JP3180921B2 - Cylinder for internal combustion engine using alcohol fuel - Google Patents

Cylinder for internal combustion engine using alcohol fuel

Info

Publication number
JP3180921B2
JP3180921B2 JP17129291A JP17129291A JP3180921B2 JP 3180921 B2 JP3180921 B2 JP 3180921B2 JP 17129291 A JP17129291 A JP 17129291A JP 17129291 A JP17129291 A JP 17129291A JP 3180921 B2 JP3180921 B2 JP 3180921B2
Authority
JP
Japan
Prior art keywords
layer
dead center
sprayed layer
cylinder
top dead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17129291A
Other languages
Japanese (ja)
Other versions
JPH0518316A (en
Inventor
賢治 植野
良雄 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17129291A priority Critical patent/JP3180921B2/en
Publication of JPH0518316A publication Critical patent/JPH0518316A/en
Application granted granted Critical
Publication of JP3180921B2 publication Critical patent/JP3180921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアルコ−ル系燃料を使用
る内燃機関用のシリンダに関する。このシリンダは例
えば直列4気筒タイプに適用できる。
The present invention relates to the alcohol - related cylinder for inner combustion engine that uses <br/> Le-based fuel. This cylinder is applicable to, for example, an in-line four-cylinder type.

【0002】[0002]

【従来の技術】内燃機関においては高回転・高圧縮化、
更に軽量化・燃費向上等が要請されている。従来、この
ような試みの一つとして特開昭60ー93162号公報
では、互いに摺動する摺動部材であって、摺動する第1
の部材の摺動面を硬質クロムメッキ面で形成し、摺動す
る第2の部材の摺動面を高炭素FeーCr合金のプラズ
マ溶射層で形成した摺動部材の組合せが開示されてい
る。
2. Description of the Related Art In an internal combustion engine, high rotation and high compression are required.
Further, there is a demand for weight reduction and improved fuel efficiency. Conventionally, as one of such attempts, Japanese Unexamined Patent Publication No. 60-93162 discloses a sliding member that slides with respect to each other.
A combination of sliding members in which the sliding surface of the member is formed by a hard chromium plating surface and the sliding surface of the sliding second member is formed by a plasma sprayed layer of a high carbon Fe-Cr alloy is disclosed. .

【0003】ところで、近年、ガソリン燃料事情の悪化
に伴い、ガソリン燃料代替燃料としてアルコ−ル系燃料
の使用が検討されている。しかしアルコ−ル系燃料を使
用した場合、シリンダボア内で酸例えばギ酸が生成され
易い。そのため内燃機関の停止の際に、ピストンが停止
している静的状態において、停止したピストンの外周面
と接触しているシリンダボアの内壁面部分が酸で腐食す
るという不具合がある。上記した様に硬質クロムメッキ
層を形成したり、溶射層を形成したりするだけでは、ア
ルコ−ル燃料を使用した場合において、ピストン停止位
置での静的な腐食の対策としては、必ずしも充分ではな
い。
[0003] In recent years, with the worsening of the gasoline fuel situation, use of alcohol-based fuel as a gasoline fuel alternative fuel has been studied. However, when an alcohol-based fuel is used, an acid such as formic acid is easily generated in the cylinder bore. Therefore, when the internal combustion engine is stopped, in a static state in which the piston is stopped, there is a problem that the inner wall surface portion of the cylinder bore in contact with the outer peripheral surface of the stopped piston is corroded by acid. The formation of a hard chromium plating layer or the formation of a sprayed layer as described above is not always sufficient as a measure against static corrosion at the piston stop position when alcohol fuel is used. Absent.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した実情
に鑑みなされたものであり、その目的は、アルコ−ル系
燃料を使用した場合におけるシリンダボアの摺動面の耐
食性を確保しつつ、相手材であるピストンリングの摩耗
を軽減できるシリンダを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to secure the corrosion resistance of the sliding surface of a cylinder bore when using an alcohol-based fuel while maintaining the corrosion resistance. An object of the present invention is to provide a cylinder that can reduce wear of a piston ring as a material.

【0005】[0005]

【課題を解決するための手段】本発明者は上記目的のも
とにアルコ−ル系燃料を使用した際、内燃機関を停止さ
せてピストンを停止させた場合におけるシリンダボアの
腐食、ピストンリングの摩耗について鋭意研究を重ね
た。本発明者は、ピストン往復駆動時でのトップリング
の外周面の潤滑油の油膜分布と、ピストンリングの摩耗
について調べた。シリンダボア面における油膜分布を図
4の特性線hに示し、シリンダボアのそれぞれの位置に
対応する部分における相手材であるトップリングの外周
面の摩耗量の比をボア中央部を基準(つまり1)として
図4の特性線kに示した(文献Piston Fric
tion Force AndPistonRing
OiL Film Thickness,SAE845
067からピックアップしたもの)。ここで、図4の特
性線hに示す様に、シリンダボア面における潤滑油の油
膜はシリンダボア面の中央付近が最も厚く(一般的に5
μm程度)、上死点、下死点近傍になる程薄く、しかも
上死点近傍の油膜の方が下死点近傍の油膜に比較して薄
い。また、図4の特性線kに示す様に、トップリングの
外周面の摩耗比は、シリンダボア面の中央部が小さく上
死点近傍及び下死点近傍が大きく、しかも上死点付近の
摩耗比が下死点よりも大きい。従ってトップリングの外
周面の摩耗はボア面における油膜分布にほぼ対応してお
り、ボア面の中央域ではほとんど発生せず、上、下死点
近傍で発生し、殊に上死点近傍で発生するものである。
また、内燃機関、特に直列4気筒の内燃機関を停止させ
てピストンを停止させた場合において、バランスウェイ
トの関係でピストンは上死点と下死点との間のほぼ中央
域で必ず停止することが知られている。
SUMMARY OF THE INVENTION The present inventor has found that, when an alcohol-based fuel is used for the above purpose, the internal combustion engine is stopped and the piston is stopped, thereby causing corrosion of the cylinder bore and wear of the piston ring. Intensive research. The present inventor examined the oil film distribution of the lubricating oil on the outer peripheral surface of the top ring during the reciprocating drive of the piston and the wear of the piston ring. The oil film distribution on the cylinder bore surface is shown by a characteristic line h in FIG. This is shown by the characteristic line k in FIG. 4 (reference Piston Fric
Tion Force AndPistonRing
OiL Film Thickness, SAE845
067). Here, as shown by the characteristic line h in FIG. 4, the oil film of the lubricating oil on the cylinder bore surface is the thickest near the center of the cylinder bore surface (generally 5 mm).
The oil film near the top dead center is thinner than the oil film near the bottom dead center. Further, as shown by the characteristic line k in FIG. 4, the wear ratio of the outer peripheral surface of the top ring is small at the center of the cylinder bore surface, large near the top dead center and near the bottom dead center, and moreover, at the top dead center. Is larger than the bottom dead center. Therefore, the wear on the outer peripheral surface of the top ring almost corresponds to the oil film distribution on the bore surface, hardly occurs in the center area of the bore surface, occurs near the top and bottom dead center, and especially occurs near the top dead center. Is what you do.
In addition, when the internal combustion engine, especially the in-line four-cylinder internal combustion engine is stopped to stop the piston, the piston must always stop at approximately the center region between the top dead center and the bottom dead center due to the balance weight. It has been known.

【0006】本発明者は上記した様な点に着目し、シリ
ンダボア面における上死点位置から下死点位置までの距
離をLとしたとき、上死点位置から1/3L≦A≦5/
6Lの範囲内におけるAの部分のみの摺動面に耐食性を
もつ層を設けると共に、上死点位置から1/3Lまでの
範囲、5/6Lから下死点位置までの範囲において、前
記した層を設けずにシリンダボア面の母材が露出すれ
ば、アルコール系燃料使用時において、ピストン停止状
態の静的状態におけるシリンダボアの摺動面の耐食性を
確保でき、しかもこの場合には、潤滑油の油膜の厚みが
薄いためピストンリングを摩耗させがちの上死点付近の
シリンダボアにおいて耐食層は形成されていないので、
相手材であるピストンリングの摩耗を効果的に軽減でき
ることを知見した。本発明はかかる知見に基づき完成さ
れたものである。
The present inventor has paid attention to the points described above,
The distance from the top dead center position to the bottom dead center position on the Davos surface
When the separation is L, 1 / 3L ≦ A ≦ 5 / from the top dead center position
Corrosion resistance is given to the sliding surface of only part A within the range of 6L.
With the layer which hasFrom top dead center position to 1 / 3L
In the range from 5 / 6L to the bottom dead center position,
If the base material on the cylinder bore surface is exposed without the layer
For example, when using alcohol fuel, the piston stops
Resistance of sliding surface of cylinder bore in static state
In this case, and in this case, the thickness of the lubricating oil film
Because it is thin, it tends to wear the piston ring.
Since no corrosion resistant layer is formed in the cylinder bore,
Wear of the piston ring, which is the mating material, can be effectively reduced
I learned that The present invention has been completed based on these findings.
It was a thing.

【0007】即ち、本発明にかかるアルコール系燃料を
使用する内燃機関用のシリンダは、シリンダボア面にお
ける上死点位置から下死点位置までの距離をLとする
と、上死点位置から1/3L≦A≦5/6Lの範囲内に
おけるAの部分のみの摺動面に耐食性をもつ層を設ける
と共に、上死点位置から1/3Lまでの範囲、5/6L
から下死点位置までの範囲においてシリンダボア面の母
材が露出していることを特徴とするものである。これに
よりピストン停止の際におけるシリンダボア面の静的な
腐食を防止するとともに、上、下死点近傍における殊に
上死点近傍における相手材の摩耗を低減できる。
That is, the alcohol fuel according to the present invention is
When the distance from the top dead center position to the bottom dead center position on the cylinder bore surface is L, the portion of A within the range of 1 / 3L ≦ A ≦ 5 / 6L from the top dead center position is used for the cylinder for the internal combustion engine to be used. Only a sliding surface is provided with a layer having corrosion resistance, and a range from the top dead center position to 1 / 3L, 5 / 6L
Of the cylinder bore surface in the range from
The material is exposed . This prevents static corrosion of the cylinder bore surface when the piston stops, and reduces wear of the mating material near the top and bottom dead centers, particularly near the top dead center.

【0008】シリンダは鉄系、アルミ合金系で形成でき
る。耐食性をもつ層は、クロム、ニッケルを含むことが
好ましい。シリンダの母材の耐食性・耐摩耗性を考慮し
たものである。耐食性をもつ層は、通常、溶射層、メッ
キ層で形成できる。また、クロマイジングなどの浸透メ
ッキ層、あるいは、蒸着層やスパッタリングなどで構成
した気相メッキ層で形成することもできる。溶射層は合
金系溶射層、セラミックス系溶射層で形成できる。溶射
層は、シリンダが鉄系の場合、Cr:55〜70wt
%、C:1.8〜8.4wt%、不可避の不純物、残部
実質的に鉄からなるFeーCr系合金で形成できる。こ
の場合、Crが55wt%未満では、耐食剤としてのC
rが充分役割を果たさずボア面の腐食が発生することが
あり、Crが70wt%を越えると相手材攻撃性大とな
り、相手材の摩耗が大きくなる。またCが1.8wt%
未満では、溶射層の充分な硬度が得られず、耐摩耗性に
も欠け、Cが8.4wt%を越えると、相手材の摩耗が
大きくなり、溶射層の靱性も低下する。また、上記した
メッキ層は例えば硬質クロムメッキ層、ポーラスクロム
メッキ層、ニッケルメッキ層で形成できる。なお、層を
形成するに先立ち、清浄化、粗面化処理などの前処理を
ボア面に施すことができる。また、層を形成した後、ホ
ーニング加工などの後処理を施すことができる。
[0008] The cylinder can be formed of iron or aluminum alloy. The layer having corrosion resistance preferably contains chromium and nickel. This takes into account the corrosion resistance and wear resistance of the base material of the cylinder. The layer having corrosion resistance can usually be formed by a thermal spray layer or a plating layer. Further, it can also be formed by a permeation plating layer such as chromizing, or a vapor phase plating layer constituted by a vapor deposition layer, sputtering or the like. The thermal spray layer can be formed of an alloy thermal spray layer or a ceramic thermal spray layer. When the cylinder is iron-based, Cr: 55 to 70 wt%
%, C: 1.8 to 8.4 wt%, inevitable impurities, and the balance can be formed of a Fe-Cr alloy substantially consisting of iron. In this case, if the Cr content is less than 55 wt%, C
Since r does not play a sufficient role, corrosion of the bore surface may occur. When Cr exceeds 70 wt%, the aggressive material becomes more aggressive, and the abrasion of the other material increases. In addition, C is 1.8 wt%
If the amount is less than the above, sufficient hardness of the thermal sprayed layer cannot be obtained and the wear resistance is also lacking. If C exceeds 8.4 wt%, the wear of the mating material increases, and the toughness of the thermal sprayed layer also decreases. Further, the above-mentioned plating layer can be formed of, for example, a hard chrome plating layer, a porous chrome plating layer, or a nickel plating layer. Prior to forming the layer, pretreatments such as cleaning and surface roughening can be performed on the bore surface. After the formation of the layer, a post-treatment such as honing can be performed.

【0009】耐食性をもつ層の厚みは80〜200μm
が好ましい。厚さが80μm未満では層の寿命不足で早
期に母材の下地がでてしまう。また、200μmを越え
ると熱応力により層の密着性が悪くなるとともに、N
i、Cr等高価な元素を使用しているためコストが高く
なる。また、層の仕上げ加工時の寸法精度不良が生じ易
くなる。層の表面粗さについては、1.6〜3.2μm
Rzが好ましい。表面粗さが1.6μmRz未満では油
保持力が小さく、相手材と焼付きが発生し易い。表面粗
さが3.2μmRzを越えると、層自体の摩耗量が多
く、また、相手攻撃性も大きく、そのため相手材の摩耗
量が大きくなる。耐食性をもつ層の硬度は相手材にもよ
るが、一般的にHv400〜800にできる。
The thickness of the layer having corrosion resistance is 80 to 200 μm.
Is preferred. If the thickness is less than 80 μm, the base material of the base material will be formed early due to insufficient life of the layer. On the other hand, if the thickness exceeds 200 μm, the adhesiveness of the layer becomes poor due to thermal stress, and N
Since expensive elements such as i and Cr are used, the cost increases. In addition, dimensional accuracy defects at the time of finishing the layer are likely to occur. Regarding the surface roughness of the layer, 1.6 to 3.2 μm
Rz is preferred. If the surface roughness is less than 1.6 μmRz, the oil holding power is small, and seizure with the partner material is likely to occur. If the surface roughness exceeds 3.2 μmRz, the wear amount of the layer itself is large, and the opposing aggressiveness is also large. The hardness of the layer having corrosion resistance depends on the mating material, but can generally be Hv 400 to 800.

【0010】相手材は一般的にはピストンリングであ
り、窒化処理を施したステンレス鋼、鋼系で形成でき
る。この場合、窒化層の厚みは70〜150μmが好ま
しい。70μmでは寿命不足となり、相手材の母材の下
地が露出し易く、150μmを越えると、熱応力により
窒化層が剥離するおそれがある。
[0010] The mating material is generally a piston ring, and can be formed of a stainless steel or a steel based on nitriding. In this case, the thickness of the nitrided layer is preferably 70 to 150 μm. If the thickness is 70 μm, the life is insufficient, and the base material of the mating material is easily exposed. If the thickness exceeds 150 μm, the nitride layer may be peeled off due to thermal stress.

【0011】[0011]

【作用】内燃機関、特に直列4気筒の内燃機関では、内
燃機関を停止させてピストンを停止させたとき、バラン
スウェイトの関係でピストンは上死点と下死点との間の
ほぼ中央域で停止するものである。本発明では、耐食性
をもつ層は上死点位置から1/3L≦A≦5/6Lの範
囲内に設けられているので、上死点と下死点との間のほ
ぼ中央域で停止したピストンの外周面に対面するシリン
ダボア面部分は、耐食性をもつ層で被覆されている。そ
のため、アルコール系燃料使用時にてピストン停止状態
におけるシリンダボアの摺動面の耐食性は確保される。
しかも本発明では、ピストン往復駆動時において潤滑油
膜が薄くなりがちの上死点付近及び下死点付近のシリン
ダボアにおいては、相手材攻撃性をもつ耐食層は形成さ
れていないので、相手材であるピストンリングの摩耗は
軽減される。
In an internal combustion engine, in particular, an in-line four-cylinder internal combustion engine, when the internal combustion engine is stopped and the piston is stopped, the piston is located at approximately the center region between the top dead center and the bottom dead center due to the balance weight. It will stop. In the present invention, since the layer having corrosion resistance is provided within the range of 1 / 3L ≦ A ≦ 5 / 6L from the position of the top dead center, the layer stops almost at the center area between the top dead center and the bottom dead center. The portion of the cylinder bore surface facing the outer peripheral surface of the piston is covered with a layer having corrosion resistance. Therefore, the corrosion resistance of the sliding surface of the cylinder bore when the piston is stopped when alcohol fuel is used is ensured.
Moreover, in the present invention, in the cylinder bore near the top dead center and near the bottom dead center where the lubricating oil film tends to be thinned during the reciprocating operation of the piston, the corrosion resistant layer having the aggressive material aggression is not formed, so Wear of the piston ring is reduced.

【0012】[0012]

【実施例】以下本発明の実施例を具体的に説明する。ま
ず、図1に示すようなねずみ鋳鉄(JIS規格:FC2
5)製で大きさがボア径81mm、ストローク77mm
の直列4気筒タイプのシリンダブロック1を製造した。
次に図2(A)〜(D)に示す様に、そのシリンダボア
2の内周面において、シリンダボア2における上死点位
置(T.D.C)から下死点位置(B.D.C)までの
距離をLとすると、上死点位置から1/3L≦A≦5/
6LのAの部分のみに、切削バイトを用いたボーリング
加工を施し、最大深さ100μmの溝2aをシリンダボ
ア2の周方向に連続する様にリング状に形成した。この
溝2aのエッジ部の形状としては、その部分に均一の溶
射層を形成するために、45度のアンダーカットが形成
されている。その後に、溶射ガンを用い、溶射ガンをシ
リンダボア2内に配置し、マスキング処理無しで、溶射
層3を被覆した。この場合、低炭素FeーCr合金粉末
(Cr:56wt%、C:0.02wt%、Si:0.
8%、Fe:残部)を70wt%と、高炭素FeーCr
合金粉末(Cr:62wt%、C:8wt%、Si:
1.3%、Fe:残部)を30wt%混合したFeーC
r合金粉末(Cr:60wt%、C:2.2wt%、S
i:1wt%、Fe:残部)を用いて、その粉末をプラ
ズマ溶射し、厚さ150μmのFeーCr合金の溶射層
3Aを形成し、その後、溶射層3Aに荒ホーニング加
工、仕上ホーニング加工を施して、図2(D)に示す様
に溶射層3を形成した。ここで溶射層3は、厚さ80μ
m、溶射層硬さHV430、表面粗さ2μmRzであ
る。なお、溶射工程で使用した低炭素FeーCr合金粉
末の平均粒径は10〜75μmである。高炭素FeーC
r合金粉末の平均粒径は10〜63μmである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be specifically described below. First, gray cast iron (JIS standard: FC2) as shown in FIG.
5) Made with a bore diameter of 81 mm and a stroke of 77 mm
Was manufactured.
Next, as shown in FIGS. 2A to 2D, on the inner peripheral surface of the cylinder bore 2, the top dead center position (T.D.C.) and the bottom dead center position (B.D.C. ) Is L, 1 / 3L ≦ A ≦ 5 / from the top dead center position
Boring was performed using only a cutting tool on the portion A of 6 L, and a groove 2 a having a maximum depth of 100 μm was formed in a ring shape so as to be continuous in the circumferential direction of the cylinder bore 2. As for the shape of the edge of the groove 2a, an undercut of 45 degrees is formed in order to form a uniform sprayed layer on the edge. Thereafter, using a thermal spray gun, the thermal spray gun was disposed in the cylinder bore 2 and covered the thermal spray layer 3 without masking. In this case, low-carbon Fe-Cr alloy powder (Cr: 56 wt%, C: 0.02 wt%, Si: 0.
8%, Fe: balance) and 70% by weight of high carbon Fe-Cr
Alloy powder (Cr: 62 wt%, C: 8 wt%, Si:
Fe-C mixed with 1.3%, Fe: balance) at 30 wt%
r alloy powder (Cr: 60 wt%, C: 2.2 wt%, S
i: 1 wt%, Fe: balance), and spraying the powder by plasma spraying to form a sprayed layer 3A of a Fe-Cr alloy having a thickness of 150 µm, and then performing rough honing and finish honing on the sprayed layer 3A. Thus, a sprayed layer 3 was formed as shown in FIG. Here, the sprayed layer 3 has a thickness of 80 μm.
m, sprayed layer hardness HV430, and surface roughness 2 μmRz. The low carbon Fe-Cr alloy powder used in the thermal spraying process has an average particle size of 10 to 75 m. High carbon Fe-C
The average particle size of the r alloy powder is 10 to 63 μm.

【0013】(実機試験)次に上記した溶射層3を形成
したシリンダ1を用い、メタノール85%のアルコ−ル
燃料を使用して、実施例1のシリンダ1をカセットベン
チにセットし、台上腐食試験を行った。ここで、試験条
件は、エンジン回転数2000rpm、水温40℃で1
分間運転後、エンジンを停止して14日間放置し、その
時のシリンダボア2の内壁面における静的な腐食の発生
の有無を肉眼で検査した。なお、エンジンオイルは耐久
劣化油を用いた。
(Actual machine test) Next, using the cylinder 1 on which the above-mentioned sprayed layer 3 was formed, the cylinder 1 of the first embodiment was set on a cassette bench using an alcohol fuel of 85% methanol, and was placed on a table. A corrosion test was performed. Here, the test conditions are as follows: engine speed 2000 rpm, water temperature 40 ° C., 1
After running for 1 minute, the engine was stopped and allowed to stand for 14 days. At that time, the occurrence of static corrosion on the inner wall surface of the cylinder bore 2 was visually inspected. The engine oil used was a durability deterioration oil.

【0014】台上腐食試験の結果を表1に示す。表1に
示す様に実施例1では、シリンダボア2における腐食の
発生は見られず、良好な結果であった。また、比較例1
〜3として、表1に示すような範囲でシリンダボアに溶
射層を形成した同種のシリンダを製作した。なお、溶射
層の厚さ、表面粗さは実施例1と同様にそれぞれ80μ
m、2μmRzである。また比較例4として溶射層を形
成しないシリンダも製作した。
Table 1 shows the results of the bench corrosion test. As shown in Table 1, in Example 1, the occurrence of corrosion in the cylinder bore 2 was not observed, which was a good result. Comparative Example 1
As Nos. To 3, cylinders of the same type in which a sprayed layer was formed in the cylinder bore in the range shown in Table 1 were manufactured. The thickness and surface roughness of the sprayed layer were 80 μm each as in Example 1.
m, 2 μm Rz. As Comparative Example 4, a cylinder having no sprayed layer was also manufactured.

【0015】[0015]

【表1】 比較例1〜4についても同様に台上腐食試験を行った。
比較例1〜4の試験結果を同様に表1に示す。比較例1
は上死点側では実施例1と同様、シリンダボア面におけ
る腐食の発生は見られなかったが、下死点側では、耐食
性をもつ溶射層の形成範囲が小さいため、溶射層とシリ
ンダボア面との境界部で軽微な腐食の発生が見られた。
また、比較例2についても比較例1と同様にシリンダボ
ア面での腐食の発生が見られ、上死点側では境界部で軽
微な腐食が、また、下死点側では境界部より約5mmの
位置の溶射未処理部で腐食が発生した。溶射層が形成さ
れていない比較例4では、シリンダボア面の中央付近に
広範囲にわたって、ボアの母材が溶出する程度の大きな
腐食の発生が見られた。なお比較例3については腐食の
発生は見られなかった。上記した試験結果から、ボア面
において上死点位置から1/3L≦A≦5/6Lに溶射
層を形成した実施例1、上死点位置から1/6L≦A≦
5/6Lに溶射層を形成した比較例3は、アルコ−ル燃
料使用の際におけるピストン停止時の静的な腐食に対す
る抵抗性が高いことがわかる。
[Table 1] The bench corrosion test was similarly performed for Comparative Examples 1 to 4.
Table 1 also shows the test results of Comparative Examples 1 to 4. Comparative Example 1
No corrosion was observed on the cylinder bore surface on the top dead center side as in Example 1, but on the bottom dead center side, the formation range of the corrosion-resistant sprayed layer was small. Minor corrosion was observed at the boundary.
Also, in Comparative Example 2, corrosion occurred on the cylinder bore surface as in Comparative Example 1, and slight corrosion was observed at the boundary at the top dead center side and about 5 mm from the boundary at the bottom dead center side. Corrosion occurred in the unsprayed part at the location. In Comparative Example 4 in which the thermal sprayed layer was not formed, a large amount of corrosion was observed over a wide area near the center of the cylinder bore surface such that the base material of the bore eluted. In Comparative Example 3, no corrosion was observed. From the above test results, Example 1 in which the sprayed layer was formed at 1 / 3L ≦ A ≦ 5 / 6L from the top dead center position on the bore surface, 1 / 6L ≦ A ≦ from the top dead center position
It can be seen that Comparative Example 3, in which the sprayed layer was formed in 5/6 L, had high resistance to static corrosion when the piston was stopped when alcohol fuel was used.

【0016】さらに、台上腐食試験で良好な結果が得ら
れた実施例1について、メタノール85%のアルコ−ル
燃料を使用してエンジン回転数6000rpm、300
時間の連続高速耐久試験を行った。なお、摺動の相手材
であるピストンリングはステンレス鋼(JIS規格:S
US440B)製であり、窒化温度450℃、窒化処理
時間50Hrでガス窒化処理を施した厚さ100μmの
窒化処理層をもつものである。
Further, in Example 1 in which good results were obtained in the bench corrosion test, the engine speed was 6,000 rpm, 300 rpm using alcohol fuel of 85% methanol.
A continuous high-speed endurance test for hours was performed. The piston ring, which is a sliding partner, is made of stainless steel (JIS: S)
No. 440B), and has a 100 μm-thick nitriding layer subjected to gas nitriding at a nitriding temperature of 450 ° C. for a nitriding time of 50 hours.

【0017】更に比較例5〜9についても同様に試験し
た。ここで比較例5は比較例3と同様に溶射層の処理範
囲は1/6L≦A≦5/6Lの範囲である。また、比較
例6〜9は、実施例1と同様に溶射層の処理範囲は1/
3L≦A≦5/6Lの範囲であり、但し、表2に示す様
に溶射層の厚さ、溶射層の表面粗さを変えたものであ
る。
Further, Comparative Examples 5 to 9 were similarly tested. Here, in Comparative Example 5, similarly to Comparative Example 3, the processing range of the sprayed layer is in the range of 1 / 6L ≦ A ≦ 5 / 6L. In Comparative Examples 6 to 9, the processing range of the thermal sprayed layer was 1 / the same as in Example 1.
3L ≦ A ≦ 5 / 6L, provided that the thickness of the sprayed layer and the surface roughness of the sprayed layer were changed as shown in Table 2.

【0018】[0018]

【表2】 この台上耐久試験の結果を溶射層摩耗量、ピストンリ
ング摩耗量として図5に示す。ここで、溶射層摩耗量は
表面粗さ計によって測定し、各4個の平均値であり、ピ
ストンリング摩耗量は表面粗さ計によって測定し各4個
の平均値である。図5に示す様に、実施例1は、比較例
5〜9に比べ溶射層自身の摩耗量も5μm程度と極めて
少なく、また、相手材であるピストンリングの摩耗量も
10μm程度と極めて少なく、従って相手材に対する攻
撃性も極めて小さく、良好なシリンダであることがわか
る。一方、溶射層が上死点位置から1/6L≦A≦5/
6Lの範囲で形成されている比較例5では、潤滑油膜が
薄くなり相手材攻撃性が増す上死点位置の近傍までシリ
ンダボアに溶射層が施されているため、上死点近傍部分
での相手材攻撃性が大きくなり、従って相手材であるピ
ストンリングの摩耗量が20μm近くと多くなってい
る。更に溶射層自身の摩耗量も大きい。また、溶射層の
表面粗さが5.0μmRzと大きい比較例7では、相手
材であるピストンリングの摩耗が多いだけでなく、シリ
ンダボア自身の摩耗も多くなっており、溶射層の表面粗
さ大による耐摩耗性への影響が顕著に見られる。また、
溶射層の厚みが50μmの比較例8では、溶射層の厚み
が薄いため、溶射層の耐久性、寿命が短くなっている。
また溶射層の厚みが250μmの比較例9では、比較例
8とは逆に溶射層の厚みが厚いため、耐久寿命について
は問題はないが、溶射層の密着力が著しく低下するた
め、シリンダボア面の母材との境界での溶射層の剥離が
一部見られた。
[Table 2] The results of the bench durability test are shown in FIG. 5 as the sprayed layer wear amount and the piston ring wear amount. Here, the wear amount of the sprayed layer is measured by a surface roughness meter and is an average value of four pieces, and the piston ring wear amount is measured by a surface roughness meter and is an average value of four pieces. As shown in FIG. 5, in Example 1, the wear amount of the thermal sprayed layer itself was extremely small at about 5 μm as compared with Comparative Examples 5 to 9, and the wear amount of the piston ring as a mating material was also extremely small at about 10 μm. Therefore, the aggressiveness to the opponent material is extremely small, and it is understood that the cylinder is a good cylinder. On the other hand, the sprayed layer is 1 / 6L ≦ A ≦ 5 /
In Comparative Example 5 formed in the range of 6 L, the sprayed layer is applied to the cylinder bore near the top dead center position where the lubricating oil film becomes thin and the aggressive material aggression increases. The aggressiveness of the material is increased, and accordingly, the wear amount of the piston ring, which is the mating material, is increased to nearly 20 μm. Further, the wear amount of the sprayed layer itself is large. Further, in Comparative Example 7 in which the surface roughness of the thermal sprayed layer was as large as 5.0 μmRz, not only the piston ring, which is the mating material, was worn a lot, but also the cylinder bore itself was also abraded. The effect on abrasion resistance is remarkably observed. Also,
In Comparative Example 8 in which the thickness of the thermal spray layer is 50 μm, the durability and the life of the thermal spray layer are short because the thermal spray layer is thin.
In Comparative Example 9 in which the thickness of the sprayed layer was 250 μm, the thickness of the sprayed layer was thick, contrary to Comparative Example 8, and there was no problem with the durability life. However, the adhesion of the sprayed layer was significantly reduced. Part of the sprayed layer at the boundary with the base metal was observed.

【0019】ところで、前述した様に図4の特性線hに
示す様に一般に、シリンダボア面における油膜の厚みは
上死点近傍の方が下死点近傍よりも薄い。溶射層が上死
点位置から1/3L≦A≦5/6Lの範囲で形成された
実施例1と、溶射層が上死点位置から1/6L≦A≦5
/6Lの範囲で形成された比較例5とで、相手材及び溶
射層の摩耗量に差が見られたのは、この油膜の影響が大
きいためであると推察される。
As described above, the thickness of the oil film on the cylinder bore surface is generally smaller near the top dead center than near the bottom dead center, as indicated by the characteristic line h in FIG. Example 1 in which the sprayed layer was formed in the range of 1 / 3L ≦ A ≦ 5 / 6L from the top dead center position, and 1 / 6L ≦ A ≦ 5 from the top dead center position
The difference in the amount of wear between the mating material and the sprayed layer between Comparative Example 5 formed in the range of / 6 L was presumed to be due to the large effect of the oil film.

【0020】即ち、実施例1ではシリンダボア面の摺動
面において、油膜分布に対応した範囲、かつ、エンジン
停止時のピストン停止位置に対応した範囲に、溶射層に
より耐食処理を施しているため、ピストン停止時におけ
るボア面の静的な腐食を防止できるだけでなく、ボア面
自身の摩耗、更に、相手材であるピストンリングの摩耗
を抑制できる。しかし、比較例5では、潤滑油膜が薄く
なる上死点近傍にまで溶射層が形成されているため、相
手材攻撃性が高い。
That is, in the first embodiment, the corrosion-resistant treatment is performed by the sprayed layer on the sliding surface of the cylinder bore surface in the range corresponding to the oil film distribution and the range corresponding to the piston stop position when the engine is stopped. In addition to preventing static corrosion of the bore surface when the piston is stopped, wear of the bore surface itself, and further, wear of the piston ring as a mating material can be suppressed. However, in Comparative Example 5, the thermal spray layer is formed up to the vicinity of the top dead center where the lubricating oil film becomes thin, so that the opposing material aggressiveness is high.

【0021】次に溶射層の厚みと溶射層の耐久寿命との
関係を調べた。この場合、1600cc、直列4気筒の
内燃機関のシリンダボアを用い、窒化処理したピストン
リングを用い、メタノール85%のアルコール燃料で6
000rpmで実機耐久試験(300hr)を行った。
溶射層の耐久寿命性は溶射層の厚みが30μmに達する
までの時間で測定した。試験結果を図6に示す。図6の
特性線S1に示す様に溶射層の耐久寿命性を確保するに
は、溶射層の厚みは80μmは必要である。また同様な
実機耐久試験で溶射層の厚みと密着力との関係を調べ
た。密着力はせん断試験により測定した。試験結果を図
7に示す。図7の特性線S2に示す様に溶射層の厚みが
200μmを越えたあたりから、溶射層の密着力は低下
し、溶射層は剥離するおそれがある。そのため溶射層の
厚みを確保しつつ密着力4kg/mm2 以上を得るに
は、溶射層の厚みは80〜200μmRzが望ましい。
Next, the relationship between the thickness of the sprayed layer and the durable life of the sprayed layer was examined. In this case, a 1600 cc, cylinder bore of an in-line four-cylinder internal combustion engine is used, a nitriding-processed piston ring is used, and methanol-85% alcohol fuel is used.
An actual machine durability test (300 hr) was performed at 000 rpm.
The durability life of the sprayed layer was measured by the time until the thickness of the sprayed layer reached 30 μm. The test results are shown in FIG. As shown by the characteristic line S1 in FIG. 6, in order to ensure the durability life of the sprayed layer, the thickness of the sprayed layer needs to be 80 μm. In addition, the relationship between the thickness of the sprayed layer and the adhesion was examined by a similar actual machine durability test. The adhesion was measured by a shear test. The test results are shown in FIG. As indicated by the characteristic line S2 in FIG. 7, when the thickness of the sprayed layer exceeds about 200 μm, the adhesion of the sprayed layer is reduced and the sprayed layer may be peeled off. Therefore, in order to obtain an adhesion of 4 kg / mm 2 or more while securing the thickness of the sprayed layer, the thickness of the sprayed layer is desirably 80 to 200 μmRz.

【0022】(モデル試験)次に溶射層の表面粗さと溶
射層の摩耗量との関係を調べた。この場合、往復摺動型
摩擦摩耗試験で行った。この往復摺動型摩擦摩耗試験
は、具体的には、相手材としてピストンリングの切断片
を用い、溶射層をもつ平板試験片を5Hzで往復移動さ
せつつピン試験片を押付力15kgfで押し付け、すべ
り距離50mmで20時間の摩耗試験を行った。なお潤
滑条件はディーゼル劣化油を油浴とした。試験結果を図
8の特性線T1に示す。図8の特性線T1に示す様に平
板試験片の溶射層の表面粗さが1.6〜3.2μmRz
のときに、溶射層の摩耗量は低減することが知見され
た。なお、溶射層の表面粗さが0.6μmRzのとき
に、焼き付きが発生した。油保持力が小さいためと推察
される。また溶射層の表面粗さと窒化材当り巾との関係
を調べた。この場合にも往復摺動型摩擦摩耗試験で行っ
た。試験結果を図8の特性線T2に示す。図8の特性線
T2に示す様に、溶射層の表面粗さが1.6μmRzよ
りも小さいと、溶射層をもつ平板試験片と窒化処理した
ピン試験片との間で焼付きが発生することが知見され
た。油保持力が小さいためと推察される。また溶射層の
表面粗さが3.2μmRzよりも大きいと、ピン試験片
の摩耗量つまり窒化材当り巾が増加することが知見され
た。そのため溶射層の表面粗さは1.6〜3.2μmR
zが望ましい。
(Model Test) Next, the relationship between the surface roughness of the sprayed layer and the wear amount of the sprayed layer was examined. In this case, a reciprocating sliding type friction and wear test was performed. In this reciprocating sliding friction and wear test, specifically, using a cut piece of a piston ring as a mating material, a pin test piece was pressed with a pressing force of 15 kgf while a flat plate test piece having a sprayed layer was reciprocated at 5 Hz. A wear test was performed at a sliding distance of 50 mm for 20 hours. The lubricating condition was an oil bath using diesel degraded oil. The test result is shown by a characteristic line T1 in FIG. As shown by the characteristic line T1 in FIG. 8, the surface roughness of the sprayed layer of the flat plate specimen was 1.6 to 3.2 μm Rz.
At that time, it was found that the wear amount of the sprayed layer was reduced. When the surface roughness of the sprayed layer was 0.6 μmRz, seizure occurred. It is presumed that the oil holding power was small. Further, the relationship between the surface roughness of the sprayed layer and the width per nitrided material was examined. Also in this case, a reciprocating sliding type friction and wear test was performed. The test result is shown by a characteristic line T2 in FIG. As shown by the characteristic line T2 in FIG. 8, when the surface roughness of the thermal sprayed layer is smaller than 1.6 μmRz, seizure occurs between the flat specimen having the thermal sprayed layer and the nitrided pin specimen. Was found. It is presumed that the oil holding power was small. It has also been found that when the surface roughness of the sprayed layer is larger than 3.2 μmRz, the wear amount of the pin test piece, that is, the width per nitrided material increases. Therefore, the surface roughness of the sprayed layer is 1.6 to 3.2 μmR.
z is desirable.

【0023】[0023]

【発明の効果】本発明の内燃機関用のシリンダによれ
ば、耐食性をもつ層は上死点位置から1/3L≦A≦5
/6Lの範囲内におけるAの部分のみに設けられている
ので、上死点と下死点との間のほぼ中央域で停止したピ
ストンの外周面に対面するシリンダボア部分は、耐食性
をもつ層で被覆されている。そのため、アルコール系燃
料を使用した時においてピストン停止状態におけるシリ
ンダボアの摺動面の耐食性は確保される。しかも、シリ
ンダボア面にうち、ピストン往復駆動時に潤滑油の油膜
の厚みが薄く相手材攻撃性が高くなりがちの上死点付近
及び下死点付近においては、耐食層は形成されていない
ので、相手材であるピストンリングの摩耗は軽減され
る。特に潤滑油の油膜が薄い上死点付近においては、上
死点位置から1/3Lの範囲では、耐食層は形成されて
いないので、相手材の摩耗を効果的に軽減できる。
According to the cylinder for an internal combustion engine of the present invention, the layer having corrosion resistance is 1 / 3L≤A≤5 from the top dead center position.
Since it is provided only in the portion A within the range of / 6 L, the cylinder bore portion facing the outer peripheral surface of the piston stopped at a substantially central area between the top dead center and the bottom dead center is a layer having corrosion resistance. Coated. Therefore, when the alcohol-based fuel is used, the corrosion resistance of the sliding surface of the cylinder bore in the piston stopped state is ensured. In addition, a corrosion-resistant layer is not formed near the top dead center and the bottom dead center of the cylinder bore surface near the top dead center and the bottom dead center where the lubricating oil film is thin and the opponent material aggressiveness tends to increase when the piston reciprocates. Wear of the piston ring, which is a material, is reduced. In particular, in the vicinity of the top dead center where the oil film of the lubricating oil is thin, in the range of 1 / 3L from the top dead center position, since the corrosion resistant layer is not formed, abrasion of the mating material can be effectively reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シリンダの斜視図である。FIG. 1 is a perspective view of a cylinder.

【図2】シリンダボアに溶射層を形成する工程を示す図
である。
FIG. 2 is a view showing a step of forming a sprayed layer in a cylinder bore.

【図3】シリンダボアの模式的な断面図である。FIG. 3 is a schematic sectional view of a cylinder bore.

【図4】トップリングの油膜厚さ、トップリングの外周
面摩耗比とシリンダボアの位置関係とを示すグラフであ
る。
FIG. 4 is a graph showing an oil film thickness of a top ring, an outer peripheral surface wear ratio of the top ring, and a positional relationship of a cylinder bore.

【図5】溶射層摩耗量とピストンリング摩耗量を示すグ
ラフである。
FIG. 5 is a graph showing a sprayed layer wear amount and a piston ring wear amount.

【図6】溶射層厚みと溶射層の耐久寿命との関係を示す
グラフである。
FIG. 6 is a graph showing a relationship between a sprayed layer thickness and a durable life of the sprayed layer.

【図7】溶射層厚みと溶射層の密着力との関係を示すグ
ラフである。
FIG. 7 is a graph showing the relationship between the thickness of a sprayed layer and the adhesion of the sprayed layer.

【図8】溶射層摩耗量、窒化材当り巾と溶射層の表面粗
さとの関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the sprayed layer wear amount, the width per nitrided material, and the surface roughness of the sprayed layer.

【符号の説明】[Explanation of symbols]

1はシリンダ、2はシリンダボア、3は溶射層を示す。 1 indicates a cylinder, 2 indicates a cylinder bore, and 3 indicates a sprayed layer.

フロントページの続き (56)参考文献 特開 平4−221100(JP,A) 特開 昭61−175253(JP,A) 特開 昭59−90744(JP,A) 特開 平4−175442(JP,A) 特開 昭61−231154(JP,A) 特開 昭61−144469(JP,A) 特開 昭60−93162(JP,A) 実開 昭63−21748(JP,U) 実開 昭59−123641(JP,U) 実開 昭60−88049(JP,U) 実開 昭59−182645(JP,U) (58)調査した分野(Int.Cl.7,DB名) F02F 1/00 - 7/00 C23C 4/00 F16J 10/04 Continuation of the front page (56) References JP-A-4-221100 (JP, A) JP-A-61-175253 (JP, A) JP-A-59-90744 (JP, A) JP-A-4-175442 (JP) , A) JP-A-61-231154 (JP, A) JP-A-61-144469 (JP, A) JP-A-60-93162 (JP, A) Fully open Showa 63-21748 (JP, U) Really open 59-123641 (JP, U) Fully open sho 60-88049 (JP, U) Fully open sho 59-182645 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F02F 1/00 -7/00 C23C 4/00 F16J 10/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリンダボア面における上死点位置から下
死点位置までの距離をLとすると、上死点位置から1/
3L≦A≦5/6Lの範囲内におけるAの部分のみの摺
動面に耐食性をもつ層を設けると共に、 上死点位置から1/3Lまでの範囲、5/6Lから下死
点位置までの範囲においてシリンダボア面の母材が露出
している ことを特徴とするアルコール系燃料を使用する
内燃機関用のシリンダ。
When the distance from the top dead center position to the bottom dead center position on the cylinder bore surface is L, the distance from the top dead center position is 1 /.
3L ≦ A ≦ 5 / 6L provided with a layer having corrosion resistance to the sliding surface of only the portion A in the range of Rutotomoni, ranging from the top dead center position to the 1 / 3L, bottom dead from 5 / 6L
The base material of the cylinder bore surface is exposed up to the point position
<br/> cylinder for an internal combustion engine that uses alcohol fuel, characterized in that it is.
【請求項2】耐食性をもつ層は、厚み80〜200μ
m、表面粗さ1.6〜3.2μmRzで、少なくともク
ロム、ニッケルを含む溶射層またはメッキ層であること
を特徴とする請求項1項記載の内燃機関用のシリンダ。
2. The layer having corrosion resistance has a thickness of 80 to 200 μm.
The cylinder for an internal combustion engine according to claim 1, wherein the cylinder is a thermal sprayed layer or a plated layer containing at least chromium and nickel and having a surface roughness of 1.6 to 3.2 mRz.
JP17129291A 1991-07-11 1991-07-11 Cylinder for internal combustion engine using alcohol fuel Expired - Fee Related JP3180921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17129291A JP3180921B2 (en) 1991-07-11 1991-07-11 Cylinder for internal combustion engine using alcohol fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17129291A JP3180921B2 (en) 1991-07-11 1991-07-11 Cylinder for internal combustion engine using alcohol fuel

Publications (2)

Publication Number Publication Date
JPH0518316A JPH0518316A (en) 1993-01-26
JP3180921B2 true JP3180921B2 (en) 2001-07-03

Family

ID=15920604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17129291A Expired - Fee Related JP3180921B2 (en) 1991-07-11 1991-07-11 Cylinder for internal combustion engine using alcohol fuel

Country Status (1)

Country Link
JP (1) JP3180921B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030440A (en) 2000-07-18 2002-01-31 National Institute Of Advanced Industrial & Technology Gradient material and its synthesizing and working method
JPWO2004035852A1 (en) * 2002-10-15 2006-02-16 株式会社リケン Piston ring, thermal spray coating used therefor, and manufacturing method
JP2013148026A (en) * 2012-01-20 2013-08-01 Hino Motors Ltd Cylinder liner
US9511467B2 (en) 2013-06-10 2016-12-06 Ford Global Technologies, Llc Cylindrical surface profile cutting tool and process
US8726874B2 (en) * 2012-05-01 2014-05-20 Ford Global Technologies, Llc Cylinder bore with selective surface treatment and method of making the same
NL2018330B1 (en) 2017-02-07 2018-09-03 Gyre B V Foldable bag

Also Published As

Publication number Publication date
JPH0518316A (en) 1993-01-26

Similar Documents

Publication Publication Date Title
EP1886009B1 (en) Coated power cylinder components for diesel engines
JP5013445B2 (en) Piston ring, piston with the same, and method of using them
JP3793990B2 (en) Combination of internal combustion engine cylinder liner and piston ring
US20100319647A1 (en) Combination structure of piston ring and cylinder liner for internal combustion engine
WO2015041215A1 (en) Combination of cylinder bore and piston ring
US7833636B2 (en) Piston ring with sulphonitriding treatment
JP3180921B2 (en) Cylinder for internal combustion engine using alcohol fuel
JPH11264468A (en) Piston ring and its combination
JP2007170467A (en) Piston ring
JPH08312779A (en) Slide material and piston ring
US4387140A (en) Slide member
JP2001280497A (en) Combination of cylinder made of aluminum alloy and piston ring
JP2006057674A (en) Sliding member and piston ring
JPS6113064A (en) Piston ring for internal-combustion engine
JP3547583B2 (en) Cylinder liner
Igartua et al. Tribological tests to simulate wear on piston rings
JP4374160B2 (en) piston ring
JP2700421B2 (en) Cylinder liner for internal combustion engine and method of manufacturing the same
JPH10213004A (en) Cylinder liner
JPH0752349Y2 (en) Cylinder and piston ring combination
JP2701532B2 (en) Sliding member
JPH0723649Y2 (en) Cylinder and piston ring combination
JPH0338336B2 (en)
JPH05302674A (en) Combination of piston ring and cylinder
JP2516978Y2 (en) Cylinder and piston ring combination

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees