JP3173057B2 - Absorption heat pump - Google Patents

Absorption heat pump

Info

Publication number
JP3173057B2
JP3173057B2 JP23096391A JP23096391A JP3173057B2 JP 3173057 B2 JP3173057 B2 JP 3173057B2 JP 23096391 A JP23096391 A JP 23096391A JP 23096391 A JP23096391 A JP 23096391A JP 3173057 B2 JP3173057 B2 JP 3173057B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
evaporator
condenser
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23096391A
Other languages
Japanese (ja)
Other versions
JPH0545020A (en
Inventor
教之 西山
邦男 安沢
隆夫 巻渕
覧二 大江
澄雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tokyo Gas Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23096391A priority Critical patent/JP3173057B2/en
Publication of JPH0545020A publication Critical patent/JPH0545020A/en
Application granted granted Critical
Publication of JP3173057B2 publication Critical patent/JP3173057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷/暖房運転などに使
用する吸収ヒートポンプに係わり、特に詳しくは冷水と
高温水を同時に取り出すことのできる吸収ヒートポンプ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump used for cooling / heating operation, and more particularly to an absorption heat pump capable of simultaneously taking out cold water and high-temperature water.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプ装置として
は、例えば特開昭58−60172号公報に提案された
装置が知られている。ここに提案されたヒートポンプ装
置は単効用機器を2台組み合わせ、2つの独立したサイ
クルを熱媒を介して接続させることにより冷水と温水と
を同時に取り出し可能としたものであるが、装置全体が
大きくコンパクト化を図るのが困難であると云う問題が
あった。
2. Description of the Related Art Conventionally, as this type of heat pump device, for example, a device proposed in Japanese Patent Application Laid-Open No. 58-60172 is known. The heat pump device proposed here combines two single-effect devices and connects two independent cycles via a heating medium so that cold water and hot water can be taken out at the same time. There is a problem that it is difficult to achieve compactness.

【0003】[0003]

【発明が解決しようとする課題】したがって、本発明は
従来2台の吸収ヒートポンプにより行われていた冷水と
温水の同時供給を、1台の吸収ヒートポンプで行うこと
によりシステムのコンパクト化を図ろうとするものであ
る。
Accordingly, the present invention seeks to reduce the size of the system by simultaneously supplying cold water and hot water, which has been conventionally performed by two absorption heat pumps, by using one absorption heat pump. Things.

【0004】[0004]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するためになされたもので、高温再生器、低
温再生器、第一凝縮器、第二凝縮器、第一蒸発器、第二
蒸発器、第一吸収器、第二吸収器、高温熱交換器、低温
熱交換器とからなり、吸収液管路を第一吸収器の稀液が
低温熱交換器を経て低温再生器に流入したのち高温熱交
換器を経て高温再生器に流入し、冷媒を蒸発分離して濃
縮された濃液が高温熱交換器を経て第二吸収器に流入し
たのち低温熱交換器を経て第一吸収器に還流可能に設
け、冷媒管路を高温再生器で生成した冷媒蒸気の一部が
低温再生器を経て第一凝縮器に流入したのち第一蒸発器
に流入すると共に、前記生成冷媒蒸気の残部が第二凝縮
器に直接流入したのち第二蒸発器に流入可能に設け、中
間温水管路を下水処理水、河川水などが第一吸収器、第
一凝縮器、第二蒸発器を経て下水、河川などに排水可能
に設け、第一蒸発器の内部に導いた冷水管路から冷水を
取り出し、第二吸収器、第二凝縮器の順に設けた高温水
管路から高温水を取り出すことを特徴とする吸収ヒート
ポンプであり、低温熱交換器から低温再生器に至る吸収
液管路と、高温熱交換器から第二吸収器に至る吸収液管
路との間に、中温熱交換器を設けた吸収ヒートポンプで
あり、第二凝縮器から第二蒸発器に至る冷媒管路と、第
一凝縮器から第二蒸発器に至る中間温水管路との間に、
冷媒中間温水熱交換器を設けた吸収ヒートポンプであ
り、第二凝縮器から第二蒸発器に至る冷媒管路と、稀液
の一部を第一吸収器から低温再生器に直接流入可能に設
けた吸収液管路との間に、ドレン熱交換器を設けた吸収
ヒートポンプである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and comprises a high-temperature regenerator, a low-temperature regenerator, a first condenser, a second condenser, a first evaporator, It consists of a second evaporator, a first absorber, a second absorber, a high-temperature heat exchanger, and a low-temperature heat exchanger. After flowing into the high-temperature regenerator through the high-temperature heat exchanger, the concentrated liquid concentrated by evaporating and separating the refrigerant flows into the second absorber through the high-temperature heat exchanger, and then flows through the low-temperature heat exchanger. A part of the refrigerant vapor generated by the high-temperature regenerator is provided to the first condenser through the low-temperature regenerator, and then flows into the first evaporator, and then the refrigerant is generated. After the remainder of the steam flows directly into the second condenser, it is provided so that it can flow into the second evaporator. Water, river water, etc. are provided so that they can be drained to sewage, rivers, etc. through the first absorber, first condenser, second evaporator, and chilled water is taken out from the chilled water pipeline led inside the first evaporator. An absorption heat pump characterized in that high-temperature water is taken out from a high-temperature water line provided in the order of two absorbers and a second condenser, an absorption liquid line from a low-temperature heat exchanger to a low-temperature regenerator, and a high-temperature heat exchanger. Between the absorption liquid pipeline leading to the second absorber, the intermediate heat exchanger is provided, the refrigerant pipeline from the second condenser to the second evaporator, and the first condenser from the first condenser Between the intermediate hot water pipeline leading to the two evaporators,
It is an absorption heat pump provided with a refrigerant intermediate-temperature water heat exchanger, provided with a refrigerant line from the second condenser to the second evaporator, and a part of the diluted liquid that can flow directly from the first absorber to the low-temperature regenerator. An absorption heat pump provided with a drain heat exchanger between the absorption heat pipe.

【0005】[0005]

【作用】請求項1に係わる吸収ヒートポンプにおいて
は、吸収液は第二吸収器と第一吸収器とで冷媒を吸収し
て2段階に希釈され、低温再生器と高温再生器とで冷媒
蒸気を発生分離して濃縮される。また、高温再生器で蒸
発分離された冷媒は第二凝縮器と低温再生器とに所定の
比率で流入し、第二凝縮器の冷媒は第二蒸発器に、低温
再生器の冷媒は第一凝縮器を経て第一蒸発器に流入して
いるので、第二吸収器、第二凝縮器の順に配管された高
温水管路を流れる水(温水)は、第二吸収器においては
吸収液が冷媒を吸収する際に生じる熱により加熱され、
第二凝縮器においては高温再生器から供給される冷媒蒸
気によりさらに加熱されて高温水となり暖房負荷などに
供される。他方、第一蒸発器においては第一凝縮器を経
由して流入した冷媒が蒸発する際の気化熱によって冷水
管路が冷却されるため、この冷水管路からは冷水を供給
することが可能である。したがって、1台の吸収ヒート
ポンプにより冷水と温水とを同時に供給することができ
る。
In the absorption heat pump according to the first aspect, the absorption liquid absorbs the refrigerant in the second absorber and the first absorber and is diluted in two stages, and the refrigerant vapor is discharged in the low-temperature regenerator and the high-temperature regenerator. Generated, separated and concentrated. Further, the refrigerant evaporated and separated by the high-temperature regenerator flows into the second condenser and the low-temperature regenerator at a predetermined ratio, the refrigerant of the second condenser is supplied to the second evaporator, and the refrigerant of the low-temperature regenerator is supplied to the first condenser. Since the water flows into the first evaporator via the condenser, the water (hot water) flowing through the high-temperature water pipe which is piped in the order of the second absorber and the second condenser receives the refrigerant in the second absorber as a refrigerant. Heated by the heat generated when absorbing
In the second condenser, the refrigerant is further heated by the refrigerant vapor supplied from the high-temperature regenerator to become high-temperature water and supplied to a heating load or the like. On the other hand, in the first evaporator, since the chilled water pipe is cooled by the heat of vaporization when the refrigerant flowing through the first condenser evaporates, it is possible to supply chilled water from the chilled water pipe. is there. Therefore, cold water and hot water can be supplied simultaneously by one absorption heat pump.

【0006】請求項2に係わる吸収ヒートポンプにおい
ては、第一吸収器から吐出した稀液は低温熱交換器に続
いて中温熱交換器においても加熱されて低温再生器に流
入するため、低温再生器(および高温再生器)での冷媒
蒸気の分離が効率が良く行われる。また、高温再生器か
ら吸収液管路に吐出した濃液は高温熱交換器と中温熱交
換器において二度に渡って熱交換され、より低温の状態
になって第二吸収器に流入するため、エリミネータを介
して隣接する第二蒸発器で蒸発する冷媒蒸気を盛んに吸
収して発熱し、高温水管路を流れる温水を一層効率良く
加熱する。
In the absorption heat pump according to the second aspect, the diluted liquid discharged from the first absorber is also heated in the medium-temperature heat exchanger after the low-temperature heat exchanger and flows into the low-temperature regenerator. (And the high-temperature regenerator) efficiently separates the refrigerant vapor. In addition, the concentrated liquid discharged from the high-temperature regenerator into the absorption liquid pipe is subjected to heat exchange twice in the high-temperature heat exchanger and the medium-temperature heat exchanger, and then flows into the second absorber at a lower temperature. The refrigerant vapor which evaporates in the adjacent second evaporator via the eliminator is actively absorbed to generate heat, thereby heating the hot water flowing through the high-temperature water pipe more efficiently.

【0007】請求項3に係わる吸収ヒートポンプにおい
ては、第二凝縮器から第二蒸発器に流入する冷媒が冷媒
中間温水熱交換器で低温熱源水である中間温水と熱交換
して冷却され、第二蒸発器で冷媒が温度降下するのに必
要な自己フラッシュ量が減少するため冷媒の有効利用が
促進され、高温水管路を流れる温水が効果的に加熱され
る。
[0007] In the absorption heat pump according to the third aspect, the refrigerant flowing from the second condenser to the second evaporator is cooled by exchanging heat with the intermediate hot water as the low-temperature heat source water in the refrigerant intermediate hot water heat exchanger. Since the amount of self-flash required for the refrigerant to drop in temperature in the two evaporators is reduced, the effective use of the refrigerant is promoted, and the hot water flowing through the high-temperature water pipe is effectively heated.

【0008】請求項4に係わる吸収ヒートポンプにおい
ては、第一吸収器から低温再生器に直接流入する一部の
稀液がドレン熱交換器で高温の冷媒により加熱され、低
温再生器(および高温再生器)に高温になって流入する
ため、冷媒を蒸発分離する効率が向上し、第二凝縮器か
ら第二蒸発器に流入する冷媒は逆に熱を奪われて温度が
低下し、冷媒が温度降下するのに必要な自己フラッシュ
量が減少するため冷媒の有効利用が促進され、高温水管
路を流れる温水が効果的に加熱される。
In the absorption heat pump according to the fourth aspect, a part of the rare liquid flowing directly from the first absorber into the low-temperature regenerator is heated by the high-temperature refrigerant in the drain heat exchanger, and the low-temperature regenerator (and the high-temperature regeneration) is produced. The refrigerant flowing into the second evaporator at a high temperature increases the efficiency of evaporating and separating the refrigerant. The refrigerant flowing from the second condenser to the second evaporator, on the contrary, loses its heat and its temperature decreases, and Since the amount of self-flash required for descending is reduced, the effective use of the refrigerant is promoted, and the hot water flowing through the high-temperature water pipe is effectively heated.

【0009】[0009]

【実施例】図中1aは高温再生器、1bは低温再生器、
2aは第一凝縮器、2bは第二凝縮器、3aは第一蒸発
器、3bは第二蒸発器、4aは第一吸収器、4bは第二
吸収器、5aは高温熱交換器、5bは低温熱交換器であ
り、何れも従来周知のものと変わるものではなく、以下
に記すように配管接続される他、特に記載しない限り、
従来システムと同様全ての機器が順調に機能するように
接続される。
1a is a high-temperature regenerator, 1b is a low-temperature regenerator,
2a is a first condenser, 2b is a second condenser, 3a is a first evaporator, 3b is a second evaporator, 4a is a first absorber, 4b is a second absorber, 5a is a high-temperature heat exchanger, 5b Is a low-temperature heat exchanger, none of which is the same as conventionally known ones, other than being connected by piping as described below, unless otherwise specified,
As in the conventional system, all devices are connected so as to function smoothly.

【0010】(実施例1)図1に示した吸収ヒートポン
プにおいては、吸収液管路6が第一吸収器4aで冷媒を
吸収して濃度の低下した吸収液(稀液)を低温熱交換器
5bを経て低温再生器1bに流入し、さらに高温熱交換
器5aを経て高温再生器1aに流入し、冷媒を蒸発分離
して濃縮された吸収液(濃液)を高温熱交換器5aを経
て第二吸収器4bに流入し、さらに低温熱交換器5bを
経て第一吸収器4aに還流可能に配管接続されている。
P1、P2、P3は、吸収液管路6のそれぞれの位置に
設置された、吸収液を循環させるためのポンプである。
(Embodiment 1) In the absorption heat pump shown in FIG. 1, an absorption liquid line 6 absorbs a refrigerant in a first absorber 4a and converts an absorption liquid (dilute liquid) whose concentration is reduced to a low-temperature heat exchanger. 5b, flows into the low-temperature regenerator 1b, passes through the high-temperature heat exchanger 5a, flows into the high-temperature regenerator 1a, and evaporates and separates the refrigerant, and concentrates the absorbed liquid (concentrated liquid) through the high-temperature heat exchanger 5a. It flows into the second absorber 4b, and is further connected to the first absorber 4a via a low-temperature heat exchanger 5b so as to be able to return to the first absorber 4a.
P1, P2, and P3 are pumps for circulating the absorbing liquid, which are installed at respective positions of the absorbing liquid pipeline 6.

【0011】高温再生器1aにおいて発生分離した冷媒
蒸気の一部が低温再生器1bを経由して第一凝縮器2a
に流入したのち第一蒸発器3aに流入可能に、また、前
記生成した冷媒蒸気の残部が第二凝縮器2bに直接流入
したのち第二蒸発器3bに流入可能に冷媒管路7が配管
接続されている。
A part of the refrigerant vapor generated and separated in the high-temperature regenerator 1a passes through the low-temperature regenerator 1b to the first condenser 2a.
Is connected to the first evaporator 3a, and the remainder of the generated refrigerant vapor directly flows into the second condenser 2b, and then flows into the second evaporator 3b. Have been.

【0012】下水処理水、河川水などを第一吸収器4
a、第一凝縮器2a、第二蒸発器3bの順に経由して、
下水、河川などに排水することができるように中間温水
管路8が配管接続されている。
Sewage treatment water, river water, etc.
a, the first condenser 2a and the second evaporator 3b in this order,
An intermediate hot water pipe 8 is connected by piping so that it can be drained to sewage, river, or the like.

【0013】そして、第一蒸発器3aの内部に導かれて
蒸発する冷媒の気化熱によって冷却されるように、冷水
管路9が第一蒸発器3aの内部を通って配管されてい
る。このため、冷水管路9の吐出側から冷水の取り出し
が可能である。
[0013] A chilled water pipe 9 is piped through the inside of the first evaporator 3a so as to be cooled by the heat of vaporization of the refrigerant that is introduced into the first evaporator 3a and evaporated. Therefore, it is possible to take out cold water from the discharge side of the cold water pipe 9.

【0014】また、第二吸収器4b、第二凝縮器2bの
順に高温水管路10が配管され、第二吸収器4bにおい
ては高温再生器1aから供給された濃液が冷媒を吸収す
る際に生じる熱により、また第二凝縮器2bにおいては
高温再生器1aから供給される高温の冷媒蒸気によって
それぞれ加熱されるため、高温水管路10の吐出側から
高温水の取り出しが可能である。
A high-temperature water pipe 10 is provided in the order of the second absorber 4b and the second condenser 2b. In the second absorber 4b, when the concentrated liquid supplied from the high-temperature regenerator 1a absorbs the refrigerant. Since the second condenser 2b is heated by the high-temperature refrigerant vapor supplied from the high-temperature regenerator 1a in the second condenser 2b, high-temperature water can be taken out from the discharge side of the high-temperature water pipe 10.

【0015】上記構成になる吸収ヒートポンプの運転に
おいては、冷水管路9の第一蒸発器3a吐出側から例え
ば7℃の冷水が取り出され、高温水管路10の水(温
水)が第二吸収器4bにおいて加熱される。
In the operation of the absorption heat pump having the above structure, for example, cold water of 7 ° C. is taken out from the discharge side of the first evaporator 3 a of the cold water pipe 9, and the water (hot water) of the high temperature water pipe 10 is supplied to the second absorber. Heated at 4b.

【0016】ここで NE1;第一蒸発器3aにおける冷媒蒸発量 NE2;第二蒸発器3bにおける冷媒蒸発量 NLG;低温再生器1bにおける冷媒蒸発量 nC1;低温再生器1bを経て第一凝縮器に導かれる冷媒
蒸気量 nC2;低温再生器1bを経て第二凝縮器に導かれる冷媒
蒸気量 NE1:NE2=2:1と仮定すれば、 NLG+nC1=NE1、nC2=NE2、NLG=4/6・nC1 なる関係があるので、 NE1:NE2=10/6・nC1:nC2=2:1 ∴nC1/nC2=6/5 したがって、高温再生器1aで生成する冷媒蒸気は、低
温再生器1bと第二凝縮器2bとに6:5の比率で流入
する。このため、高温水管路10を流れる温水は第二凝
縮器2bでさらに加熱され、給湯・暖房などに供される
(例えば、第二吸収器4bに60℃で流入する時、80
℃の高温水が供給可能)。したがって、1台の吸収ヒー
トポンプから冷水と高温水とを同時に取り出すことがで
きる。
Where NE1A refrigerant evaporation amount N in the first evaporator 3a;E2A refrigerant evaporation amount N in the second evaporator 3b;LGA refrigerant evaporation amount n in the low-temperature regenerator 1b;C1A refrigerant guided to the first condenser through the low-temperature regenerator 1b
Steam amount nC2A refrigerant guided to the second condenser via the low-temperature regenerator 1b
Steam amount NE1: NE2= 2: 1 then NLG+ NC1= NE1, NC2= NE2, NLG= 4/6 · nC1  NE1: NE2= 10/6 · nC1: NC2= 2: 1 ∴nC1/ NC2= 6/5 Therefore, the refrigerant vapor generated in the high temperature regenerator 1a is low.
Flow into the warm regenerator 1b and the second condenser 2b at a ratio of 6: 5
I do. Therefore, the hot water flowing through the high-temperature water pipe 10
It is further heated by the compressor 2b and is used for hot water supply, heating, etc.
(For example, when flowing into the second absorber 4b at 60 ° C., 80
℃ high-temperature water can be supplied). Therefore, one absorption heater
Cold water and high-temperature water at the same time
Wear.

【0017】(実施例2)図2は、図1に示した吸収ヒ
ートポンプの低温熱交換器5bから低温再生器1bに至
る吸収液管路6と、高温熱交換器5aから第二吸収器4
bに至る吸収液管路6との間に、中温熱交換器5cを設
けた吸収ヒートポンプの例である。
(Embodiment 2) FIG. 2 shows an absorption liquid line 6 from the low-temperature heat exchanger 5b to the low-temperature regenerator 1b of the absorption heat pump shown in FIG.
This is an example of an absorption heat pump provided with a medium-temperature heat exchanger 5c between the absorption heat pipe 6 and the absorption liquid pipe 6 leading to b.

【0018】この実施例においては、第一吸収器4aか
ら吐出された稀液は低温熱交換器5bに続いて中温熱交
換器5cでも加熱されて低温再生器1bに流入するの
で、低温再生器1b(および高温再生器1a)での冷媒
蒸気の分離が効率が良く行われる。また、高温再生器1
aから吸収液管路6に吐出された濃液は高温熱交換器5
aと中温熱交換器5cにより二段に熱交換され、より低
温の状態になって第二吸収器4bに流入するため、エリ
ミネータを介して隣接する第二蒸発器3bで蒸発する冷
媒蒸気を盛んに吸収して発熱し、高温水管路10を流れ
る温水を一層効率良く加熱することができる。
In this embodiment, the diluted liquid discharged from the first absorber 4a is also heated by the medium-temperature heat exchanger 5c following the low-temperature heat exchanger 5b and flows into the low-temperature regenerator 1b. 1b (and the high temperature regenerator 1a) efficiently separates the refrigerant vapor. In addition, high temperature regenerator 1
The concentrated liquid discharged into the absorbent line 6 from the high temperature heat exchanger 5
a and the middle-temperature heat exchanger 5c exchanges heat in two stages, and flows into the second absorber 4b at a lower temperature, so that the refrigerant vapor evaporating in the adjacent second evaporator 3b via the eliminator is enriched. The hot water flowing through the high-temperature water pipe 10 can be heated more efficiently.

【0019】また、第二凝縮器2bから第二蒸発器3b
に至る冷媒管路7と、第一凝縮器2aから第二蒸発器3
bに至る中間温水管路8との間に、冷媒中間温水熱交換
器5dを設けることも可能である。
The second condenser 2b to the second evaporator 3b
Pipe 7 leading to the first condenser 2a to the second evaporator 3
It is also possible to provide a refrigerant | coolant intermediate | middle hot-water heat exchanger 5d between the intermediate | middle hot-water pipe lines 8 leading to b.

【0020】この吸収ヒートポンプにおいては、第二凝
縮器2bから第二蒸発器3bに流入する冷媒が冷媒中間
温水熱交換器5dにおいて中間温水と熱交換して冷却さ
れ、第二蒸発器3bで冷媒が温度降下するのに必要な自
己フラッシュ量が減少するため冷媒の有効利用が促進さ
れ、高温水管路10を流れる温水が効果的に加熱され
る。
In this absorption heat pump, the refrigerant flowing into the second evaporator 3b from the second condenser 2b exchanges heat with the intermediate hot water in the refrigerant intermediate hot water heat exchanger 5d and is cooled. Since the amount of self-flash necessary for the temperature to decrease is reduced, the effective use of the refrigerant is promoted, and the hot water flowing through the high-temperature water pipe 10 is effectively heated.

【0021】(実施例3)図3は、図1に示した吸収ヒ
ートポンプの第二凝縮器2bから第二蒸発器3bに至る
冷媒管路7と、稀液を第一吸収器4aから低温熱交換器
5bを経由して低温再生器1bに送っている吸収液管路
6の低温熱交換器5b手前で分岐し、稀液の一部を低温
再生器1bに直接流入可能に設けた稀液分岐管路61と
の間にドレン熱交換器5eを設けた実施例である。
(Embodiment 3) FIG. 3 shows a refrigerant pipe 7 from the second condenser 2b to the second evaporator 3b of the absorption heat pump shown in FIG. A diluent that is branched before the low-temperature heat exchanger 5b of the absorbent line 6 that is sent to the low-temperature regenerator 1b via the exchanger 5b, and is provided so that a part of the diluent can flow directly into the low-temperature regenerator 1b. This is an embodiment in which a drain heat exchanger 5e is provided between the drain heat exchanger 5e and the branch pipe 61.

【0022】この吸収ヒートポンプにおいては、稀液分
岐管路61を通って低温再生器1bに流入する稀液がド
レン熱交換器5eにおいて高温の冷媒により加熱され、
低温再生器1b(および高温再生器1a)に高温になっ
て流入するため、冷媒を蒸発分離する効率が向上し、第
二凝縮器2bから第二蒸発器3bに流入する冷媒は逆に
熱を奪われて温度が低下し、冷媒が温度降下するのに必
要な自己フラッシュ量が減少するため冷媒の有効利用が
促進され、第二蒸発器3bで気化する際の所用熱量が大
きくなるため、エリミネータを介して隣接する第二吸収
器4bでの発熱量が増大し、高温水管路10を流れる温
水が効果的に加熱される。
In this absorption heat pump, the diluted liquid flowing into the low-temperature regenerator 1b through the diluted liquid branch pipe 61 is heated by the high-temperature refrigerant in the drain heat exchanger 5e.
Since the refrigerant flows into the low-temperature regenerator 1b (and the high-temperature regenerator 1a) at a high temperature, the efficiency of evaporating and separating the refrigerant is improved, and the refrigerant flowing from the second condenser 2b to the second evaporator 3b reversely generates heat. The temperature is reduced by being deprived, the amount of self-flash required for the temperature of the refrigerant to decrease decreases, and the effective use of the refrigerant is promoted, and the amount of heat required for vaporization in the second evaporator 3b increases. , The amount of heat generated in the adjacent second absorber 4b increases, and the hot water flowing through the high-temperature water pipe 10 is heated effectively.

【0023】なお、中温熱交換器5c、冷媒中間温水熱
交換器5d、ドレン熱交換器5eは適宜組み合わせて取
り付けることも可能である。
The intermediate-temperature heat exchanger 5c, the refrigerant intermediate-temperature water heat exchanger 5d, and the drain heat exchanger 5e can be combined in an appropriate manner.

【0024】[0024]

【発明の効果】本発明の吸収ヒートポンプは上記したよ
うに、従来2台構成であった装置を1台構成とすること
できたので、装置をコンパクトに設計・製作することが
可能となり、大幅な省スペース化が実現できるようにな
った。また、冷水が二重効用サイクルから取り出される
ため、熱効率が良いと云う特長もある。
As described above, the absorption heat pump of the present invention can be designed and manufactured in a compact manner because the conventional two-unit device can be replaced by one unit. Space saving can be realized. In addition, since cold water is taken out of the double effect cycle, there is also a feature that thermal efficiency is good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の説明図である。FIG. 1 is an explanatory diagram of a first embodiment.

【図2】実施例2の説明図である。FIG. 2 is an explanatory diagram of a second embodiment.

【図3】実施例3の説明図である。FIG. 3 is an explanatory diagram of a third embodiment.

【符号の説明】[Explanation of symbols]

1a 高温再生器 1b 低温再生器 2a 第一凝縮器 2b 第二凝縮器 3a 第一蒸発器 3b 第二蒸発器 4a 第一吸収器 4b 第二吸収器 5a 高温熱交換器 5b 低温熱交換器 5c 中温熱交換器 5d 冷媒中間温水熱交換器 5e ドレン熱交換器 6 吸収液管路 7 冷媒管路 8 中間温水管路 9 冷水管路 10 高温水管路 P1 ポンプ P2 ポンプ P3 ポンプ 1a High temperature regenerator 1b Low temperature regenerator 2a First condenser 2b Second condenser 3a First evaporator 3b Second evaporator 4a First absorber 4b Second absorber 5a High temperature heat exchanger 5b Low temperature heat exchanger 5c Medium Heat exchanger 5d Refrigerant intermediate hot water heat exchanger 5e Drain heat exchanger 6 Absorbent liquid line 7 Refrigerant line 8 Intermediate hot water line 9 Cold water line 10 High temperature water line P1 Pump P2 Pump P3 Pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大江 覧二 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 池田 澄雄 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平1−208669(JP,A) 特開 昭59−208368(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 303 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Oji Oji 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Sumio Ikeda 2--18 Keihanhondori, Moriguchi-shi, Osaka (56) References JP-A-1-208669 (JP, A) JP-A-59-208368 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 303

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高温再生器、低温再生器、第一凝縮器、
第二凝縮器、第一蒸発器、第二蒸発器、第一吸収器、第
二吸収器、高温熱交換器、低温熱交換器とからなり、吸
収液管路を第一吸収器の稀液が低温熱交換器を経て低温
再生器に流入したのち高温熱交換器を経て高温再生器に
流入し、冷媒を蒸発分離して濃縮された濃液が高温熱交
換器を経て第二吸収器に流入したのち低温熱交換器を経
て第一吸収器に還流可能に設け、冷媒管路を高温再生器
で生成した冷媒蒸気の一部が低温再生器を経て第一凝縮
器に流入したのち第一蒸発器に流入すると共に、前記生
成冷媒蒸気の残部が第二凝縮器に直接流入したのち第二
蒸発器に流入可能に設け、中間温水管路を下水処理水、
河川水などが第一吸収器、第一凝縮器、第二蒸発器を経
て下水、河川などに排水可能に設け、第一蒸発器の内部
に導いた冷水管路から冷水を取り出し、第二吸収器、第
二凝縮器の順に設けた高温水管路から高温水を取り出す
ことを特徴とする吸収ヒートポンプ。
A high temperature regenerator, a low temperature regenerator, a first condenser,
It consists of a second condenser, a first evaporator, a second evaporator, a first absorber, a second absorber, a high-temperature heat exchanger, and a low-temperature heat exchanger. Flows into the low-temperature regenerator through the low-temperature heat exchanger, flows into the high-temperature regenerator through the high-temperature heat exchanger, and evaporates and separates the refrigerant.The concentrated liquid passes through the high-temperature heat exchanger and enters the second absorber. After flowing into the first absorber through the low-temperature heat exchanger, a part of the refrigerant vapor generated by the high-temperature regenerator is provided to the first absorber through the low-temperature heat exchanger. Along with flowing into the evaporator, the remainder of the generated refrigerant vapor is provided so as to be able to flow into the second evaporator after directly flowing into the second condenser, and the intermediate hot water pipe is provided with sewage treatment water.
River water etc. are provided to be drainable to sewage, rivers, etc. through the first absorber, first condenser, second evaporator, take out chilled water from the chilled water pipe leading inside the first evaporator, and absorb the second water An absorption heat pump, wherein high-temperature water is taken out from a high-temperature water pipe provided in the order of a vessel and a second condenser.
【請求項2】 低温熱交換器から低温再生器に至る吸収
液管路と、高温熱交換器から第二吸収器に至る吸収液管
路との間に、中温熱交換器を設けた請求項1記載の吸収
ヒートポンプ。
2. A medium-temperature heat exchanger is provided between an absorption line from the low-temperature heat exchanger to the low-temperature regenerator and an absorption line from the high-temperature heat exchanger to the second absorber. 2. The absorption heat pump according to 1.
【請求項3】 第二凝縮器から第二蒸発器に至る冷媒管
路と、第一凝縮器から第二蒸発器に至る中間温水管路と
の間に、冷媒中間温水熱交換器を設けた請求項1記載の
吸収ヒートポンプ。
3. A refrigerant intermediate hot water heat exchanger is provided between a refrigerant pipe from the second condenser to the second evaporator and an intermediate hot water pipe from the first condenser to the second evaporator. The absorption heat pump according to claim 1.
【請求項4】 第二凝縮器から第二蒸発器に至る冷媒管
路と、稀液の一部を第一吸収器から低温再生器に直接流
入可能に設けた吸収液管路との間に、ドレン熱交換器を
設けた請求項1記載の吸収ヒートポンプ。
4. A refrigerant line from a second condenser to a second evaporator, and an absorbent line provided so that a part of the diluted liquid can flow directly from the first absorber to the low-temperature regenerator. The absorption heat pump according to claim 1, further comprising a drain heat exchanger.
JP23096391A 1991-08-19 1991-08-19 Absorption heat pump Expired - Fee Related JP3173057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23096391A JP3173057B2 (en) 1991-08-19 1991-08-19 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23096391A JP3173057B2 (en) 1991-08-19 1991-08-19 Absorption heat pump

Publications (2)

Publication Number Publication Date
JPH0545020A JPH0545020A (en) 1993-02-23
JP3173057B2 true JP3173057B2 (en) 2001-06-04

Family

ID=16916066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23096391A Expired - Fee Related JP3173057B2 (en) 1991-08-19 1991-08-19 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP3173057B2 (en)

Also Published As

Publication number Publication date
JPH0545020A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
JP2782555B2 (en) Absorption heat pump
JP3103225B2 (en) Absorption heat pump using low-temperature heat source
JP3083361B2 (en) Absorption heat pump
JP3083360B2 (en) Absorption heat pump
JP3173057B2 (en) Absorption heat pump
JP3591324B2 (en) Absorption refrigerator
JP3297720B2 (en) Absorption refrigerator
JP2837058B2 (en) Absorption type heat pump device
JP2000154946A (en) Triple effect absorption refrigeration machine
JP2835945B2 (en) Absorption refrigerator
JP3331363B2 (en) Absorption refrigerator
JP3158518B2 (en) Absorption heat pump controller
JPH04268170A (en) Absorption type heat pump device
JP2777427B2 (en) Absorption refrigerator
JP2554787B2 (en) Absorption heat pump device
JPS6125986B2 (en)
JP2785154B2 (en) Single effect absorption refrigerator
JP3093472B2 (en) Absorption heat pump using low-temperature heat source
JP3404225B2 (en) Absorption refrigerator
JPH086982B2 (en) Absorption refrigerator
JP2892519B2 (en) Absorption heat pump equipment
JP3401545B2 (en) Absorption refrigerator
JPH0752039B2 (en) Air-cooled absorption chiller / heater
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
JPH08159591A (en) Absorption type refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees