JP3180313B2 - Anion contaminant removal equipment - Google Patents

Anion contaminant removal equipment

Info

Publication number
JP3180313B2
JP3180313B2 JP04819896A JP4819896A JP3180313B2 JP 3180313 B2 JP3180313 B2 JP 3180313B2 JP 04819896 A JP04819896 A JP 04819896A JP 4819896 A JP4819896 A JP 4819896A JP 3180313 B2 JP3180313 B2 JP 3180313B2
Authority
JP
Japan
Prior art keywords
water
cathode
anode
contaminated soil
contaminants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04819896A
Other languages
Japanese (ja)
Other versions
JPH09215972A (en
Inventor
武 川地
博 久保
純 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP04819896A priority Critical patent/JP3180313B2/en
Publication of JPH09215972A publication Critical patent/JPH09215972A/en
Application granted granted Critical
Publication of JP3180313B2 publication Critical patent/JP3180313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CrO4 2-、Cr
2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
等の陰イオン汚染物を汚染土内から除去する装置に関す
る。
TECHNICAL FIELD The present invention relates to CrO 4 2- , Cr
2 O 7 2-, AsO 4 3- , AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, PbO 2 2-
The present invention relates to a device for removing anionic contaminants such as contaminated soil.

【0002】[0002]

【従来の技術】工場廃水、工場廃棄物、鉱山廃水などに
よって汚染された土壌には、カドミウム、鉛、銅、亜
鉛、砒素、セレン、ニッケル、クロム等の汚染物質が含
まれていることがあり、このような土壌をそのまま放置
すると、かかる物質が地下水や生物サイクルを介して環
境に拡散する危険性がある。
2. Description of the Related Art Soil contaminated by factory wastewater, factory waste, mine wastewater, and the like may contain contaminants such as cadmium, lead, copper, zinc, arsenic, selenium, nickel, and chromium. However, if such soil is left as it is, there is a risk that such substances will diffuse into the environment via groundwater and biological cycles.

【0003】そのため、汚染された土壌は、これを掘削
除去して所定の処理を施し、しかる後に管理型あるいは
遮断型の処分地に廃棄処分する一方、掘削された孔内に
は通常の土を客土して原状復帰するのが一般的である。
For this reason, the contaminated soil is excavated and removed and subjected to a predetermined treatment. Thereafter, the contaminated soil is disposed of in a management type or cut-off type disposal site. It is common to return to the original state on the land.

【0004】ところが、かかる方法では、掘削の際に汚
染土を攪乱して二次汚染のおそれがあるとともに、汚染
土を大量に搬出、運搬しなければならないという問題
や、既存建築物の近接部や直下では掘削除去自体が困難
になるという問題が生じる。そのため、最近では、原位
置で浄化する技術が研究され始めており、その一つとし
て通電により汚染物質を回収する方法が特開平5-59716
号公報に開示されている。
[0004] However, such a method has a problem that contaminated soil is disturbed during excavation, which may cause secondary pollution. In addition, a large amount of contaminated soil must be carried out and transported. The problem that excavation removal itself becomes difficult directly underneath occurs. Therefore, recently, in-situ purification technology has begun to be studied, and as one of the methods, a method of recovering contaminants by energization has been disclosed in Japanese Patent Laid-Open No. 5-59716.
No. 6,086,045.

【0005】当該方法においては、まず、処理対象の地
盤範囲に止水壁を構築し、次いで、その地盤範囲に多数
の通水孔を有する中空管からなる陽極および陰極を挿入
し、次いで、当該地盤範囲に適宜散水してから電極間に
直流電圧を印加し、次いで、電気浸透現象によって陰極
側に集まった水を中空管を介して排水回収する。
[0005] In the method, first, a water blocking wall is constructed in a ground area to be treated, and then an anode and a cathode each formed of a hollow tube having a large number of water passage holes are inserted into the ground area, A DC voltage is applied between the electrodes after water is appropriately sprayed on the ground area, and then water collected on the cathode side by an electroosmosis phenomenon is drained and collected through a hollow tube.

【0006】かかる方法によれば、所定の汚染物質は、
電気浸透現象による水の流れに乗って陰極側に流れ込む
ので、これを排水回収することにより、当該汚染物質を
除去することができる。
According to such a method, the predetermined contaminants are:
The contaminants can be removed by collecting the waste water by flowing into the cathode side by riding on the flow of water caused by the electroosmosis phenomenon.

【0007】[0007]

【発明が解決しようとする課題】一方、クロム、砒素、
セレン、シアン、銅などは、それぞれCrO4 2-、Cr
2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
(アルカリ性下) 等の陰イオンの形で土壌に含まれて
いる。そして、これら陰イオン汚染物は、通電を行う
と、陰極に移動する水の流れに逆らいながら電気泳動に
よって陽極方向に力を受けるので、陰極側ではほとんど
回収できないことが本出願人が行った実験で判明した。
そのため、陰イオン汚染物を回収するには、陽極付近に
集まったものを土とともに除去するしかないが、土の掘
削、運搬、客土など一連の作業が必要となり、その除去
効率はきわめて悪い。
On the other hand, chromium, arsenic,
Selenium, cyanide, copper, etc. are CrO 4 2- , Cr
2 O 7 2-, AsO 4 3- , AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, PbO 2 2-
(Under alkalinity) in the form of anions. The experiment conducted by the applicant that these anion contaminants could be hardly recovered on the cathode side because, when energized, they were subjected to a force in the anode direction by electrophoresis while opposing the flow of water moving to the cathode. It turned out.
Therefore, the only way to collect anion contaminants is to remove those collected near the anode together with the soil. However, a series of operations such as excavation, transportation, and soil of the soil are required, and the removal efficiency is extremely poor.

【0008】本発明は、上述した事情を考慮してなされ
たもので、陰イオン汚染物を効率よく汚染土内から回収
可能な陰イオン汚染物の除去装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and has as its object to provide an anion contaminant removal apparatus capable of efficiently collecting anion contaminants from contaminated soil.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る陰イオン汚染物の除去装置は請求項1
に記載したように、排水口に連通する透水層を処理槽の
底部近傍に設け、該透水層の上方に陽極を設置するとと
もに、陰イオン汚染物を含む汚染土の収容空間を隔てて
陰極を配置し、前記収容空間に給水を行う給水手段を設
置してなり、前記陰極及び陽極を該陰極が上、該陽極が
下となるように配置するとともに、前記陰極側を非排水
としたものである。また、本発明に係る陰イオン汚染物
の除去装置は、前記処理槽内の水位が地表面付近かそれ
よりやや高い状態に維持されるように水位計で監視する
ようにしたものである。また、本発明に係る陰イオン汚
染物の除去装置は請求項3に記載したように、処理槽内
に陽極および陰極を該陰極が上段になるようにかつそれ
らの間に陰イオン汚染物を含む汚染土を収容する収容空
間が形成されるようにほぼ平行に設置し、前記処理槽の
底部近傍には前記収容空間に汚染土が収容されたときに
その重量を支持するとともに汚染土内の水を下方に透過
させる透水性支持板を取り付けて該透水性支持板の上に
前記陽極を設置する一方、前記処理槽の上方には散水器
を設置して前記収容空間内の汚染土に給水できるように
構成し、前記処理槽の下部には、前記透水性支持板の下
側に形成された透水層に連通する排水口を設けてなり、
前記陰極側を非排水としたものである。
To achieve the above object, an apparatus for removing anionic contaminants according to the present invention is defined in claim 1.
As described in the above, a permeable layer communicating with the drain port is provided near the bottom of the treatment tank, an anode is provided above the permeable layer, and the cathode is separated through the accommodation space of the contaminated soil containing anionic contaminants. A water supply means for supplying water to the storage space is provided, and the cathode and the anode are arranged such that the cathode is above and the anode is below, and the cathode side is undrained. is there. Further, the anion contaminant removal apparatus according to the present invention monitors the water level in the treatment tank so that the water level is maintained near the ground surface or slightly higher than the ground surface. Further, the anion contaminant removal apparatus according to the present invention includes an anode and a cathode in the treatment tank such that the cathode is on the upper stage and contains anion contaminants therebetween, as described in claim 3. It is installed substantially parallel so that a storage space for storing the contaminated soil is formed, and near the bottom of the treatment tank, when the contaminated soil is stored in the storage space, the weight of the contaminated soil is supported and the water in the contaminated soil is supported. Attached to the permeable support plate is a water permeable support plate, and the anode is installed on the permeable support plate, while a water sprayer is installed above the treatment tank to supply water to the contaminated soil in the storage space. In the lower part of the treatment tank, a drain port communicating with a permeable layer formed below the permeable support plate is provided,
The cathode side is not drained.

【0010】本発明に係る陰イオン汚染物の除去装置に
おいては、陰極側を上方および側方の少なくともいずれ
かに配置し、陰極側を非排水とすることで水が重力で陰
極から陽極方向へ移動するように工夫し、電気浸透によ
る陰極への水の移動を阻止して、かかる状態で汚染土中
の水を陽極側から排水する。
In the apparatus for removing anionic contaminants according to the present invention, the cathode is disposed at least one of the upper side and the side, and the cathode is not drained, so that water flows from the cathode toward the anode by gravity. It is devised to move, preventing the movement of water to the cathode by electroosmosis, and in such a state, water in the contaminated soil is drained from the anode side.

【0011】すると、陰イオン汚染物は、電気浸透によ
る陰極への水の移動にあえて逆らうことなく、電気泳動
によって自然に陽極に集まり、水とともに回収される。
しかも、陽極に近づくほど酸性度が上昇して陰イオン汚
染物の溶解度が高くなるので、より効率的に回収され
る。
[0011] Then, the anionic contaminants naturally collect on the anode by electrophoresis and are collected together with the water without opposing the movement of water to the cathode by electroosmosis.
In addition, the closer to the anode, the higher the acidity and the higher the solubility of the anion contaminants, so that they can be more efficiently collected.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る陰イオン汚染
物の除去装置の実施の形態について、添付図面を参照し
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the anion contaminant removal apparatus according to the present invention will be described below with reference to the accompanying drawings.

【0013】図1は、本実施形態に係る陰イオン汚染物
の除去装置を示したものである。本実施形態の除去装置
1は、コンクリート等で箱状に形成された処理槽2内に
陽極3および陰極4を該陰極4が上段になるようにほぼ
平行に設置してあり、陽極3および陰極4の間には、Cr
O4 2-、Cr2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、C
N-、PbO2 2-等の陰イオン汚染物を含む汚染土を収容する
収容空間5が形成されている。
FIG. 1 shows an apparatus for removing anionic contaminants according to this embodiment. In the removing apparatus 1 of the present embodiment, an anode 3 and a cathode 4 are installed in a processing tank 2 formed in a box shape of concrete or the like so as to be substantially parallel so that the cathode 4 is located at an upper stage. Between 4, Cr
O 4 2-, Cr 2 O 7 2-, AsO 4 3-, AsO 3 3-, SeO 4 2-, SeO 3 2-, C
An accommodation space 5 for accommodating contaminated soil containing anionic contaminants such as N and PbO 2 2− is formed.

【0014】ここで、陽極3は例えば炭素棒を所定本数
並べて構成し、陰極4は例えば鉄筋を格子状に組んで構
成するのがよい。陽極3および陰極4の設置間隔は、例
えば1.5〜2m程度とするのがよい。
Here, the anode 3 is preferably constituted by arranging a predetermined number of carbon rods, for example, and the cathode 4 is preferably constituted by assembling reinforcing bars in a lattice shape, for example. The interval between the anode 3 and the cathode 4 is preferably, for example, about 1.5 to 2 m.

【0015】処理槽2の底部近傍には、収容空間5に汚
染土が収容されたときにその重量を支持するとともに汚
染土内の水を下方に透過させる透水性支持板6を取り付
けてあり、陽極3は、該透水性支持板6の上に設置して
おくのがよい。
In the vicinity of the bottom of the treatment tank 2, a water permeable support plate 6 for supporting the weight of the contaminated soil when it is stored in the storage space 5 and permeating the water in the contaminated soil downward is attached. The anode 3 is preferably set on the permeable support plate 6.

【0016】一方、処理槽2の上方には、図示しない給
水ポンプに接続された散水器7を設置してあり、収容空
間5内の汚染土に給水できるようになっている。
On the other hand, a sprinkler 7 connected to a water supply pump (not shown) is provided above the treatment tank 2 so that contaminated soil in the storage space 5 can be supplied with water.

【0017】また、処理槽2の下部には、透水性支持板
6の下側に形成された透水層9に連通する排水口8を設
けてあり、処理槽2の側方には、該処理槽2の内部に連
通する水位計10を設置してある。なお、排水口8は、
図示しないバルブによって開閉自在に構成してある。
A drain 8 communicating with a permeable layer 9 formed below the permeable support plate 6 is provided below the treatment tank 2, and the treatment tank 2 is provided with a drain port 8 at the side of the treatment tank 2. A water level gauge 10 communicating with the inside of the tank 2 is installed. In addition, the drain port 8 is
It is configured to be openable and closable by a valve (not shown).

【0018】本実施形態に係る陰イオン汚染物の除去装
置においては、まず、陰極4を処理槽2から取外し、Cr
O4 2-、Cr2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、C
N-、PbO2 2-等の陰イオン汚染物を含む汚染土を収容空間
5に投入した後、陰極4を元通りに取り付ける(図2、
ステップ101)。
In the apparatus for removing anionic contaminants according to the present embodiment, first, the cathode 4 is detached from the processing tank 2 and Cr is removed.
O 4 2-, Cr 2 O 7 2-, AsO 4 3-, AsO 3 3-, SeO 4 2-, SeO 3 2-, C
After charging the contaminated soil containing anionic contaminants such as N - and PbO 2 2- into the storage space 5, the cathode 4 is attached again (FIG. 2,
Step 101).

【0019】次に、図3に示すように散水器7を作動さ
せて汚染土11に給水を行い、処理槽2内の水位が地表
面付近かそれよりやや高い状態に維持されるように水位
計10で監視するとともに、陽極3および陰極4間に直
流電圧を印加して通電し、給水した水を透水層9および
排水口8を介して排水し陰イオン汚染物を回収する(ス
テップ102)。
Next, as shown in FIG. 3, the sprinkler 7 is operated to supply water to the contaminated soil 11 so that the water level in the treatment tank 2 is maintained near the ground surface or slightly higher. While monitoring with the total 10, a direct current voltage is applied between the anode 3 and the cathode 4 to energize, and the supplied water is drained through the permeable layer 9 and the drain port 8 to collect the anionic contaminants (Step 102). .

【0020】ここで、給排水および通電の仕方について
は、給水を行った後、所定日数通電を行い、しかる後に
排水して陰イオン汚染物を回収する手順を繰り返す方法
と、給排水と通電を同時に行いながら、一定量の水を連
続的に交換する方法とがあるが、いずれを選択するか
は、汚染土の量、性状、陰イオン汚染物の種類等によっ
て、適宜使い分ければよい。
Here, regarding the method of water supply / drainage and energization, there is a method of repeating the procedure of supplying water, energizing for a predetermined number of days, then draining and collecting anionic contaminants, and simultaneously performing water supply / drainage and energization. However, there is a method of continuously exchanging a certain amount of water, and which method to use may be appropriately selected depending on the amount and properties of the contaminated soil, the type of anion contaminants, and the like.

【0021】なお、陰極4側は通電中をはじめ終始非排
水とし、電気浸透による陰極4への水の移動を阻止して
おく。すなわち、土壌中の水は、電気浸透によって陰極
4へ移動しようとするが、陰極側で非排水としておけ
ば、陰極4へ移動しようとする力と陰極付近の水位の上
昇による圧力あるいは自重とが平衡し、水は移動しなく
なる。あるいは、連続処理を行っている場合には、水は
下方に移動する。
It is to be noted that the cathode 4 side is not drained from the start to the end of the current flow, and the movement of water to the cathode 4 due to electroosmosis is prevented. That is, the water in the soil tends to move to the cathode 4 by electroosmosis, but if the water is not drained on the cathode side, the force for moving to the cathode 4 and the pressure or its own weight due to the rise in the water level near the cathode are reduced. Equilibrium and water stops moving. Alternatively, when performing continuous processing, water moves downward.

【0022】かかる状態で通電を行えば、陰イオン汚染
物は、従来のように電気浸透による陰極4への水の移動
にあえて逆らうことなく、電気泳動および下向きの水流
によって自然に陽極3に集まる。しかも、陽極3に近づ
くほど酸性度が上昇して陰イオン汚染物の溶解度が高く
なるので、より効率的な回収が可能となる。
When electricity is supplied in such a state, the anionic contaminants naturally collect on the anode 3 by electrophoresis and downward water flow without opposing the movement of water to the cathode 4 by electroosmosis as in the prior art. . In addition, the closer to the anode 3, the higher the acidity and the higher the solubility of anionic contaminants, so that more efficient recovery is possible.

【0023】次に、陽極から回収された水を酸性環境の
ままイオン交換樹脂等を用いて水処理を行い、該水中の
陰イオン汚染物を分離除去する(ステップ103)。次
いで、陰イオン汚染物が除去された後の処理水を給水用
にリサイクルし(ステップ104)、最後に、処理され
た土を処理層2から取り出して元の地盤に戻し復旧する
(ステップ105)。
Next, the water recovered from the anode is subjected to a water treatment using an ion exchange resin or the like in an acidic environment to separate and remove anionic contaminants in the water (step 103). Next, the treated water from which the anionic contaminants have been removed is recycled for water supply (step 104), and finally, the treated soil is taken out of the treatment layer 2 and returned to the original ground to restore (step 105). .

【0024】陽極側で回収された水は酸性度が高い。し
たがって、これをアルカリにして一般的な水処理を行う
よりも、酸性環境をそのまま生かして陰イオン汚染物を
分離処理し、処理された後の処理水を給水用にリサイク
ルするようにすれば、陰イオン汚染物を溶解させやすい
水を土壌中に給水することができる。
The water recovered on the anode side has a high acidity. Therefore, rather than making this an alkali and performing general water treatment, if the anionic environment is used as it is to separate and treat the anion contaminants, and the treated water after treatment is recycled for water supply, Water that easily dissolves anionic contaminants can be supplied to the soil.

【0025】なお、陰イオン汚染物が分離除去された排
水は、工事終了後はpH処理して下水に放流する。
The wastewater from which the anion contaminants have been separated and removed is subjected to a pH treatment after the completion of the construction and discharged to sewage.

【0026】以上説明したように、本実施形態に係る陰
イオン汚染物の除去装置によれば、陰極側を非排水とし
陽極側からのみ排水するようにしたので、CrO4 2-、Cr2O
7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
どの陰イオン汚染物は、電気浸透による水の流れに邪魔
されることなく、電気泳動および下向きの水流によって
スムーズに陽極に到達し、かくして、陰イオン汚染物を
効率よく陽極に集めてこれを回収することが可能とな
る。
As described above, according to the apparatus for removing anionic contaminants according to the present embodiment, the cathode side is not drained and only the anode side is drained, so that CrO 4 2− and Cr 2 O 2 are removed.
7 2-, AsO 4 3-, AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, PbO 2 2- anion contaminants, such as, being obstructed by the flow of water by electroosmosis Instead, the anode smoothly reaches the anode by the electrophoresis and the downward water flow, and thus, it becomes possible to efficiently collect and collect the anion contaminants at the anode.

【0027】また、陽極に近づくほど陰イオン汚染物の
溶解度が高くなるので該陽極付近を効率よく除染するこ
とができる。
Further, the solubility of the anionic contaminants increases as the distance from the anode increases, so that the vicinity of the anode can be efficiently decontaminated.

【0028】また、陰極非排水としたことによって電気
浸透による水の移動がなくなり、その分、給排水の量や
位置によって土壌中の水の流れを制御できるようにな
る。
In addition, the non-drainage of the cathode eliminates the movement of water due to electroosmosis, and accordingly the flow of water in the soil can be controlled by the amount and position of water supply and drainage.

【0029】また、排水中の陰イオン汚染物の分離除去
処理を酸性状態のまま行い、該処理水を給水用にリサイ
クルするようにしたので、土壌中の陰イオン汚染物が溶
解しやすい状態となり、いったんアルカリに戻して分離
除去し、これを給水用にリサイクルするよりも土壌中の
陰イオン汚染物をより効率的に回収除去することが可能
となる。
Further, the separation and removal of the anion contaminants in the wastewater is performed in an acidic state, and the treated water is recycled for water supply, so that the anion contaminants in the soil are easily dissolved. This makes it possible to more efficiently collect and remove anionic contaminants in the soil than to return to alkali once and separate and remove it, and then recycle it for water supply.

【0030】本実施形態では、酸性環境のまま水処理を
行う方法として、イオン交換樹脂を用いた方法を採用し
たが、かかる方法に代えて、例えば砒素やセレンを鉄化
合物に吸着させて除去を図る方法を採用してもよい。
In this embodiment, a method using an ion-exchange resin is employed as a method for performing water treatment in an acidic environment. Instead of such a method, for example, arsenic or selenium is adsorbed on an iron compound to remove it. You may employ the method of aiming.

【0031】また、本実施形態では、排水された水を酸
性環境のまま水処理するようにしたが、必ずしも酸性の
ままで処理する必要はなく、いったんアルカリ性にして
から陰イオン汚染物の分離除去水処理を行うようにして
もよいし、かかる場合、処理水を給水用にリサイクルし
なくてもよい。
In the present embodiment, the drained water is treated in an acidic environment. However, it is not always necessary to treat the discharged water in an acidic environment. Water treatment may be performed, and in such a case, the treated water need not be recycled for water supply.

【0032】また、本実施形態では、陰極を陽極と平行
に対向配置させたが、かかる位置関係に限定されるもの
ではなく、要は陰極が上、陽極が下となりかつその間に
汚染土収容空間が形成されればよい。たとえば、陰極位
置を上述の位置に代えてあるいはこれに加えて側方に設
置してもよい。図4は、図1で説明した陰極4に加え
て、金属板で形成された陰極12を処理槽2の内側に貼
り付けた例を示したものである。かかる構成により、除
染効果がさらに向上する。さらに言えば、処理槽2を鉄
板で構成し、該処理槽2全体を陰極としてもよい。
Further, in the present embodiment, the cathode is disposed so as to be opposed to the anode in parallel. However, the present invention is not limited to such a positional relationship. May be formed. For example, the cathode position may be set laterally instead of or in addition to the above-mentioned position. FIG. 4 shows an example in which a cathode 12 formed of a metal plate is attached to the inside of the processing tank 2 in addition to the cathode 4 described in FIG. With this configuration, the decontamination effect is further improved. Furthermore, the processing tank 2 may be made of an iron plate, and the entire processing tank 2 may be used as a cathode.

【0033】[0033]

【発明の効果】以上述べたように、本発明に係る陰イオ
ン汚染物の除去装置によれば、陰イオン汚染物を効率よ
く汚染土内から回収することができる。
As described above, according to the apparatus for removing anionic contaminants according to the present invention, anionic contaminants can be efficiently recovered from the contaminated soil.

【0034】[0034]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態に係る陰イオン汚染物の除去装置を
示した概略図。
FIG. 1 is a schematic view showing a device for removing anionic contaminants according to an embodiment.

【図2】本実施形態に係る陰イオン汚染物の除去装置の
使用方法を説明したフローチャート。
FIG. 2 is a flowchart illustrating a method of using the anion contaminant removal apparatus according to the embodiment.

【図3】本実施形態の除去装置において通電中の様子を
示した説明図。
FIG. 3 is an explanatory diagram showing a state during energization in the removal apparatus of the embodiment.

【図4】本実施形態の変形例を示した概略図。FIG. 4 is a schematic view showing a modification of the embodiment.

【符号の説明】[Explanation of symbols]

1 除去装置 2 処理槽 3 陽極 4、12 陰極 5 汚染土収容空間 7 散水器(給水手段) 8 排水口 9 透水層 11 汚染土 DESCRIPTION OF SYMBOLS 1 Removal apparatus 2 Processing tank 3 Anode 4, 12 Cathode 5 Contaminated soil accommodation space 7 Sprinkler (water supply means) 8 Drainage port 9 Permeable layer 11 Contaminated soil

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−48827(JP,A) 特開 平5−336842(JP,A) 特開 平7−236879(JP,A) (58)調査した分野(Int.Cl.7,DB名) B09C 1/00 - 1/10 A62D 3/00 E02D 3/11 E21B 43/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-48827 (JP, A) JP-A-5-336842 (JP, A) JP-A-7-236879 (JP, A) (58) Field (Int.Cl. 7 , DB name) B09C 1/00-1/10 A62D 3/00 E02D 3/11 E21B 43/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排水口に連通する透水層を処理槽の底部
近傍に設け、該透水層の上方に陽極を設置するととも
に、陰イオン汚染物を含む汚染土の収容空間を隔てて陰
極を配置し、前記収容空間に給水を行う給水手段を設置
してなり、前記陰極及び陽極を該陰極が上、該陽極が下
となるように配置するとともに、前記陰極側を非排水と
したことを特徴とする陰イオン汚染物の除去装置。
1. A water-permeable layer communicating with a drain port is provided near the bottom of a treatment tank, an anode is provided above the water-permeable layer, and a cathode is provided across a space for containing contaminated soil containing anionic contaminants. A water supply means for supplying water to the accommodation space is provided, and the cathode and the anode are arranged such that the cathode is located above and the anode is located below, and the cathode side is not drained. Anion contaminant removal equipment.
【請求項2】 前記処理槽内の水位が地表面付近かそれ
よりやや高い状態に維持されるように水位計で監視する
ようにした請求項1記載の陰イオン汚染物の除去装置。
2. The anion contaminant removal apparatus according to claim 1, wherein the water level in the treatment tank is monitored by a water level meter so as to be maintained near or slightly higher than the ground surface.
【請求項3】 処理槽内に陽極および陰極を該陰極が上
段になるようにかつそれらの間に陰イオン汚染物を含む
汚染土を収容する収容空間が形成されるようにほぼ平行
に設置し、前記処理槽の底部近傍には前記収容空間に汚
染土が収容されたときにその重量を支持するとともに汚
染土内の水を下方に透過させる透水性支持板を取り付け
て該透水性支持板の上に前記陽極を設置する一方、前記
処理槽の上方には散水器を設置して前記収容空間内の汚
染土に給水できるように構成し、前記処理槽の下部に
は、前記透水性支持板の下側に形成された透水層に連通
する排水口を設けてなり、前記陰極側を非排水としたこ
とを特徴とする陰イオン汚染物の除去装置。
3. An anode and a cathode are installed in a treatment tank substantially parallel to each other so that the cathode is on the upper stage and a storage space for storing contaminated soil containing anion contaminants is formed therebetween. In the vicinity of the bottom of the treatment tank, a water permeable support plate for supporting the weight of the contaminated soil when the contaminated soil is stored in the storage space and permeating the water in the contaminated soil downward is attached. While the anode is installed on the upper side, a sprinkler is installed above the processing tank so that water can be supplied to the contaminated soil in the storage space, and the water permeable support plate is provided at the lower part of the processing tank. A drain port communicating with a water-permeable layer formed underneath, and the cathode side is not drained.
JP04819896A 1996-02-09 1996-02-09 Anion contaminant removal equipment Expired - Fee Related JP3180313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04819896A JP3180313B2 (en) 1996-02-09 1996-02-09 Anion contaminant removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04819896A JP3180313B2 (en) 1996-02-09 1996-02-09 Anion contaminant removal equipment

Publications (2)

Publication Number Publication Date
JPH09215972A JPH09215972A (en) 1997-08-19
JP3180313B2 true JP3180313B2 (en) 2001-06-25

Family

ID=12796695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04819896A Expired - Fee Related JP3180313B2 (en) 1996-02-09 1996-02-09 Anion contaminant removal equipment

Country Status (1)

Country Link
JP (1) JP3180313B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103639181B (en) * 2013-12-13 2015-10-21 华北电力大学 Heating using microwave impressed current anode liquid drip washing strengthening Electroremediation soil system and method
CN104307867B (en) * 2014-09-05 2016-04-20 华北电力大学 The apparatus and method of electric driving method combined degradation bacterium repairing polluted soil are poured on surface
CN111687203A (en) * 2020-07-16 2020-09-22 常州大学 Device and method for remedying heavy metal contaminated soil through light energy-vertical electrokinetic remediation

Also Published As

Publication number Publication date
JPH09215972A (en) 1997-08-19

Similar Documents

Publication Publication Date Title
US6074537A (en) Equipment for electochemical collection removal of ions
JP3178581B2 (en) How to clean contaminated soil
CN110434166B (en) Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method
US6254785B1 (en) Apparatus and process for water treatment
US5865964A (en) Apparatus for stripping ions from concrete and soil
JP3180313B2 (en) Anion contaminant removal equipment
KR100427692B1 (en) system of Electrokinetic soil remediation
JP3214607B2 (en) Electrode placement method for removal of anionic contaminants
JPH115077A (en) Contaminated ground purification system
JP3381764B2 (en) How to clean contaminated soil
JP3180312B2 (en) Concentration control method for removal of anionic contaminants
JP3575544B2 (en) Electrode placement method for removal of anionic contaminants
KR101005262B1 (en) Vertical electrokinetic flushing equipment for a decontamination of radioactive soil
JP3149425B2 (en) Concentration control method for removal of anionic contaminants
JP3610916B2 (en) How to remove anionic contaminants
Brown et al. In situ remediation of metals comes of age
JP3214606B2 (en) How to remove anionic contaminants
JP3214600B2 (en) How to clean contaminated soil
JP3142050B2 (en) Method for removing and cleaning anionic contaminants
KR20060009978A (en) The clean-up and remediation equipment of contaminated ground mixed with cohesionless and cohesive soils by electro flushing reactive pile technology and the method thereof
JPH1034126A (en) Method and apparatus for purifying soil polluted with heavy metal
JP3232494B2 (en) Method for cleaning contaminated soil and cleaning apparatus used in the method
KR102604316B1 (en) Installation facilities of permeable reactive barriers through hybrid groundwater flow control
JP3896048B2 (en) Purification method for contaminated soil
Thomsen et al. Ground Water Remediation Using an Extraction, Treatment, and Recharge System

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010319

LAPS Cancellation because of no payment of annual fees