JP3173242U - Wall structure in buildings - Google Patents

Wall structure in buildings Download PDF

Info

Publication number
JP3173242U
JP3173242U JP2011004996U JP2011004996U JP3173242U JP 3173242 U JP3173242 U JP 3173242U JP 2011004996 U JP2011004996 U JP 2011004996U JP 2011004996 U JP2011004996 U JP 2011004996U JP 3173242 U JP3173242 U JP 3173242U
Authority
JP
Japan
Prior art keywords
heat storage
heat
building
storage body
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011004996U
Other languages
Japanese (ja)
Inventor
今泉太爾
Original Assignee
今泉 太爾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 今泉 太爾 filed Critical 今泉 太爾
Priority to JP2011004996U priority Critical patent/JP3173242U/en
Application granted granted Critical
Publication of JP3173242U publication Critical patent/JP3173242U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

【課題】使用可能な部屋の空間を減少させることなく、建築物内部の熱容量を増大できる、蓄熱効果の高い、建築物の壁構造を提供する。
【解決手段】充填断熱構造の建築物において、部屋と部屋を仕切る間仕切り壁の内部に、潜熱方式の蓄熱材を挿入することにより、冷気や、熱を保持し、室温が変化しないため、人体への不快感を減少させ、効率の良い冷暖房の運転が可能となった。
【選択図】図1
To provide a wall structure of a building having a high heat storage effect and capable of increasing a heat capacity inside the building without reducing a usable room space.
SOLUTION: In a building with a heat insulation structure, by inserting a latent heat type heat storage material inside a partition wall that separates rooms, cold air and heat are maintained, and the room temperature does not change. This makes it possible to reduce the discomfort of the air conditioning and to operate the air conditioner efficiently.
[Selection] Figure 1

Description

本考案は、充填断熱方式の建築物において、間仕切り壁内部に、潜熱方式の蓄熱材を備えることにより、使用可能な部屋の空間を減少させることなく、建築物内部の熱容量を増大できる、蓄熱効果の高い、建築物の壁構造に関する。   The present invention provides a heat storage effect that can increase the heat capacity inside the building without reducing the space in the room that can be used by providing a latent heat type heat storage material inside the partition wall in a building with a heat insulation system. It is related to the wall structure of buildings.

従来の建物には、外気温度が室内空気へ伝達することを防ぐために、断熱材が入っているが、主に建物の外壁、屋根下、床下のみに入れ、各部屋を仕切る、間仕切り壁の中には入れずに空洞とするのが通常であった。
又、近年では、吸放湿を目的とした、間仕切り壁内部への蓄熱材の挿入が行われている。
Conventional buildings have heat insulation to prevent the outside air temperature from being transmitted to room air, but they are mainly placed only on the outside wall, under the roof, and under the floor of the building to partition each room. It was usual to make it hollow without entering.
In recent years, a heat storage material has been inserted into the partition wall for the purpose of moisture absorption and release.

特開2006−70491JP 2006-70491 特開2009−197557JP 2009-197557 A

従来の建物は、背景技術で述べたように、間仕切り壁内部は空洞のままであった。そのため、充填断熱工法で建築された家は、建築物内部の熱容量が不足気味となり、空調設備を運転開始後の効きは早いが、夏場は、空調設備の運転停止後すぐに室温が上がってしまい、逆に冬場の場合は、運転停止後すぐに室温が下がってしまっていた。このため、人体にとっては不快であり、又、再び運転を開始した際には、余分な電力を消費する為、空調設備のランニングコストがかかっていた。
近年評価の上がっている外断熱住宅は、建築物の断熱層内部における構造体自体の熱容量が大きい。特に構造体にコンクリートを用いたRC構造において外断熱が適しているとされているのは、顕熱方式の建築物の中で、コンクリートの熱容量は大きいからである。
しかし、相対変化を伴わない顕熱方式は、素材物質の比熱が小さく、熱容量を増大させるためには、質量の大幅な増大をすることが必要であり、蓄熱量の増大を図ることが難しい。
In the conventional building, as described in the background art, the interior of the partition wall remains hollow. For this reason, houses built with the filled thermal insulation method have a shortage of heat capacity inside the building and are effective immediately after the start of air conditioning equipment operation, but in summer the room temperature rises immediately after the air conditioning equipment operation is stopped. On the contrary, in winter, the room temperature dropped immediately after the shutdown. For this reason, it is uncomfortable for the human body, and when the operation is started again, extra power is consumed, and the running cost of the air conditioning equipment is incurred.
The outer heat insulation house which has been evaluated in recent years has a large heat capacity of the structure itself inside the heat insulation layer of the building. The reason why external heat insulation is particularly suitable for RC structures using concrete as the structure is that the heat capacity of concrete is large among sensible heat buildings.
However, in the sensible heat method without relative change, the specific heat of the material is small, and in order to increase the heat capacity, it is necessary to significantly increase the mass, and it is difficult to increase the amount of stored heat.

課題を解決するための手段は、本願の[実用新案登録請求の範囲]の各請求項に記載の考案である。
実用新案登録請求の範囲、明細書、図面等の用語の解釈上の疑義を解消すべく、以下用語の説明を行うこととする。
<用語の説明>
○断熱材:熱の伝導を抑える目的の材料で、建築材料としても用いられる。
○間仕切り壁:建物の内部をいくつかの部屋に分割するために、仕切りとして設けられた壁。
○充填断熱工法:木造住宅の断熱施工方法のひとつであり、柱などの構造部材間の空間に断熱材を詰め込み、断熱する方法。
○外断熱方式:RC造りなどの構造躯体の外側に断熱層を設ける断熱工法。
木造の場合は、外張断熱と呼んでいる。構造熱橋の発生を少なくすることができ、高断熱化の際にも居住空間を圧迫しない、躯体の熱ストレスが緩和でき、耐久性が増すなど、熱的にはメリットが大きい。
○熱容量:物体の温度を1℃高めるのに必要な熱量。熱量を加えた場合、熱容量が大きい程、温度変化が小さくなる。
○顕熱方式:物質の比熱を利用するもので、最も簡単で、応用範囲が広い方式である。
○潜熱方式:温度変化を伴わずに物質の相を変化させた時の熱量を利用して蓄熱を行う方式。
○RC造:金属の鉄がもつ性質の容易に破断しない粘り強さ(靱性)と引っ張り強度、セメントと骨材である砂及び砂利を水と混ぜたコンクリートがもつ高い圧縮強度を併用した構造の1つで、鉄筋コンクリート構造ともいう。
○相対変化:化合物がある一定温度において、個体から液体、液体から個体へ相変化する事。
○一定の長さ:日本の建築様式における、様々な寸法の間仕切り壁に合わせた任意の寸法。
Means for solving the problem is a device described in each claim of [Utility Model Registration Claim] of the present application.
In order to resolve the doubts regarding the interpretation of terms such as the scope of the utility model registration request, description, drawings, etc., the terms will be explained below.
<Explanation of terms>
○ Insulating material: A material intended to suppress heat conduction, and is also used as a building material.
○ Partition wall: A wall provided as a partition to divide the interior of the building into several rooms.
○ Filling insulation method: One of the insulation construction methods for wooden houses, in which insulation is packed in the space between structural members such as pillars to insulate.
○ Outside heat insulation method: A heat insulation method in which a heat insulation layer is provided on the outside of a structural housing such as an RC structure.
In the case of wooden construction, it is called outer insulation. The generation of structural thermal bridges can be reduced, and there are great thermal advantages such as not stressing the living space even when making high insulation, reducing the thermal stress of the frame, and increasing durability.
○ Heat capacity: The amount of heat required to raise the temperature of an object by 1 ° C. When the amount of heat is applied, the temperature change decreases as the heat capacity increases.
○ Sensible heat method: Utilizes the specific heat of the substance, and is the simplest method with a wide range of applications.
○ Latent heat method: A method of storing heat by using the amount of heat when the phase of a substance is changed without causing a temperature change.
○ RC structure: A structure that combines the properties of metal iron with tenacity (toughness) and tensile strength that do not break easily, and the high compressive strength of cement and aggregate sand and gravel mixed with water. It is also called a reinforced concrete structure.
○ Relative change: A phase change from solid to liquid and from liquid to solid at a certain temperature.
○ Constant length: Arbitrary dimensions according to the partition walls of various dimensions in the Japanese architectural style.

本考案に係る、蓄熱構造は、上記のような特徴的構成要件から編成され、特徴的構成要件に応じた、以下のような本願考案特有の効果を奏する。
また、上記の各考案に応じた、上記のような特徴的構成要件から構成された蓄熱構造によれば、本願考案の課題を十分解消することができた。
○第1の考案の効果
●第1の考案によれば、第1の考案の特徴的な構成要件により、本考案が解決しようとする第1課題(従来の建物は、背景技術で述べたように、間仕切り壁内部は空洞のままであった。そのため、充填断熱工法で建築された家は、建築物内部の熱容量が不足気味となり、空調設備を運転開始後の効きは早いが、夏場は、空調設備の運転停止後すぐに室温が上がってしまい、逆に冬場の場合は、運転停止後すぐに室温が下がってしまっていた。このため、人体にとっては不快であり、又、再び運転を開始した際には、余分な電力を消費する為、空調設備のランニングコストがかかっていた。
近年評価の上がっている外断熱住宅は、建築物の断熱層内部における構造体自体の熱容量が大きい。特に構造体にコンクリートを用いたRC構造において外断熱が適しているとされているのは、顕熱方式の建築物の中で、コンクリートの熱容量は大きいからである。
しかし、相対変化を伴わない顕熱方式は、素材物質の比熱が小さく、熱容量を増大させるためには、質量の大幅な増大をすることが必要であり、蓄熱量の増大を図ることが難しい。)を達成することができ、当業者予測不可能な顕著な効果を奏することができた。
○第2の考案の効果
●第2の考案によれば、第2の考案の特徴的な構成要件により、本考案が解決しようとする第1課題を達成することができ、当業者予測不可能な顕著な効果を奏することができた。
○第3の考案の効果
●第3の考案によれば、第3の考案の特徴的な構成要件により、本考案が解決しようとする第1課題を達成することができ、当業者予測不可能な顕著な効果を奏することができた。
The heat storage structure according to the present invention is organized from the above-described characteristic configuration requirements, and has the following effects specific to the present invention according to the characteristic configuration requirements.
Moreover, according to the heat storage structure comprised from the above characteristic structural requirements according to each said device, the subject of this invention device was fully able to be solved.
○ Effect of the first device
● According to the first device, the first problem to be solved by the present invention due to the characteristic configuration requirements of the first device (in the conventional building, the interior of the partition wall is hollow as described in the background art) As a result, houses built with the filled insulation method have a shortage of heat capacity inside the building and are effective immediately after the start of air conditioning. On the other hand, in winter, the room temperature dropped immediately after the operation was stopped, which is uncomfortable for the human body, and when the operation is started again, an extra time is required. The running cost of the air-conditioning equipment was required to consume the power.
The outer heat insulation house which has been evaluated in recent years has a large heat capacity of the structure itself inside the heat insulation layer of the building. The reason why external heat insulation is particularly suitable for RC structures using concrete as the structure is that the heat capacity of concrete is large among sensible heat buildings.
However, in the sensible heat method without relative change, the specific heat of the material is small, and in order to increase the heat capacity, it is necessary to significantly increase the mass, and it is difficult to increase the amount of stored heat. ) Can be achieved, and a remarkable effect unpredictable by those skilled in the art can be achieved.
○ Effect of the second device ● According to the second device, the first problem to be solved by the present invention can be achieved by the characteristic constitutional requirements of the second device, which cannot be predicted by those skilled in the art. It was possible to achieve a remarkable effect.
○ Effect of the third device ● According to the third device, the first problem to be solved by the present invention can be achieved by the characteristic configuration requirements of the third device, which cannot be predicted by those skilled in the art. It was possible to achieve a remarkable effect.

型枠工法 尺モジュールFormwork method scale module 本考案における蓄熱構造の実施形態Embodiment of heat storage structure in the present invention

本考案では、充填断熱方式の建築物の間仕切り部内に蓄熱体を備えている。
蓄熱体は、一般的に、蓄熱方式の違いにより、顕熱蓄熱体と潜熱蓄熱体に分類される。
顕熱蓄熱体とは、物質そのものの比熱を直接利用するもので、最も簡単で応用範囲の広い方式である。物質としては、コンクリートやセメントモルタルなどが代表的である。
潜熱蓄熱体とは、温度変化を伴わず物質の相を変化させて時の熱量を利用して蓄熱するものであり、畜放熱に伴う相変化中は、温度が一定であるため、室内温度の変化が少ない。
潜熱蓄熱体に使用する物質としては、硫酸ナトリウム水和物、酢酸ナトリウム水和物、チオ硫酸ナトリウム水和物、パラフィンなどが存在する。
硫酸ナトリウム水和物は、融点32.4℃、凝固温度30℃、比熱−/3.3J/g・kという性能を持っている。
酢酸ナトリウム水和物は、融点42℃、凝固温度39.4℃、比熱3.6/2.7J/g・kという性能を持っている。
チオ硫酸ナトリウム水和物は、融点43℃、凝固温度39℃ 2.0/4.2J/g・kとう性能を持っている。
パラフィンは、融点32℃、凝固温度32℃、比熱2.51/−J/g・kという性質を持っている。
ここで熱容量は、一般的にC=mcで表される。
但し、C:熱容量[J/K],m;質量[g],比熱c[J/g・k]とする。
それに対し、顕熱式蓄熱体は、例えば代表的なコンクリートでは、比熱0.88であり、熱容量は、質量が同じ場合、比熱の大きい潜熱方式の方が顕熱方式に比べ遥かに大きい。
本考案では、物資の比熱が大きく、熱容量を増大が可能な潜熱方式を使用している。これにより、優れた蓄熱効果が可能となる。
In this invention, the thermal storage body is provided in the partition part of the building of a thermal insulation system.
Generally, a heat storage body is classified into a sensible heat storage body and a latent heat storage body according to the difference in the heat storage system.
The sensible heat accumulator directly uses the specific heat of the substance itself, and is the simplest and wide application method. Typical materials include concrete and cement mortar.
A latent heat accumulator is a material that changes the phase of a substance without temperature change and stores heat using the amount of heat at the time. There is little change.
Examples of substances used for the latent heat storage body include sodium sulfate hydrate, sodium acetate hydrate, sodium thiosulfate hydrate, and paraffin.
Sodium sulfate hydrate has a melting point of 32.4 ° C., a solidification temperature of 30 ° C., and a specific heat of − / 3.3 J / g · k.
Sodium acetate hydrate has a melting point of 42 ° C., a solidification temperature of 39.4 ° C., and a specific heat of 3.6 / 2.7 J / g · k.
Sodium thiosulfate hydrate has a melting point of 43 ° C. and a solidification temperature of 39 ° C. 2.0 / 4.2 J / g · k.
Paraffin has properties of a melting point of 32 ° C., a solidification temperature of 32 ° C., and a specific heat of 2.51 // J / g · k.
Here, the heat capacity is generally represented by C = mc.
However, C: heat capacity [J / K], m; mass [g], specific heat c [J / g · k].
On the other hand, the sensible heat storage body has a specific heat of 0.88 in, for example, typical concrete, and the heat capacity of the latent heat method having a large specific heat is much larger than that of the sensible heat method when the mass is the same.
In the present invention, a latent heat method is used in which the specific heat of the material is large and the heat capacity can be increased. Thereby, the outstanding heat storage effect is attained.

本考案の第一の実施形態として、図1の4ようにポロプピレンなどで製作された容器に、前記物質を入れた蓄熱体の、接合面を壁側へ向かって円弧状の膨らみを持たせている。これは、石膏ボードを使用した際に、蓄熱体と密着性を良くし、それにより蓄熱効果を上げるためである。このような蓄熱体を図3のように等間隔で縦に複数個、尚且つ複数列配列した蓄熱モジュールとする。前記間隔は、蓄熱体の室内空気との接触面積を最大にし、効率的な蓄熱効果を得るために、10mmピッチ程度が望ましい。又、取付後の蓄熱体と、取付面の部材に対し蓄熱体を跨いで対面の部材との間には、図1の3のように空気層を設けている。これは、表面積を増やすことで、内部静止空気層において対流が起こりやすく、蓄熱体に蓄えられた熱を、空気中に放出し易くするためである。
前記蓄熱モジュールは、様々な寸法、形状の間仕切り壁に対応するため、尺モジュールなどの建築様式に合わせた長さで切断可能なものとする。該一定長さは、様々な寸法、形状をした間仕切り壁に対応する際の、使用のし易さを考慮すると100mm程度が望ましい。前記蓄熱モジュールの左右端には、図3の5の様に、タッカーで固定する事を考慮し、一定幅の7タッカー取付部が設けられている。該タッカー取付部の寸法は、タッカー針の寸法及び固定した後に蓄熱材の重量により破損をしない程度の強度を有する為、幅が25mm〜35mm程度であることが望ましい。更に望ましくは、蓄熱材を複数配列したときの幅を390mm、タッカー取付部を両端に32.5mmずつ設け蓄熱モジュールの全幅を455mmとすると日本の建築様式に合致する。
このような蓄熱モジュールを、建物の間仕切り壁内部に張り詰める。取付方法は、タッカーにて取付部を柱、筋交い等に固定する。
As a first embodiment of the present invention, an arcuate bulge is given to the wall of the heat storage body containing the above substance in a container made of propopylene as shown in FIG. Yes. This is in order to improve the heat storage effect by improving the adhesion to the heat storage body when the gypsum board is used. Such a heat storage body is a heat storage module in which a plurality of such heat storage bodies are arranged vertically at equal intervals and in a plurality of rows. The interval is preferably about 10 mm pitch in order to maximize the contact area of the heat storage body with room air and to obtain an efficient heat storage effect. Further, an air layer is provided as shown in 3 of FIG. 1 between the heat storage body after mounting and the facing member across the heat storage body with respect to the mounting surface member. This is because by increasing the surface area, convection is likely to occur in the internal still air layer, and heat stored in the heat storage body is easily released into the air.
Since the said heat storage module respond | corresponds to the partition wall of various dimensions and shapes, it shall be cut | disconnected by the length match | combined with architectural styles, such as a scale module. The fixed length is preferably about 100 mm in consideration of ease of use when dealing with partition walls having various dimensions and shapes. At the left and right ends of the heat storage module, as shown in 5 of FIG. It is desirable that the width of the tacker mounting portion is about 25 mm to 35 mm because it has a strength that does not cause damage due to the size of the tucker needle and the weight of the heat storage material after fixing. More desirably, the width when the plurality of heat storage materials are arranged is 390 mm, the tacker mounting portions are 32.5 mm at both ends, and the total width of the heat storage module is 455 mm, which matches the Japanese architectural style.
Such a heat storage module is stretched inside the partition wall of the building. As for the mounting method, the mounting part is fixed to a pillar, bracing, etc. with a tucker.

本考案の第二の実施形態を示す。夏季における日中の外気温度が30℃を超える所謂「真夏日」には、空調設備が必需品であり、それなしの生活は、苦痛を伴うものであるが、「真夏日」であっても、日没後の夜間の気温は、26℃以下まで下がることが多い。
そこで、ある一定範囲の温度で相対変化を起こす、潜熱方式の蓄熱体を配列した蓄熱モジュールを、建物2階の間仕切り壁内部に設置する。これにより、夜間の冷気や、安価な深夜電力にて運転した空調設備等によって冷やされた冷気を、間仕切り壁内部の蓄熱材に蓄冷する事で、日中の室内の気温上昇を防止することができ、暑さを緩和することができる。前記ある一定温度は、26℃から28℃であることが望ましいが、地域の気候により様々な温度域が考えられ、状況に応じて様々に設定するものとする。
2 shows a second embodiment of the present invention. In the so-called “midsummer day” when the outdoor temperature in the daytime in summer exceeds 30 ° C., air conditioning equipment is a necessity, and life without it is painful, but even on “midsummer day” The temperature at night after sunset often falls below 26 ° C.
Therefore, a heat storage module in which latent heat type heat storage elements are arranged that cause a relative change at a certain range of temperature is installed inside the partition wall of the second floor of the building. As a result, it is possible to prevent the temperature rise in the room during the day by storing cold air at night or by air-conditioning equipment operated with inexpensive late-night power in the heat storage material inside the partition wall. Yes, it can alleviate the heat. The certain temperature is preferably 26 ° C. to 28 ° C., but various temperature ranges are conceivable depending on the local climate, and are set variously according to the situation.

本考案の第三の実施形態として、冬季においては、外気温度の低下に伴った、室内の気温の低下が生じる。特に断熱層内の熱容量の少ない木造・鉄筋コンクリート住宅においては、外出時にそれまで運転をしていた暖房器具の運転を停止し、一定時間経過後に帰宅した際には、他の部屋の室温により熱が伝わり、室内温度が著しく下がってしまう。
そこで、前記第二の実施形態より低い、ある一定温度で相対変化を起こす潜熱方式の蓄熱体を間仕切り壁内部に設置する。これにより、太陽熱や、暖房、生活排熱、安価な深夜電力による暖房等によって取得した熱エネルギーを蓄熱することで、冬季は室内温度の低下を緩和でき、夏季には熱エネルギーの蓄熱を行わないため、室内気温に影響を与えない。第三の実施形態における蓄熱体が相対変化を起こす一定温度は、15℃〜20℃程度が望ましいが、地域の気候により様々な温度域が考えられ、状況に応じて様々に設定するものとする。
As a third embodiment of the present invention, in winter, the indoor air temperature decreases with a decrease in the outside air temperature. Especially in wooden and reinforced concrete houses with a small heat capacity in the heat insulation layer, when the heaters that had been in operation were stopped when going out and returned home after a certain period of time, the heat was generated by the room temperature of the other rooms. The room temperature drops significantly.
Therefore, a latent heat type heat storage body that causes a relative change at a certain constant temperature, which is lower than in the second embodiment, is installed inside the partition wall. As a result, thermal energy acquired by solar heat, heating, waste heat from living, heating by cheap late-night electricity, etc. can be stored, so that the decrease in indoor temperature can be mitigated in winter, and thermal energy is not stored in summer. Therefore, the room temperature is not affected. The constant temperature at which the heat storage body in the third embodiment undergoes a relative change is preferably about 15 ° C. to 20 ° C., but various temperature ranges are conceivable depending on the local climate, and are set variously according to the situation. .

本考案の第四の実施形態として、通常建築物における室内気温は、高い階の方が低い階に比べて室内気温が高くなる。これは、暖かい空気は高度の高い方へ、逆に冷たい空気は、高度の低い方へ自然と流れる為である。特に夏季においては、この空気の流れの影響により上の方の階の室内気温は、著しく上昇し、非常に不快な空間となってしまう。そこで、高い階の間仕切り壁内部に、比較的高い気温で相対変化を起こす潜熱方式の蓄熱体を設置し、夜間の冷気や安価な深夜電力にて運転した空調設備などによって冷やされた冷気を高い階に蓄冷し、それによって日中の室内気温上昇による暑さを緩和し、高い階で蓄冷した冷気を、低い階にも穏やかに降下させることができる。 As a fourth embodiment of the present invention, the room temperature in a normal building is higher on a higher floor than on a lower floor. This is because warm air naturally flows toward higher altitudes, whereas cold air naturally flows toward lower altitudes. Especially in the summer, the indoor air temperature on the upper floor rises remarkably due to the influence of this air flow, and it becomes a very uncomfortable space. Therefore, a latent heat type heat accumulator that causes a relative change at a relatively high temperature is installed inside the partition wall of the higher floor, and the cold air that is cooled by night air or air conditioning equipment that is operated with inexpensive late-night power is high. By storing cold on the floor, it can alleviate the heat caused by rising indoor temperature during the daytime, and the cool air stored on the higher floor can be gently lowered to the lower floor.

又、低い階に関しては、上の方の階で使用する蓄熱体よりも低い温度で相対変化を起こす潜熱方式の蓄熱体を間仕切り壁内部に設置する。これにより、太陽熱や生活排熱、暖気を蓄熱する事により、夜間の外気温度低下に伴う室内気温の低下や、暖房機器の運転を停止した後の室内気温低下を緩和することができる。
ここで、例えばニ階建ての建築物の場合、二階の間仕切り壁内に設置する蓄熱体の相対変化を起こす温度は26℃〜28℃程度が望ましい。これに対し、一階には、16℃〜20℃で相対変化する蓄熱体を設置することが望ましいが、地域の気候により様々な温度域が考えられ、状況に応じて様々に設定するものとする。
For the lower floor, a latent heat type heat storage body that causes a relative change at a lower temperature than the heat storage body used in the upper floor is installed inside the partition wall. Thereby, by storing solar heat, daily exhaust heat, and warm air, it is possible to mitigate a decrease in indoor air temperature due to a decrease in the outside air temperature at night and a decrease in indoor air temperature after the operation of the heating device is stopped.
Here, for example, in the case of a two-story building, the temperature causing the relative change of the heat storage body installed in the partition wall on the second floor is preferably about 26 ° C to 28 ° C. On the other hand, on the first floor, it is desirable to install a heat storage body that changes relatively between 16 ° C and 20 ° C. However, various temperature ranges are conceivable depending on the local climate, and various settings may be made according to the situation. To do.

本考案の第五の実施形態として、暖房器具の暖気を蓄熱する比較的低温で相対変化する潜熱方式の蓄熱体、空調設備の冷気を蓄冷する比較的高温で相対変化する2種類の蓄熱体を、1つのモジュールに交互に配置したモジュールを間仕切り壁内部に設置する。これにより、一戸建ての建築物を始め、マンションやビルなどでもフロア単位で蓄冷及び畜熱による室内温度環境の安定化や、安価な深夜電力を活用した畜冷や畜熱を行うことができる。
第五の実施形態のおける前記比較的低温は、18℃〜20℃程度、前記比較的高温は、26℃〜28℃程度が望ましいが、地域の気候により様々な温度域が考えられ、状況に応じて様々に設定するものとする。
As a fifth embodiment of the present invention, a latent heat type heat storage body that relatively changes at a relatively low temperature for storing warm air of a heating appliance, and two types of heat storage bodies that relatively change at a relatively high temperature for storing cold air in an air conditioner are provided. Modules arranged alternately in one module are installed inside the partition wall. This makes it possible to stabilize indoor temperature environment by cold storage and livestock heat in units of floors, including single-family buildings, condominiums, buildings, etc., and livestock cooling and livestock heat using inexpensive late-night power.
In the fifth embodiment, the relatively low temperature is preferably about 18 ° C. to 20 ° C., and the relatively high temperature is preferably about 26 ° C. to 28 ° C., but various temperature ranges may be considered depending on the local climate. Various settings will be made accordingly.

1……構造木材
2……石膏ボード(構造用合板)
3……空気層
4……蓄熱体
5……ベース
6……畜熱材
7……タッカー取付部
1 …… Structural wood 2 …… Gypsum board (plywood for construction)
3 ... Air layer 4 ... Heat storage body 5 ... Base 6 ... Heat storage material 7 ... Tucker mounting part

Claims (3)

建築物を構造的に支える基礎・土台・柱・梁の構造部材並びに屋根・外壁・断熱層を具備する屋根体・壁体から構成され、前記建築物内の間仕切壁内部に、熱容量の大きい潜熱方式による蓄熱体を備えることにより、前記断熱層を含んで構成された建物内部に一定の熱容量を確保し、前記蓄熱体は、複数個の蓄熱体を固定可能な面積を有するベースに等間隔で小分けに取り付けられた蓄熱モジュールであり、前記蓄熱モジュールは、一定の長さで切断して使用することができることを特徴とした、建築物の壁構造及びそれを利用し建築物。 Latent heat with large heat capacity inside the partition wall in the building, which is composed of structural members such as foundations, foundations, pillars and beams that structurally support the building, and roofs and walls with roofs, outer walls, and heat insulation layers. By providing a heat storage body by a method, a certain heat capacity is secured inside the building configured to include the heat insulation layer, and the heat storage body is equidistant to a base having an area where a plurality of heat storage bodies can be fixed. A heat storage module mounted in a subdivision, wherein the heat storage module can be cut and used at a certain length, and a building wall structure and a building using the same. 前記蓄熱モジュールは、ベース左右端に取付部を備え、取付手段により、容易に固定可能であり前記蓄熱体は、取付け面を蓄熱対の中心とは反対方向に円弧状とし、前記蓄熱体と石膏ボードなどの表面材との接合部の密着性を高めることで蓄熱効果を高め、前記蓄熱体と、蓄熱体取付面の対面の部材との間には、内部静止空気層において対流が起こりやすい間隔を設けた事を特徴とした、請求項1に記載の建築物の壁構造及びそれを利用した建築物。 The heat storage module includes mounting portions on the left and right ends of the base, and can be easily fixed by mounting means. The heat storage body has an attachment surface in an arc shape in a direction opposite to the center of the heat storage pair, and the heat storage body and gypsum The heat storage effect is enhanced by increasing the adhesion of the joint with the surface material such as a board, and the convection between the heat storage body and the facing member of the heat storage body mounting surface is likely to occur in the internal still air layer. The building wall structure according to claim 1, and a building using the same. 前期蓄熱モジュールは、例えば高低差のある2〜3階建ての戸建住宅の場合、
2〜3Fに相対変化温度の高い蓄冷体を配置して冷気を下降させ、1Fに相対変化温度の低い蓄熱体を配置することで、家全体の温度変化を緩和したり、ワンフロアで高低差の無い場合には、冬の日当たりが良く暑くなる場所に相対変化温度の低い蓄熱体を配置し、吸気口付近などの寒くなる場所には相対変化温度の高い蓄熱体を配置する、又は少なくとも2種類の相対変化温度の異なる蓄熱体を1つのモジュールに交互に配置したことを特徴とする、請求項1〜2の何れかに記載の、建築物の壁構造及びそれを利用した建築物。











For example, in the case of a two-story detached house with a difference in height,
By placing a cool storage body with a high relative change temperature on 2-3F and lowering the cool air, and placing a heat storage body with a low relative change temperature on 1F, the temperature change of the whole house can be alleviated, If there is not, place a heat storage body with a low relative change temperature in a place where it gets hot and sunny in winter, and place a heat storage body with a high relative change temperature in a cold place such as near the inlet, or at least two types The wall structure of a building according to any one of claims 1 and 2, and a building using the same, wherein heat storage bodies having different relative change temperatures are alternately arranged in one module.











JP2011004996U 2011-08-26 2011-08-26 Wall structure in buildings Expired - Fee Related JP3173242U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011004996U JP3173242U (en) 2011-08-26 2011-08-26 Wall structure in buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004996U JP3173242U (en) 2011-08-26 2011-08-26 Wall structure in buildings

Publications (1)

Publication Number Publication Date
JP3173242U true JP3173242U (en) 2012-02-02

Family

ID=48000511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004996U Expired - Fee Related JP3173242U (en) 2011-08-26 2011-08-26 Wall structure in buildings

Country Status (1)

Country Link
JP (1) JP3173242U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110489835A (en) * 2019-08-05 2019-11-22 安徽建筑大学 Gravity-flow ventilation and wall accumulation of heat coupled simulation method based on Ansys software
CN113864858A (en) * 2021-09-24 2021-12-31 长江勘测规划设计研究有限责任公司 Intelligent household energy consumption system based on flexible energy storage mode and control method thereof
CN114703981A (en) * 2022-04-02 2022-07-05 中建中原建筑设计院有限公司 A multi-functional energy-concerving and environment-protective wall for building

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110489835A (en) * 2019-08-05 2019-11-22 安徽建筑大学 Gravity-flow ventilation and wall accumulation of heat coupled simulation method based on Ansys software
CN110489835B (en) * 2019-08-05 2022-10-28 安徽建筑大学 Natural ventilation and wall heat storage coupling simulation method based on Ansys software
CN113864858A (en) * 2021-09-24 2021-12-31 长江勘测规划设计研究有限责任公司 Intelligent household energy consumption system based on flexible energy storage mode and control method thereof
CN114703981A (en) * 2022-04-02 2022-07-05 中建中原建筑设计院有限公司 A multi-functional energy-concerving and environment-protective wall for building

Similar Documents

Publication Publication Date Title
Song et al. Review on building energy performance improvement using phase change materials
Tyagi et al. Phase change material based advance solar thermal energy storage systems for building heating and cooling applications: A prospective research approach
Rodriguez-Ubinas et al. Applications of phase change material in highly energy-efficient houses
Kenisarin et al. Passive thermal control in residential buildings using phase change materials
Pasupathy et al. Phase change material-based building architecture for thermal management in residential and commercial establishments
Castell et al. Experimental study of using PCM in brick constructive solutions for passive cooling
Stovall et al. What are the potential benefits of including latent storage in common wallboard?
Alam et al. Energy saving potential of phase change materials in major Australian cities
Vautherot et al. Analysis of energy requirements versus comfort levels for the integration of phase change materials in buildings
Bimaganbetova et al. Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region
Lu et al. A review of PCM energy storage technology used in buildings for the global warming solution
EP2089661B1 (en) Low energy consumption climate control system
Kośny et al. Short history of PCM applications in building envelopes
JP2010223522A (en) Floor heating system and heat storage unit
Kendrick et al. Removing unwanted heat in lightweight buildings using phase change materials in building components: simulation modelling for PCM plasterboard
Pasupathy et al. Phase Change Material Based ThermalStorage for Energy Conservation inBuilding Architecture
Madhumathi et al. Experimental study of passive cooling of building facade using phase change materials to increase thermal comfort in buildings in hot humid areas
Bruno Using Phase Change Materials (PDMs) for Space Heating and Cooling in Buildings
JP3173242U (en) Wall structure in buildings
Cabeza et al. Thermal energy storage systems for cooling in residential buildings
JP5349951B2 (en) Energy saving building structure
Cabeza et al. Thermal energy storage (TES) systems for cooling in residential buildings
WO2013054136A2 (en) A wall structure
JP2010156170A5 (en)
Bourdakis et al. Night time cooling by ventilation or night sky radiation combined with in-room radiant cooling panels including Phase Change Materials

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees