A 2 (t) sinθ (t) (11) to the coherent optical communication The optical phase modulator used is roughly classified into two types. One uses a change in the refractive index due to the primary electro-optic effect when an electric field is applied to a ferroelectric crystal such as LiNbO 3 , and the other uses a reverse bias to a semiconductor called an electroabsorption modulator. The phase modulation is performed using a change in the refractive index caused by a change in the absorption coefficient when a voltage is applied.

【0018】LiNbO3 位相変調器は変調に伴い強度
変調成分を伴わないのに対して、電界吸収型変調器を位
相変調器として用いる場合には不可避的に強度変調成分
を伴う。即ち、図6に示すような位相変動量測定装置を
用いてLiNbO3 位相変調器のバイアス電圧に対する
位相変動量を測定する際、干渉計の出力(光電変換後の
電気信号出力)はレーザーの出力光度揺らぎは無視する
とI0 を定数として次式で表される。
While the LiNbO 3 phase modulator does not accompany the intensity modulation component with the modulation, when the electroabsorption modulator is used as the phase modulator, it inevitably accompanies the intensity modulation component. That is, when measuring the phase variation with respect to the bias voltage of the LiNbO 3 phase modulator using the phase variation measuring device as shown in FIG. 6, the output of the interferometer (electric signal output after photoelectric conversion) is the output of the laser. If the light intensity fluctuation is neglected, it is expressed by the following equation with I 0 as a constant.

【0019】[0019]

【数12】 S(V)=I0sin(φ(V)) (12) このような位相変動量測定装置によってLiNbO3
相変調器のように位相変化が印加バイアス電圧に比例す
るような変調器の位相変動量を測定する場合、印加バイ
アス電圧に対する干渉計の出力は(1)式に示されるよ
うに正弦波的になり、位相変動量はこの干渉計出力から
読み取ることが可能となる。
S (V) = I 0 sin (φ (V)) (12) Modulation such that the phase change is proportional to the applied bias voltage as in the LiNbO 3 phase modulator by such a phase fluctuation measuring device. When measuring the amount of phase fluctuation of the detector, the output of the interferometer with respect to the applied bias voltage becomes sinusoidal as shown in equation (1), and the amount of phase fluctuation can be read from the interferometer output.

【0020】一方、電界吸収型変調器を用いる場合、強
度変化を同時に生じるので出力は
On the other hand, when an electro-absorption modulator is used, the output changes because the intensity changes simultaneously.

【0021】[0021]

【数13】 S(V)=I(V)sin(φ(V)) (13) となる。S (V) = I (V) sin (φ (V)) (13)

【0022】図8にInGaAlAS/InGaAs多
重量子井戸電界吸収型変調器の位相変動量の測定に用い
た従来の位相変動量測定装置を含む測定系を示す。この
位相変動量測定装置は、DFBレーザー1と、半導体レ
ーザー1の出力光を透過すべき光アイソレーター30
と、光アイソレーター30の透過光を二つに分岐する
1:1方向性結合器31と、方向性結合器31の一方の
分岐に結合された偏波制御器32と、被測定電界吸収型
変調器35と、方向性結合器31の他方の分岐に結合さ
れた偏波制御器33と、二つに分岐された光路を再び一
つに結合する1:1方向性結合器34と、方向性結合器
34の出力光信号を電気信号に変換する光電変換器6
と、光電変換器6の出力電気信号を増幅する増幅器11
と、被測定位相変調器に10kHzの正弦波信号を入力
する信号源3と、信号源3の出力をX軸に前記増幅器の
出力電気信号をY軸に入力すべきオシロスコープ19と
から概略構成されている。
FIG. 8 shows a measuring system including a conventional phase fluctuation measuring device used for measuring the phase fluctuation of an InGaAlAS / InGaAs multiple quantum well electroabsorption modulator. The phase fluctuation measuring device includes a DFB laser 1 and an optical isolator 30 through which output light of the semiconductor laser 1 is transmitted.
A 1: 1 directional coupler 31 for branching the transmitted light of the optical isolator 30 into two, a polarization controller 32 coupled to one branch of the directional coupler 31, A polarization controller 33 coupled to the other branch of the directional coupler 31, a 1: 1 directional coupler 34 for coupling the optical paths branched into two again, and a directional coupler 34. Photoelectric converter 6 for converting an optical signal output from coupler 34 into an electric signal
And an amplifier 11 for amplifying an output electric signal of the photoelectric converter 6
And a signal source 3 for inputting a 10 kHz sine wave signal to the phase modulator to be measured, and an oscilloscope 19 for inputting the output of the signal source 3 to the X axis and the output electric signal of the amplifier to the Y axis. ing.

【0023】図9はこの装置によって測定されたInG
aAlAs/InAlAsMQW電界吸収型変調器の位
相変動量の測定結果である。電界吸収型変調器の位相変
化はバイアス電圧の増加と共に2次関数的に増大するた
め干渉計出力の周期はバイアス電圧の増加と共に短くな
る。また、バイアス電圧の増加と共に吸収も大きくなる
ので干渉計出力の振幅は小さくなる。
FIG. 9 shows InG measured by this apparatus.
It is a measurement result of the phase fluctuation amount of aAlAs / InAlAs MQW electroabsorption modulator. Since the phase change of the electroabsorption modulator increases quadratically with an increase in the bias voltage, the period of the interferometer output becomes shorter with an increase in the bias voltage. Further, the absorption increases as the bias voltage increases, so that the amplitude of the interferometer output decreases.

【0024】[0024]

【発明が解決しようとする課題】従来の位相変動量測定
装置によって、位相変動量の測定を行う場合以下に示す
問題点がある。
When the phase fluctuation amount is measured by the conventional phase fluctuation amount measuring device, there are the following problems.

【0025】1.温度変化や機械的振動によるマッハツ
ェンダー干渉計の光路長差の変動から干渉計の動作点が
変動し、出力が不安定になる。
1. The operating point of the Mach-Zehnder interferometer fluctuates due to the fluctuation of the optical path length difference of the Mach-Zehnder interferometer due to temperature change and mechanical vibration, and the output becomes unstable.

【0026】2.電界吸収型変調器を用いて位相変調を
行う場合には吸収率変化を同時に生じる。この吸収率変
化はバイアス電圧の増加と共に急激に増大するため、高
バイアス電圧下での位相変動を測定するのは困難とな
る。
2. When phase modulation is performed using an electroabsorption modulator, a change in absorptance occurs simultaneously. Since the change in the absorptance increases rapidly with an increase in the bias voltage, it is difficult to measure the phase fluctuation under a high bias voltage.

【0027】3.電界吸収型変調器では位相変動量がバ
イアス電圧の増加に対して2次関数的に変化するので、
マッハツェンダー干渉計を用いて任意の位相変化量を読
み取るのは困難であった。
3. In an electroabsorption modulator, the amount of phase change changes quadratically with an increase in bias voltage.
It has been difficult to read an arbitrary amount of phase change using a Mach-Zehnder interferometer.

【0028】本発明はこのような従来の問題を解決し、
位相変動量を正確に測定し得る装置を提供することを目
的とする。
The present invention solves such a conventional problem,
It is an object of the present invention to provide a device capable of accurately measuring the amount of phase fluctuation.

【0029】[0029]

【課題を解決するための手段】このような目的を達成す
るために、本発明の請求項1に記載の発明は、コヒーレ
ントな光を出力する光源と、該光源からの光を入力する
被測定位相変調器と、該被測定位相変調器に入力する電
気信号を発生する電気信号源と、前記被測定位相変調器
によって位相変調された光信号を複数に分岐する光分岐
手段と、該光分岐手段から分岐された光信号を電界強度
の2乗に比例した電気信号に変換する光電変換手段と、
該光電変換手段で2乗検波して得られた電気信号のスペ
クトル強度を測定するスペクトル強度測定手段と、前記
被測定位相変調器によって位相変調された光信号の光ス
ペクトル強度を測定する光スペクトル測定手段とを具備
し、前記位相変調された光信号の光スペクトルおよび位
相変調された光信号の2乗検波した際のスペクトル強度
から位相変動量を測定することを特徴とする。また、請
求項2に記載の発明は、コヒーレントな光を出力する光
源と、該光源からの光を入力する被測定位相変調器と、
該被測定位相変調器に入力する電気信号を発生する電気
信号源と、前記被測定位相変調器によって位相変調さ
れ、位相変調信号波強度が光信号を複数に分岐する光分
岐手段と、該光分岐手段から分岐された光信号を電界強
度の2乗に比例した電気信号に変換する光電変換手段
と、該光電変換手段で2乗検波して得られた電気信号が
以下の(1)式で表された強度変調指数mを測定するス
ペクトル強度測定手段と、
In order to achieve the above object, according to the first aspect of the present invention, there is provided a light source for outputting coherent light and a light source to be measured for inputting light from the light source. A phase modulator; an electric signal source for generating an electric signal to be input to the phase modulator to be measured; an optical branching unit for branching a plurality of optical signals phase-modulated by the phase modulator to be measured; Photoelectric conversion means for converting an optical signal branched from the means into an electric signal proportional to the square of the electric field strength;
Spectrum intensity measuring means for measuring the spectrum intensity of the electric signal obtained by square detection by the photoelectric conversion means, and optical spectrum measurement for measuring the optical spectrum intensity of the optical signal phase-modulated by the phase modulator to be measured. Means for measuring a phase fluctuation amount from an optical spectrum of the phase-modulated optical signal and a spectrum intensity at the time of square detection of the phase-modulated optical signal. The invention according to claim 2 is a light source that outputs coherent light, a phase modulator to be measured that receives light from the light source,
An electrical signal source for generating an electrical signal to be input to the measured phase modulator; an optical branching unit for performing phase modulation by the measured phase modulator and branching an optical signal into a plurality of optical signals having a phase modulation signal wave intensity; A photoelectric conversion means for converting the optical signal branched from the branching means into an electric signal proportional to the square of the electric field intensity; and an electric signal obtained by square detection by the photoelectric conversion means is expressed by the following equation (1). Spectrum intensity measuring means for measuring the represented intensity modulation index m,

【数4】 前記被測定位相変調器によって位相変調された光信号の
光スペクトル強度を以下の(2)(3)式で測定する光
スペクトル測定手段とを具備し、
(Equation 4) Optical spectrum measuring means for measuring the optical spectrum intensity of the optical signal phase-modulated by the phase modulator to be measured by the following equations (2) and (3);

【数5】 (Equation 5)

【数6】 前記位相変調された光信号の光スペクトルの中心波I0
と1次の側帯波I1の比を測定し、位相変調された光信
号の2乗検波した際のスペクトル強度から求めた強度変
調指数mの値から位相変調指数を求めて、位相変動量を
測定することを特徴とする。また、請求項3に記載の発
明は、前記被測定位相変調器を電界吸収型位相変調器と
したことを特徴とする。また、請求項4に記載の発明
は、前記スペクトル測定手段が、位相変調された光信号
を入力する掃引型ファブリーペローエタロンと、該掃引
型ファブリーペローエタロンからの透過光を光電変換す
る光電変換手段と、該光電変換手段により光電変換され
た電気信号が増幅手段を介して入力され、光スペクトル
強度を観測するオシロスコープとを備えたことを特徴と
する。さらに、請求項5に記載の発明は、前記光源と前
記被測定位相変調器との間に、前記光源から出力された
光を入力するアイソレーターと、該アイソレーターを透
過した光を入力する偏波制御手段とを備えたことを特徴
とする。
(Equation 6) The center wave I 0 of the optical spectrum of the phase-modulated optical signal
And the primary sideband I 1 are measured, and the phase modulation index is obtained from the value of the intensity modulation index m obtained from the spectrum intensity at the time of square detection of the phase-modulated optical signal. It is characterized by measuring. The invention according to claim 3 is characterized in that the measured phase modulator is an electro-absorption type phase modulator. The invention according to claim 4 is characterized in that the spectrum measuring means is a sweeping Fabry-Perot etalon for inputting a phase-modulated optical signal and a photoelectric conversion means for photoelectrically converting transmitted light from the sweeping Fabry-Perot etalon. And an oscilloscope that receives the electrical signal photoelectrically converted by the photoelectric conversion unit via the amplification unit and observes the optical spectrum intensity. Furthermore, the invention according to claim 5 provides an isolator for inputting light output from the light source between the light source and the phase modulator to be measured, and a polarization control for inputting light transmitted through the isolator. Means.

【0030】本発明においてはマッハツェンダー干渉計
を用いないため、マッハツェンダー干渉計に起因する問
題は生じない。
Since no Mach-Zehnder interferometer is used in the present invention, there is no problem caused by the Mach-Zehnder interferometer.

【0031】[0031]

【作用】本発明の位相変動量測定装置によれば、高速位
相変調信号の光スペクトルおよび位相変調信号を2乗検
波した際のスペクトル強度から位相変動量を読み取るた
め、電界吸収型変調器のように位相変調に際して強度変
調成分を伴う場合にも位相変動量を精度よく測定するこ
とが可能となる。
According to the phase fluctuation amount measuring apparatus of the present invention, the phase fluctuation amount is read from the optical spectrum of the high-speed phase modulation signal and the spectrum intensity when the phase modulation signal is square-detected. Even when an intensity modulation component accompanies the phase modulation, the amount of phase fluctuation can be accurately measured.

【0032】[0032]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0033】まず、本発明の位相変動量測定装置につい
て図1を基に説明する。
First, a phase fluctuation amount measuring apparatus according to the present invention will be described with reference to FIG.

【0034】図1は本発明の第1の実施例の構成を示す
図である。即ち、この位相変動量測定装置は光源1、信
号源3、増幅手段4、光分岐手段5、光スペクトル測定
手段6、光電変換手段7、増幅手段8およびスペクトル
測定手段9から構成されている。
FIG. 1 is a diagram showing the configuration of the first embodiment of the present invention. That is, this phase fluctuation amount measuring apparatus includes a light source 1, a signal source 3, an amplifying unit 4, an optical branching unit 5, an optical spectrum measuring unit 6, a photoelectric conversion unit 7, an amplifying unit 8, and a spectrum measuring unit 9.

【0035】光源1はコヒーレントなCW光を出力する
もので分布帰還型(DFB)レーザー、分布反射型(D
BR)レーザー、色素レーザー等が好適に用いられる。
The light source 1 outputs coherent CW light, and is a distributed feedback (DFB) laser, a distributed reflection type (D
(BR) laser, dye laser and the like are preferably used.

【0036】光分岐手段5は、光源1から出力された光
を複数に分岐するもので、方向性結合器、光分岐回路、
光合流分岐回路等が好適に用いられる。
The light splitting means 5 splits the light output from the light source 1 into a plurality of lights, and includes a directional coupler, an optical splitting circuit,
An optical merging / branching circuit or the like is preferably used.

【0037】信号源3は被測定位相変調器2に入力する
電気信号を発生するものである。光電変換手段7は位相
変調信号を電気信号に変換するもので光信号の電界強度
の2乗に比例した受光電流を発生するという性質を有す
る光電(O/E)変換器が好適に用いられる。
The signal source 3 generates an electric signal to be input to the phase modulator 2 to be measured. The photoelectric conversion means 7 converts the phase modulation signal into an electric signal, and a photoelectric (O / E) converter having a property of generating a light receiving current proportional to the square of the electric field strength of the optical signal is preferably used.

【0038】増幅手段4は信号源3から出力された電気
信号を所定の大きさに増幅するものであり、また、増幅
手段8は、光電変換手段から出力された電気信号を所定
の大きささに増幅するものである。
The amplification means 4 amplifies the electric signal output from the signal source 3 to a predetermined magnitude, and the amplification means 8 converts the electric signal output from the photoelectric conversion means to a predetermined magnitude. It amplifies.

【0039】光スペクトル測定手段6は被測定位相変調
器2によって位相変調された光信号の光スペクトルを測
定するもので、掃引型ファブリーペローエタロン等が好
適に用いられる。
The optical spectrum measuring means 6 measures the optical spectrum of the optical signal phase-modulated by the phase modulator 2 to be measured, and a sweep type Fabry-Perot etalon or the like is preferably used.

【0040】スペクトル強度測定手段9は、増幅手段か
ら出力された電気信号のスペクトル強度を測定するもの
で、スペクトラムアナライザー等が好適に用いられる。
The spectrum intensity measuring means 9 measures the spectrum intensity of the electric signal output from the amplifying means, and a spectrum analyzer or the like is preferably used.

【0041】次に、位相変動量測定装置の動作原理につ
いて説明する。
Next, the operation principle of the phase fluctuation measuring device will be described.

【0042】電界吸収型変調器を正弦波で変調した場合
の位相変調信号波強度は変調成分を伴うため、次式で表
される。
When the electroabsorption modulator is modulated by a sine wave, the phase modulation signal wave intensity is represented by the following equation because it has a modulation component.

【0043】[0043]

【数14】 [Equation 14]

【0044】但し、ωc はキャリアの周波数、ωm は変
調周波数、mは強度変調指数、βは位相変調指数であ
る。
Where ω c is the carrier frequency, ω m is the modulation frequency, m is the intensity modulation index, and β is the phase modulation index.

【0045】この光信号を光電変換器で2乗検波して得
られる受光電流は次式で表される。
The received light current obtained by square-detecting this optical signal by the photoelectric converter is expressed by the following equation.

【0046】[0046]

【数15】 (Equation 15)

【0047】(15)式より強度変調指数mは2乗検波
して得られる受光電流からスペクトラムアナライザーに
よって測定することができる。
From equation (15), the intensity modulation index m can be measured by a spectrum analyzer from the received light current obtained by square detection.

【0048】一方、位相変調信号(14)をベッセル関
数で展開すると
On the other hand, when the phase modulation signal (14) is expanded by a Bessel function,

【0049】[0049]

【数16】 (Equation 16)

【0050】となる。Is as follows.

【0051】これより観測される光スペクトラム強度は
次式のようになる。
The optical spectrum intensity observed from this is as follows.

【0052】[0052]

【数17】 I0=E0 2[J0 2(β)+ mJ1 2(β)] (17)I 0 = E 0 2 [J 0 2 (β) + mJ 1 2 (β)] (17)

【0053】[0053]

【数18】 (Equation 18)

【0054】従って、光スペクトラムの中心波と1次の
側帯波の比を測定することにより(15)式で得られる
強度変調指数mの値から位相変調指数のβの値を知るこ
とが可能となる。
Therefore, by measuring the ratio between the center wave of the optical spectrum and the primary sideband, it is possible to find out the value of β of the phase modulation index from the value of the intensity modulation index m obtained by the equation (15). Become.

【0055】この方式を用いると電界吸収型変調器のよ
うに位相変調と同時に強度変調成分を生じるような場合
でも位相変動量を正確に測定することが可能となる。
Using this method makes it possible to accurately measure the amount of phase fluctuation even when an intensity modulation component is generated simultaneously with phase modulation as in an electroabsorption modulator.

【0056】以下、本発明による位相変動量測定装置を
用いてInGaAlAs/InAlAs多重量子井戸電
界吸収型位相変調器の位相変動量を測定した例を図2に
示す。
FIG. 2 shows an example in which the phase fluctuation of an InGaAlAs / InAlAs multiple quantum well electroabsorption phase modulator is measured using the phase fluctuation measuring apparatus according to the present invention.

【0057】本例において、光源1は多電極DFBレー
ザーであり波長は1.55μmである。光源1から出力
された光はアイソレーター30を透過した後、偏波制御
器10に入力される。この偏波制御器10は位相変調器
に入力する光の偏光状態を制御するために用いられる。
偏波制御器10によってTE偏光状態になった信号光は
電界吸収型変調器35に入力される。この電界吸収型変
調器35は活性層にInGaAlAs/InAlAs多
重量子井戸層を設けたもので、その励起子吸収波長は約
1.48μmである。信号源3から出力された10GH
zの正弦波信号は増幅器11に依って増幅された後、電
界吸収型変調器35に入力される。電界吸収型変調器3
5によって位相変調された信号光は1:1方向性結合器
12によって二つに分岐され、一方は光電変換器14に
入力され、増幅器16によって増幅された後、スペクト
ラムアナライザー18によってAM変調指数mが測定さ
れる。他方は、分解能1GHzの掃引型ファブリーペロ
ーエタロン13に入力される。ファブリーペローエタロ
ン透過光は光電変換器15によって光電変換され、増幅
器17によって増幅された後、オシロスコープ19によ
って光スペクトル強度が測定される。
In this example, the light source 1 is a multi-electrode DFB laser and has a wavelength of 1.55 μm. The light output from the light source 1 passes through the isolator 30 and is input to the polarization controller 10. This polarization controller 10 is used to control the polarization state of light input to the phase modulator.
The signal light in the TE polarization state by the polarization controller 10 is input to the electro-absorption modulator 35. This electroabsorption modulator 35 has an active layer provided with an InGaAlAs / InAlAs multiple quantum well layer, and its exciton absorption wavelength is about 1.48 μm. 10 GH output from signal source 3
The sine wave signal of z is amplified by the amplifier 11 and then input to the electro-absorption modulator 35. Electroabsorption modulator 3
The signal light phase-modulated by 5 is split into two by a 1: 1 directional coupler 12, one of which is input to a photoelectric converter 14, amplified by an amplifier 16, and then an AM modulation index m by a spectrum analyzer 18. Is measured. The other is input to a sweep type Fabry-Perot etalon 13 having a resolution of 1 GHz. The Fabry-Perot etalon transmitted light is photoelectrically converted by the photoelectric converter 15 and amplified by the amplifier 17, and then the optical spectrum intensity is measured by the oscilloscope 19.

【0058】図3は掃引型ファブリーペローエタロンに
よって測定された光スペクトル、図4は本位相変動量測
定装置によって測定されたInGaAlAs/InAl
As多重量子井戸電界吸収型変調器の位相変動量を示す
グラフである。
FIG. 3 shows an optical spectrum measured by a sweep type Fabry-Perot etalon, and FIG. 4 shows InGaAlAs / InAl measured by the present phase variation measuring apparatus.
5 is a graph showing a phase variation amount of an As multiple quantum well electroabsorption modulator.

【0059】本発明の位相変動量測定装置によれば、電
界吸収型変調器で位相変調を行う場合のように変調に際
して強度変調成分を伴う場合でも、位相変動量を精度よ
く測定することが可能であることが示された。
According to the phase fluctuation amount measuring apparatus of the present invention, the phase fluctuation amount can be accurately measured even when an intensity modulation component is involved in the modulation, such as when phase modulation is performed by an electroabsorption modulator. It was shown to be.

【0060】[0060]

【発明の効果】以上説明したように、本発明によれば、
位相変動量を変調信号のスペクトル強度から測定するの
で、電界吸収型変調器のように位相異変調だけでなく強
度変調を同時に生じるような場合でも、駆動電圧に対す
る位相変動量を正確に測定することが可能となる。
As described above, according to the present invention,
Since the amount of phase fluctuation is measured from the spectrum intensity of the modulation signal, it is necessary to accurately measure the amount of phase fluctuation with respect to the drive voltage even when not only phase modulation but also intensity modulation occur simultaneously as in an electroabsorption modulator. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の構成を示すブロック図
である。
FIG. 1 is a block diagram showing a configuration of a first exemplary embodiment of the present invention.

【図2】本発明の位相変動量測定装置を含む測定系の構
成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a measurement system including the phase fluctuation amount measurement device of the present invention.

【図3】本発明の位相変動量測定装置によって測定され
た光スペクトルを示すオシログラフの写真である。
FIG. 3 is an oscillograph photograph showing an optical spectrum measured by the phase fluctuation amount measuring device of the present invention.

【図4】本発明の位相変動量測定装置によって測定され
た位相変動量の測定結果を示す図である。
FIG. 4 is a diagram showing a measurement result of a phase fluctuation amount measured by the phase fluctuation amount measuring device of the present invention.

【図5】(a)および(b)はそれぞれ従来のマッハツ
ェンダー干渉計の構成を示す図である。
FIGS. 5A and 5B are diagrams showing a configuration of a conventional Mach-Zehnder interferometer, respectively.

【図6】(a)および(b)はそれぞれ従来の位相変動
量測定装置の構成を示す図である。
6 (a) and 6 (b) are diagrams each showing a configuration of a conventional phase fluctuation amount measuring device.

【図7】位相変化に対するマッハツェンダー干渉計の透
過光強度の変化を示す図である。
FIG. 7 is a diagram showing a change in transmitted light intensity of a Mach-Zehnder interferometer with respect to a phase change.

【図8】従来の位相変動量測定装置を含む測定系の構成
を示す図である。
FIG. 8 is a diagram showing a configuration of a measurement system including a conventional phase fluctuation amount measurement device.

【図9】従来の位相変動量測定装置を用いて測定したI
nGaAlAs/InAlAs電界吸収型変調器の位相
変動量の測定結果を示すオシログラフの写真である。
FIG. 9 shows I measured using a conventional phase fluctuation measuring device.
4 is a photograph of an oscillograph showing a measurement result of a phase fluctuation amount of an nGaAlAs / InAlAs electroabsorption modulator.

【符号の説明】[Explanation of symbols]

1 光源 2 比測定位相変調器 3 信号源 4 増幅手段 5 光分岐手段 6 光スペクトル測定手段 7 光電変換手段 8 増幅手段 9 スペクトル測定手段 10 偏波制御器 11 増幅器 12 1:1方向性結合器 13 掃引型ファブリペローエタロン 14 光電変換器 15 光電変換器 16 増幅器 17 増幅器 18 スペクトラムアナライザー 19 オシロスコープ 20 マッハツェンダー干渉計 21 入力ポート 22 入力ポート 23 第1の結合回路 24 光路 25 光路 26 第2の結合回路 27 出力ポート 28 出力ポート 29 出力端子 30 アイソレーター 31 1:1方向性結合器 32 偏波制御器 33 偏波制御器 34 1:1方向性結合器 35 電界吸収型変調器 REFERENCE SIGNS LIST 1 light source 2 ratio measuring phase modulator 3 signal source 4 amplifying means 5 optical branching means 6 optical spectrum measuring means 7 photoelectric conversion means 8 amplifying means 9 spectrum measuring means 10 polarization controller 11 amplifier 12 1: 1 directional coupler 13 Swept Fabry-Perot etalon 14 Photoelectric converter 15 Photoelectric converter 16 Amplifier 17 Amplifier 18 Spectrum analyzer 19 Oscilloscope 20 Mach-Zehnder interferometer 21 Input port 22 Input port 23 First coupling circuit 24 Optical path 25 Optical path 26 Second coupling circuit 27 Output port 28 Output port 29 Output terminal 30 Isolator 31 1: 1 directional coupler 32 Polarization controller 33 Polarization controller 34 1: 1 directional coupler 35 Electroabsorption modulator

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コヒーレントな光を出力する光源と、該
光源からの光を入力する被測定位相変調器と、該被測定
位相変調器に入力する電気信号を発生する電気信号源
と、前記被測定位相変調器によって位相変調された光信
号を複数に分岐する光分岐手段と、該光分岐手段から分
岐された光信号を電界強度の2乗に比例した電気信号に
変換する光電変換手段と、該光電変換手段で2乗検波し
て得られた電気信号のスペクトル強度を測定するスペク
トル強度測定手段と、前記被測定位相変調器によって位
相変調された光信号の光スペクトル強度を測定する光ス
ペクトル測定手段とを具備し、前記位相変調された光信
号の光スペクトルおよび位相変調された光信号の2乗検
波した際のスペクトル強度から位相変動量を測定するこ
とを特徴とする位相変動量測定装置。
1. A light source that outputs coherent light, a phase modulator under test that inputs light from the light source, an electric signal source that generates an electric signal input to the phase modulator under test, An optical splitting unit that splits the optical signal phase-modulated by the measurement phase modulator into a plurality of components, a photoelectric conversion unit that converts the optical signal split from the optical splitting unit into an electric signal proportional to the square of the electric field intensity, Spectrum intensity measuring means for measuring the spectrum intensity of the electric signal obtained by square detection by the photoelectric conversion means, and optical spectrum measurement for measuring the optical spectrum intensity of the optical signal phase-modulated by the phase modulator to be measured. Means for measuring a phase variation amount from an optical spectrum of the phase-modulated optical signal and a spectrum intensity at the time of square detection of the phase-modulated optical signal. Momentum measurement device.
【請求項2】 コヒーレントな光を出力する光源と、該
光源からの光を入力する被測定位相変調器と、該被測定
位相変調器に入力する電気信号を発生する電気信号源
と、前記被測定位相変調器によって位相変調され、位相
変調信号波強度が光信号を複数に分岐する光分岐手段
と、該光分岐手段から分岐された光信号を電界強度の2
乗に比例した電気信号に変換する光電変換手段と、該光
電変換手段で2乗検波して得られた電気信号が以下の
(1)式で表された強度変調指数mを測定するスペクト
ル強度測定手段と、 【数1】 前記被測定位相変調器によって位相変調された光信号の
光スペクトル強度を以下の(2)(3)式で測定する光
スペクトル測定手段とを具備し、 【数2】 【数3】 前記位相変調された光信号の光スペクトルの中心波I0
と1次の側帯波I1の比を測定し、位相変調された光信
号の2乗検波した際のスペクトル強度から求めた強度変
調指数mの値から位相変調指数を求めて、位相変動量を
測定することを特徴とする位相変動量測定装置。
2. A light source for outputting coherent light, a measured phase modulator to which light from the light source is input, an electric signal source for generating an electric signal to be input to the measured phase modulator, and An optical branching means for phase-modulating a phase modulated signal wave by a measuring phase modulator and branching the optical signal into a plurality of optical signals;
Photoelectric conversion means for converting into an electric signal proportional to the power, and spectrum intensity measurement for measuring an intensity modulation index m of an electric signal obtained by square detection by the photoelectric conversion means, represented by the following equation (1): Means and Optical spectrum measuring means for measuring the optical spectrum intensity of the optical signal phase-modulated by the measured phase modulator by the following equations (2) and (3): (Equation 3) The center wave I 0 of the optical spectrum of the phase-modulated optical signal
And the primary sideband I 1 are measured, and the phase modulation index is obtained from the value of the intensity modulation index m obtained from the spectrum intensity at the time of square detection of the phase-modulated optical signal. A phase variation measuring device characterized by measuring.
【請求項3】 前記被測定位相変調器を電界吸収型位相
変調器としたことを特徴とする請求項1に記載の位相変
動量測定装置。
3. The apparatus according to claim 1, wherein the phase modulator to be measured is an electro-absorption type phase modulator.
【請求項4】 前記スペクトル測定手段が、位相変調さ
れた光信号を入力する掃引型ファブリーペローエタロン
と、該掃引型ファブリーペローエタロンからの透過光を
光電変換する光電変換手段と、該光電変換手段により光
電変換された電気信号が増幅手段を介して入力され、光
スペクトル強度を観測するオシロスコープとを備えたこ
とを特徴とする請求項1に記載の位相変動量測定装置。
4. A sweep type Fabry-Perot etalon for inputting a phase-modulated optical signal, a spectrum conversion unit for photoelectrically converting transmitted light from the sweep type Fabry-Perot etalon, and the photoelectric conversion unit. 2. An apparatus according to claim 1, further comprising: an oscilloscope that receives the electric signal photoelectrically converted through the amplifying means and observes an optical spectrum intensity.
【請求項5】 前記光源と前記被測定位相変調器との間
に、前記光源から出力された光を入力するアイソレータ
ーと、該アイソレーターを透過した光を入力する偏波制
御手段とを備えたことを特徴とする請求項1に記載の位
相変動量測定装置。
5. An isolator for inputting light output from the light source and a polarization control means for inputting light transmitted through the isolator between the light source and the phase modulator to be measured. The phase fluctuation amount measuring apparatus according to claim 1, wherein:
JP06597892A 1992-03-24 1992-03-24 Phase fluctuation measurement device Expired - Fee Related JP3180927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06597892A JP3180927B2 (en) 1992-03-24 1992-03-24 Phase fluctuation measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06597892A JP3180927B2 (en) 1992-03-24 1992-03-24 Phase fluctuation measurement device

Publications (2)

Publication Number Publication Date
JPH05273049A JPH05273049A (en) 1993-10-22
JP3180927B2 true JP3180927B2 (en) 2001-07-03

Family

ID=13302604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06597892A Expired - Fee Related JP3180927B2 (en) 1992-03-24 1992-03-24 Phase fluctuation measurement device

Country Status (1)

Country Link
JP (1) JP3180927B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3732610B2 (en) * 1997-03-04 2006-01-05 日本電信電話株式会社 Optical modulator control circuit
CN102998094B (en) * 2012-11-26 2015-02-18 中国科学院光电技术研究所 Phase modulator performance parameter testing device based on beam coherent combination

Also Published As

Publication number Publication date
JPH05273049A (en) 1993-10-22

Similar Documents

Publication Publication Date Title
Zou et al. Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair
Sorin et al. Frequency domain analysis of an optical FM discriminator
CN107634807B (en) Light vector analysis method and device based on chirp intensity modulated
JP2005260925A (en) Device for remotely stimulating and measuring electric signals through fiber optic cable
Iezekiel Measurement of microwave behavior in optical links
JPH05264609A (en) Method and system for measuring high frequency electric signal through electrooptic effect
CN112751610A (en) Method and system for measuring SMZM modulation arm phase shift function
JP3180927B2 (en) Phase fluctuation measurement device
Zou et al. Wideband and high-resolution measurement of magnitude-frequency response for optical filters based on fixed-low-frequency heterodyne detection
JP3408789B2 (en) Method and apparatus for measuring backscattered light
US7609385B2 (en) Method and apparatus for characterization of the response of optical devices
JP3496878B2 (en) Chromatic dispersion and loss wavelength dependence measuring device
Su et al. Wideband optical vector network analyzer based on polarization modulation
JP2842882B2 (en) Optical spectrum analysis method and system
Xue et al. Ultrahigh-resolution optical vector analysis for arbitrary responses using low-frequency detection
JP2939482B2 (en) Apparatus and method for measuring characteristics of optical phase modulator
JPH05231923A (en) Method and apparatus of measuring back scattering light
López-Querol et al. InP-based integrated optical frequency shifter for heterodyne detection applications
JP2802390B2 (en) Optical frequency modulation characteristics measurement device
JPH08278224A (en) Characteristic measuring method and control method of optical intensity modulator
Campbell et al. Measurement of the modulation efficiency of an optical phase modulator using a self-homodyne receiver
Liu et al. Precise optical frequency shift based on radio-frequency driven single-sideband modulator
KR100499115B1 (en) An apparatus for measuring a transient chirp of a optical modulator and a method thereof
KR100335244B1 (en) An apparatus and a method for the measurement of phase fluctuation of optical fiber
JP3231117B2 (en) Measurement method of nonlinear refractive index of optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees