JP3169464B2 - Heat treatment method for mechanical structural parts with high fatigue strength - Google Patents

Heat treatment method for mechanical structural parts with high fatigue strength

Info

Publication number
JP3169464B2
JP3169464B2 JP01391593A JP1391593A JP3169464B2 JP 3169464 B2 JP3169464 B2 JP 3169464B2 JP 01391593 A JP01391593 A JP 01391593A JP 1391593 A JP1391593 A JP 1391593A JP 3169464 B2 JP3169464 B2 JP 3169464B2
Authority
JP
Japan
Prior art keywords
less
heat treatment
strength
fatigue strength
high fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01391593A
Other languages
Japanese (ja)
Other versions
JPH06228633A (en
Inventor
水野  淳
達朗 越智
善郎 子安
茂 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP01391593A priority Critical patent/JP3169464B2/en
Publication of JPH06228633A publication Critical patent/JPH06228633A/en
Application granted granted Critical
Publication of JP3169464B2 publication Critical patent/JP3169464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高疲労強度を有する機械
構造部品の熱処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heat treating mechanical structural parts having high fatigue strength.

【0002】[0002]

【従来の技術】高強度高靱性を必要とする自動車用部
品、機械構造用部品等には、所定の形状に熱間鍛造後、
調質処理としてオフラインでの焼入れ・焼戻しが施され
ている。近年、地球環境保護のため、自動車の低燃費化
が求められるようになってきているが、自動車の低燃費
化を達成するための有効な方法の一つは車両軽量化であ
り、部品の降伏強度、疲労強度向上による小型化が指向
されている。
2. Description of the Related Art Parts for automobiles and parts for machine structures that require high strength and high toughness are subjected to hot forging into a predetermined shape.
Off-line quenching / tempering is performed as a refining process. In recent years, there has been an increasing demand for low fuel consumption of automobiles in order to protect the global environment. One of the effective methods for achieving low fuel consumption of automobiles is to reduce the weight of vehicles and to surrender parts. Miniaturization by improving strength and fatigue strength is aimed at.

【0003】機械部品の高疲労限度比化、高降伏比化を
図るためには焼入れ・焼戻しによる調質処理が最も有効
である。例えば、特開昭55−104456号公報のよ
うにBを添加し焼入れ性を良好にして疲労特性等の機械
的性質の向上を図ろうとしたものや、特公昭53−23
241号公報に見られるように、強靱化を図るために加
熱温度を1050〜1300℃とし、焼戻し温度を50
0℃以上Ac1点以下と規定しているものがある。
[0003] The tempering treatment by quenching and tempering is most effective for achieving a high fatigue limit ratio and a high yield ratio of mechanical parts. For example, as disclosed in JP-A-55-104456, B is added to improve the hardenability to improve mechanical properties such as fatigue properties, and Japanese Patent Publication No. 53-23.
As can be seen in JP-A-241, the heating temperature is set at 1050 to 1300 ° C. and the tempering temperature is set at 50 to increase the toughness.
Some are specified as 0 ° C. or higher and A c1 point or lower.

【0004】[0004]

【発明が解決しようとする課題】部品の疲労強度を向上
させるためには調質処理が必要であるが、「鋼の熱処
理、改訂5版P189」に見られるように通常の調質鋼
の疲労限度比(疲労強度/引張強度)は0.35〜0.
5程度であり、また特開昭55−104456号公報の
ようにB添加による焼入れ性向上でも十分な疲労強度を
得ることはできず、疲労強度を向上させるためには焼戻
し温度を下げて引張強度を上げるしか方法はないのが現
状である。引張強度上昇に伴い被削性も低下することに
なるので、被削性という点からは、疲労強度向上のため
に引張強度を必要以上に上げるのは好ましくない。また
疲労強度向上のために析出強化を活用するには焼戻しの
条件設定が非常に重要であるが、特公昭53−2324
1号公報のように高温加熱・高温焼戻を行うと、引張強
度、疲労強度等の機械的性質が低下するだけで、疲労特
性向上には何等寄与するところはない。
In order to improve the fatigue strength of a part, it is necessary to perform a refining treatment. However, as shown in "Heat treatment of steel, 5th revised edition P189", the fatigue of a normal refining steel The limit ratio (fatigue strength / tensile strength) is 0.35 to 0.5.
However, sufficient fatigue strength cannot be obtained even by improving the hardenability by adding B as disclosed in Japanese Patent Application Laid-Open No. 55-104456. At present, there is no other way but to raise. Since the machinability also decreases as the tensile strength increases, it is not preferable to increase the tensile strength more than necessary in order to improve the fatigue strength from the viewpoint of machinability. In order to utilize precipitation strengthening to improve fatigue strength, setting of tempering conditions is very important.
When high-temperature heating and high-temperature tempering are performed as in Japanese Patent Publication No. 1 only, mechanical properties such as tensile strength and fatigue strength are reduced, and there is no contribution to improvement in fatigue properties.

【0005】本発明の目的は、引張強度を必要以上に上
げることなく、つまり被削性を低下させずに高疲労強度
を有する機械構造部品の熱処理方法を提供することであ
る。
An object of the present invention is to provide a heat treatment method for mechanical structural parts having high fatigue strength without increasing the tensile strength more than necessary, that is, without reducing the machinability.

【0006】[0006]

【課題を解決するための手段】本発明者らは、高強度高
靱性かつ被削性に優れた機械構造部品の降伏強度および
疲労強度の向上手法を提供するために、鋭意検討を行な
い、降伏比0.85以上、疲労限度比0.51以上を得
るためには、焼入れ性を低下させずに、フリーの転位を
消滅させ、析出物でマトリックスを均一に強化しなけれ
ばならないという結論に達した。そのためには次の4点
が必須である。 特定量のVを含有した鋼であること。 Vの炭窒化物を十分に固溶させるために必要なオース
テナイト化温度以上での加熱を行うこと。 加熱後、20℃/秒以上の冷却速度で焼入れを行うこ
とにより、オーステナイトをマルテンサイト変態させる
こと。 フリーの転位を消滅させ、更にマトリックスを微細分
散させた析出物により均一に強化するため、650℃〜
c1変態点の温度範囲で焼戻しを行うこと。
Means for Solving the Problems In order to provide a method for improving the yield strength and fatigue strength of a mechanical structural component having high strength, high toughness, and excellent machinability, the present inventors have conducted intensive studies and studied the yield In order to obtain a ratio of 0.85 or more and a fatigue limit ratio of 0.51 or more, it was concluded that free dislocations should be eliminated and the matrix should be uniformly strengthened by precipitates without reducing hardenability. did. For that purpose, the following four points are essential. Steel containing a specific amount of V. Heating at a temperature equal to or higher than the austenitizing temperature necessary for sufficiently dissolving the carbonitride of V. After heating, austenite is transformed into martensite by quenching at a cooling rate of 20 ° C./sec or more. 650 ° C. to eliminate free dislocations and further strengthen the matrix more uniformly with finely dispersed precipitates
Tempering in the temperature range of the A c1 transformation point.

【0007】また、低温靱性を必要とする場合には、特
定量のTi、Nbを添加し、さらに大型部品などの焼入
れの際に十分な焼入れ性を確保する必要がある場合に
は、ある特定量のBを添加し、N量を特定値以下に抑え
る。本発明は以上の新規なる知見に基づいてなされたも
のであって、その要旨とするところは下記のとおりであ
る。
[0007] When low temperature toughness is required, a specific amount of Ti or Nb is added, and when it is necessary to ensure sufficient hardenability when quenching a large part or the like, a certain amount is required. The amount of B is added to keep the amount of N below a specified value. The present invention has been made based on the above-described novel findings, and the gist thereof is as follows.

【0008】(1)重量比として、 C:0.20〜0.50%未満、 Si:0.15〜2.00%、 Mn:0.55〜2.00%、 S:0.01〜0.10%、 P:0.035%以下、 Al:0.015〜0.05%、 N:0.020%以下、 V:0.05〜0.50% を含有し、残部が鉄および不可避的不純物からなる成分
の鋼を焼き入れ焼戻しするに際して、1000℃以上1
300℃以下のオーステナイト化温度範囲に加熱し、そ
の温度から20℃/秒以上の冷却速度で焼入れを行う工
程と、その後650℃以上Ac1変態点未満の温度範囲で
焼戻しを行う工程を特徴とする引張強度が80〜130
kgf /mm2 でかつ降伏比が0.85以上、疲労限度比が
0.51以上である高疲労強度を有する機械構造部品の
熱処理方法。
(1) As a weight ratio, C: 0.20 to less than 0.50% , Si: 0.15 to 2.00%, Mn: 0.55 to 2.00%, S: 0.01 to 0.10%, P: 0.035% or less, Al: 0.015 to 0.05%, N: 0.020% or less, V: 0.05 to 0.50%, the balance being iron and in tempering quench the components of the steel consisting of unavoidable impurities, 1000 ° C. or higher 1
It is characterized by a step of heating to an austenitizing temperature range of 300 ° C. or less and quenching from that temperature at a cooling rate of 20 ° C./second or more, and a step of thereafter tempering at a temperature range of 650 ° C. or more and less than the A c1 transformation point. 80-130 tensile strength
A heat treatment method for a machine structural part having high fatigue strength, which has a kgf / mm 2 , a yield ratio of 0.85 or more, and a fatigue limit ratio of 0.51 or more.

【0009】(2)成分が更に、 Ti:0.005〜0.050% Nb:0.01〜0.10% のうち一種または二種を含有する(1)記載の低温靱性
の優れた高疲労強度を有する機械構造部品の熱処理方
法。
The component (2) further contains one or two of Ti: 0.005 to 0.050% and Nb: 0.01 to 0.10%. Heat treatment method for mechanical structural parts having fatigue strength.

【0010】(3)成分が更に、 Ti:0.005〜0.050%、 B:0.0003〜0.005% を含有する(1)記載の高疲労強度を有する機械構造部
品の熱処理方法。
(3) The method for heat treating mechanical structural parts having high fatigue strength according to (1), wherein the component further contains: 0.005 to 0.050% Ti: 0.0003 to 0.005% B: .

【0011】(4)成分が更に、 Cr:0.10〜1.20%未満、 Mo:0.05〜1.00%、 Ni:0.10〜3.60%、 のうち一種または二種以上を含有する(1)、(2)、
又は(3)記載の高疲労強度を有する機械構造部品の熱
処理方法。
The component (4) further includes one or two of the following: Cr: 0.10 to less than 1.20% ; Mo: 0.05 to 1.00%; Ni: 0.10 to 3.60%. Containing the above (1), (2),
Or the heat treatment method for a mechanical structural part having high fatigue strength according to (3).

【0012】以下に、本発明を詳細に説明する。まず、
Cは機械部品としての最終製品の強度を増加させるのに
有効な元素であるが、0.20%未満では最終製品の強
度が不足し、また0.50%以上ではむしろ最終製品の
靭性の劣化を招くので、含有量を0.20〜0.50%
未満とした。
Hereinafter, the present invention will be described in detail. First,
C is an element effective for increasing the strength of the final product as a mechanical part, but if it is less than 0.20%, the strength of the final product is insufficient, and if it is more than 0.50%, the toughness of the final product is rather deteriorated. Content, 0.20 to 0.50%
Less than .

【0013】次に、Siは脱酸元素として、また固溶体
硬化および焼戻し軟化抵抗による最終製品の強度を増加
させることを目的として添加するが、0.15%未満で
はこれらの効果は不十分であり、一方、2.00%を超
えるとこれらの効果は飽和しむしろ最終製品の靱性の劣
化を招くので、その含有量を0.15〜2.00%とし
た。
Next, Si is added as a deoxidizing element and for the purpose of increasing the strength of the final product due to solid solution hardening and tempering softening resistance. However, if it is less than 0.15%, these effects are insufficient. On the other hand, if it exceeds 2.00%, these effects are not saturated but rather deteriorate the toughness of the final product, so the content was made 0.15 to 2.00%.

【0014】Mnは焼入れ性の向上により、最終製品の
強度を増加させるのに有効な元素であり、また鋼中でS
とMnSを形成することにより被削性の向上に寄与する
が、0.55%未満ではこの効果は不十分であり、一
方、2.00%を超えるとこの効果は飽和しむしろ最終
製品の靱性の劣化を招くので、その含有量を0.55〜
2.00%とした。
Mn is an element effective for increasing the strength of the final product by improving the hardenability.
And MnS contribute to the improvement of machinability, but if it is less than 0.55%, this effect is insufficient, while if it exceeds 2.00%, this effect is saturated, and the toughness of the final product is rather increased. Of 0.55 to 0.55%.
2.00%.

【0015】一方、Pは鋼中で粒界偏析や中心偏析を起
こし、靱性劣化の原因となる。特にPが0.035%を
超えると靱性の劣化が顕著となるため、0.035%以
下とした。また、Sは鋼中でMnSとして存在し、被削
性の向上および組織の微細化に寄与するが、0.01%
未満ではその効果は不十分である。一方、0.10%を
超えるとその効果は飽和し、むしろ靱性の劣化および異
方性の増加を招く。以上の理由から、Sの含有量を0.
01〜0.10%とした。
On the other hand, P causes grain boundary segregation and center segregation in steel, which causes deterioration of toughness. In particular, when P exceeds 0.035%, the toughness deteriorates remarkably. Therefore, the P content is set to 0.035% or less. S exists as MnS in steel and contributes to improvement of machinability and refining of the structure.
If less, the effect is insufficient. On the other hand, when the content exceeds 0.10%, the effect is saturated, and rather, the toughness is deteriorated and the anisotropy is increased. For the above reasons, the content of S is set to 0.
It was made 0.1 to 0.10%.

【0016】次に、Alは脱酸元素および結晶粒微細化
元素として添加するが、0.015%未満ではその効果
は不十分であり、一方、0.05%を超えるとその効果
は飽和し、むしろ靱性を劣化させるので、その含有量を
0.015〜0.05%とした。NはV、Cと共に焼戻
し時のV(CV)形成による析出強化に寄与し、更にT
i、Nbを添加する場合には、TiN、NbNの形成に
より加熱時のγ粒の粗大化防止に寄与する。N含有量
0.020%超では粗大窒化物が形成されてしまい靱性
を低下させるので、N含有量の上限を0.020%とし
た。また焼入れ性確保のためのBを添加する場合には、
BN形成によるBの効果消滅防止のため望ましくはN含
有量0.006%以下がよい。
Next, Al is added as a deoxidizing element and a crystal grain refining element. If its content is less than 0.015%, its effect is insufficient, while if it exceeds 0.05%, its effect is saturated. However, since the toughness is rather deteriorated, the content is set to 0.015 to 0.05%. N contributes to precipitation strengthening by V (CV) formation during tempering together with V and C, and further contributes to T
When i and Nb are added, formation of TiN and NbN contributes to prevention of coarsening of γ grains during heating. If the N content exceeds 0.020%, coarse nitrides are formed and the toughness is reduced. Therefore, the upper limit of the N content is set to 0.020%. Also, when adding B for ensuring hardenability,
To prevent the effect of B from disappearing due to BN formation, the N content is desirably 0.006% or less.

【0017】更に本発明に置いてはTi、Nbの一種ま
たは二種を必要に応じて添加する。これはTiNまたは
NbNによる加熱時のオーステナイト粒粗大化防止によ
る低温靱性の確保のためである。Ti含有量0.005
%未満ではオーステナイト粒の粗大化防止に必要なTi
Nは形成されず、またNb含有量0.01%未満でもオ
ーステナイト粒の粗大化防止に必要なNbNは形成され
ない。Ti含有量0.050%超では粗大TiNが形成
され、またNb含有量0.10%超でも粗大NbNが形
成され、靱性の低下につながる。このためTi含有量を
0.005〜0.050%、Nb含有量0.01%〜
0.10%とした。またB添加の場合には、N固定のた
めに必須元素としてTiを上記の量添加する。
Further, in the present invention, one or two of Ti and Nb are added as required. This is to secure low-temperature toughness by preventing austenite grain coarsening during heating by TiN or NbN. Ti content 0.005
%, Ti required to prevent austenite grain coarsening
N is not formed, and even if the Nb content is less than 0.01%, NbN necessary for preventing austenite grains from being coarsened is not formed. If the Ti content exceeds 0.050%, coarse TiN is formed, and if the Nb content exceeds 0.10%, coarse NbN is formed, leading to a decrease in toughness. Therefore, the Ti content is set to 0.005 to 0.050%, and the Nb content is set to 0.01% to
0.10%. In addition, in the case of adding B, the above amount of Ti is added as an essential element for fixing N.

【0018】Bは焼入れ性を向上させるために添加する
元素で、0.0003%未満では焼入れ性の向上は期待
できず、また0.005%超ではこの効果は飽和し、コ
スト高になるばかりでなく、逆に焼入れ性の低下にもつ
ながるのでB添加量は0.0003〜0.005%とし
た。さらに本発明においては、析出強化の目的で、Vを
必須元素として含有させる。しかしながら、V含有量が
0.05%未満ではその効果は不十分であり、一方V含
有量0.50%超ではその効果は飽和し、むしろ靱性を
劣化させるので、この含有量をV:0.05〜0.50
%とした。
B is an element added for improving the hardenability. If the amount is less than 0.0003%, no improvement in the hardenability can be expected, and if it exceeds 0.005%, this effect is saturated and the cost is increased. However, on the contrary, the quenching property is also reduced, so the B addition amount is set to 0.0003 to 0.005%. Further, in the present invention, V is contained as an essential element for the purpose of strengthening precipitation. However, if the V content is less than 0.05%, the effect is insufficient, while if the V content is more than 0.50%, the effect is saturated and the toughness is rather deteriorated. .05-0.50
%.

【0019】CrはMo、Niと共に必要に応じて添加
することで、焼入れ性の向上により最終製品の強度を増
加させるのに有効な元素である。含有量0.10%未満
ではその効果はなく、また1.20%以上では硬度が高
くなりすぎ、靭性の低下を招き、また経済性の点で好ま
しくないためその含有量を0.10〜1.20%未満
した。
Cr is an element effective for increasing the strength of the final product by improving the hardenability by adding Cr and Mo as necessary. Rather its effect at a content less than 0.10%, also too high a hardness 1.20% or more, leading to reduction in toughness and 0.10 the content not preferable from the viewpoint of economy 1 And less than 20% .

【0020】MoもCr同様、必要に応じて添加するこ
とにより、焼入れ性の向上により最終製品の強度を増加
させるのに有効な元素であるが、含有量0.05%未満
ではその効果はなく、また1.00%超では硬さの増加
を招き、また経済性の点で好ましくないためその含有量
を0.05〜1.00%とした。更にNiも必要に応じ
て添加することにより、最終製品の強度、靱性を向上さ
せるのに有効な元素であるが、含有量0.10%未満で
はその効果はなく、また3.60%超では強度、靱性の
向上は飽和し、また経済上の点で好ましくないのでその
含有量を0.10〜3.60%とした。
Like Cr, Mo is an element effective for increasing the strength of the final product by improving the hardenability by adding it as necessary. However, if the content is less than 0.05%, the effect is lost. If it exceeds 1.00%, the hardness is increased, and it is not preferable in terms of economy, so its content is set to 0.05 to 1.00%. Further, Ni is an element effective in improving the strength and toughness of the final product by adding Ni as needed. However, if the content is less than 0.10%, the effect is not obtained. Since the improvement in strength and toughness is saturated and is not economically preferable, the content is set to 0.10 to 3.60%.

【0021】なお、被削性向上のため0.3%までのP
b、0.005%までのCaの添加を行っても、本発明
の効果は何等損なわれない。次に、本発明において、加
熱条件を限定した理由について述べる。まず、加熱温度
の下限を1000℃としたのは、1000℃未満の加熱
温度では、Vの炭窒化物が十分にオーステナイト中に固
溶しないために焼戻し時の析出効果に効かなくなるため
で、また加熱温度の上限を1300℃としたのは、13
00℃超の加熱温度ではオーステナイト粒が急に粗大化
し始めるためである。この加熱温度はV添加量に合わせ
て昇降させるのがよく、望ましくは(480×√V%+
925±35)℃するのがよい。これをこのまま直ち
に20℃/秒以上の冷却速度で急冷するが、20℃/秒
以上の冷却速度で焼入れを行うのは、オーステナイトに
マルテンサイト変態を起こさせるためであり、これ未満
の冷却速度ではベイナイト等が混入するためである。冷
却速度20℃/秒以上が得られるのであれば、焼入れ溶
媒は水、油等任意のものでよい。
In order to improve the machinability, the content of P up to 0.3%
b, Even if Ca is added up to 0.005%, the effect of the present invention is not impaired at all. Next, the reason for limiting the heating conditions in the present invention will be described. First, the reason why the lower limit of the heating temperature is set to 1000 ° C. is that at a heating temperature lower than 1000 ° C., the carbonitride of V does not sufficiently form a solid solution in austenite, so that the precipitation effect during tempering is not effective. The upper limit of the heating temperature was set to 1300 ° C.
This is because austenite grains suddenly start to coarsen at a heating temperature exceeding 00 ° C. The heating temperature is preferably raised and lowered in accordance with the amount of V added, and is preferably (480 × ΔV% +
925 ± 35) it is preferable to the ℃. This is immediately quenched at a cooling rate of 20 ° C./sec or more, but the quenching is performed at a cooling rate of 20 ° C./sec or more to cause austenite to undergo martensitic transformation. This is because bainite and the like are mixed. As long as a cooling rate of 20 ° C./sec or more can be obtained, any quenching solvent such as water and oil may be used.

【0022】次に、焼入れ後、650℃〜Ac1変態点の
温度範囲で焼戻しを行うのは、疲労亀裂伝播の原因とな
るフリーの転位を消滅させるためと、Vの炭窒化物をよ
り多く析出させ、マトリックスを微細分散させた析出物
により均一に強化するためである。焼戻し温度が650
℃未満であると、フリーの転位の消滅は十分でなく、V
の炭窒化物の析出量も少なく、また、Ac1変態点超であ
ると焼戻しマルテンサイトがオーステナイト変態を起こ
してしまうためで、焼戻しは650℃〜Ac1変態点の温
度範囲で行う。焼戻しの時間は望ましくは0.3〜2時
間がよい。
Next, after quenching, tempering in the temperature range of 650 ° C. to the A c1 transformation point is intended to eliminate free dislocations that cause fatigue crack propagation and to increase the amount of V carbonitride. This is for precipitating and uniformly strengthening the matrix by finely dispersing the precipitate. Tempering temperature is 650
If the temperature is lower than 0 ° C., disappearance of free dislocations is not sufficient, and V
The precipitation amount of carbonitride is small, and if it exceeds the A c1 transformation point, the tempered martensite undergoes austenite transformation. Therefore, the tempering is performed in a temperature range from 650 ° C. to the A c1 transformation point. The tempering time is desirably 0.3 to 2 hours.

【0023】以下に、本発明の効果を実施例により、さ
らに具体的に示す。
Hereinafter, the effects of the present invention will be more specifically described with reference to examples.

【0024】[0024]

【実施例】表1,2,3および4に示す化学成分の鋼を
高周波炉にて溶製し、150kgのインゴットに鋳造し
た。これをφ40mmの棒鋼に圧延し、その圧延材を熱間
鍛造−放冷後、表7に示す条件で再加熱・焼入れ焼戻し
を行った。
EXAMPLES Steels having the chemical compositions shown in Tables 1, 2, 3, and 4 were melted in a high-frequency furnace and cast into 150 kg ingots. This was rolled into a bar of φ40 mm, and the rolled material was hot forged and allowed to cool, and then reheated, quenched and tempered under the conditions shown in Table 7.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】また、比較例は表5に示す条件で熱処理を
行った。それらの焼入れ−焼戻し後の材料の中央部より
JIS14号引張試験片、JIS3号衝撃試験片、JI
S1号回転曲げ試験片、およびドリル穴あけ試験片を採
取し、引張強度、−50℃シャルピー衝撃値、疲労強
度、および被削性を求めた。被削性の評価にはVL1000
を使用した。送り速度0.33mm/sのドリル(材質:
SKH51−φ10mm)の周速を種々変化させ、各速度
においてドリルが切削不能になる総穴深さを求め、周速
−ドリル寿命曲線を作成し、ドリル寿命が1000mmと
なる最大速度をV L1000 と規定し、被削性の評価基準と
した。表6,8,9および10に各鋼材の材質特性の本
発明と比較例を対比して示す。
In Comparative Example, heat treatment was performed under the conditions shown in Table 5.
went. From the center of the material after quenching and tempering
JIS No. 14 tensile test piece, JIS No. 3 impact test piece, JI
S1 rotary bending test piece and drilling test piece were collected.
, Tensile strength, -50 ° C Charpy impact value, fatigue strength
The degree and machinability were determined. V for evaluation of machinabilityL1000
It was used. Drill with feed rate of 0.33 mm / s (Material:
SKH51-φ10mm)
The total hole depth at which the drill cannot be cut at
-Draw a drill life curve and make the drill life 1000 mm
Maximum speed V L1000And the evaluation criteria for machinability
did. Tables 6, 8, 9, and 10 show the material properties of each steel material.
The invention and a comparative example are shown in comparison.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】[0032]

【表7】 [Table 7]

【0033】[0033]

【表8】 [Table 8]

【0034】[0034]

【表9】 [Table 9]

【0035】[0035]

【表10】 [Table 10]

【0036】表6に示すように、比較例において本発明
の成分から外れた鋼No.1〜5とNo.12で熱処理
No.I、IVの焼入れ・焼戻しを行ったものは降伏比、
疲労限度比共に本発明の下限値に達しなかった。また本
発明鋼No.6で本発明の範囲からはずれた焼入れ焼戻
し温度の熱処理No.IIで行ったもの、本発明鋼No.
9で本発明の下限値におよばなかった焼戻し温度のN
o.III で行ったもの、本発明鋼No.17で本発明の
上限値以上の焼戻し温度のNo.Vで行ったものもまた
降伏比、疲労限度比共に本発明の下限値に達しなかっ
た。
As shown in Table 6, in the comparative examples, steel Nos. Nos. 1 to 5 and Nos. In heat treatment No. 12 , After quenching and tempering of I and IV, yield ratio,
Both the fatigue limit ratios did not reach the lower limit of the present invention. The steel No. of the present invention. In No. 6, heat treatment No. 6 having a quenching and tempering temperature outside the range of the present invention. II, the steel No. of the present invention.
9, the N of the tempering temperature which did not reach the lower limit of the present invention.
o. III, the steel of the present invention No. No. 17 of the tempering temperature of the upper limit or more of the present invention. The test performed at V also did not reach the lower limit of the present invention in both the yield ratio and the fatigue limit ratio.

【0037】これに比べ、表8、9および10に示して
いる鋼No.54による熱処理No.VII 〜XIの本
発明では、例えば第1発明の鋼No.11、熱処理N
o.VIIIの降伏比0.96、疲労限度比0.55や、第
2発明の鋼No.18、熱処理No.IXの降伏比0.9
5、疲労限度比0.56や、鋼No.22、熱処理N
o.IXの降伏比0.95、疲労限度比0.56や、第3
発明の鋼No.27、熱処理No.Xの降伏比0.9
6、疲労限度比0.55や、鋼No.31、熱処理N
o.IXの降伏比0.92、疲労限度比0.58や第4
発明の鋼No.40、熱処理No.IXの降伏比0.9
5、疲労限度比0.56や、鋼No.47、熱処理N
o.VII の降伏比0.90、疲労限度比0.58のよう
に降伏比、疲労限度比共に高い。
On the other hand, in comparison with the steel No. shown in Tables 8, 9 and 10, No. 7 to No. 54 . In the present invention of Nos. VII to XI, for example , steel No. 1 of the first invention is used. 11, heat treatment N
o. VIII yield ratio of 0.96, fatigue limit ratio of 0.55, and steel No. 2 of the second invention. 18, heat treatment no. IX yield ratio 0.9
No. 5, fatigue limit ratio 0.56, steel No. 22, heat treatment N
o. IX yield ratio 0.95, fatigue limit ratio 0.56,
Inventive steel No. 27, heat treatment no. X yield ratio 0.9
6, fatigue limit ratio 0.55 and steel No. 31, heat treatment N
o. IX yield ratio 0.92, fatigue limit ratio 0.58 ,
The steel No. of the invention. No. 40, heat treatment no. IX yield ratio 0.9
No. 5, fatigue limit ratio 0.56, steel No. 47, heat treatment N
o. Both the yield ratio and the fatigue limit ratio are high, such as the VII yield ratio of 0.90 and the fatigue limit ratio of 0.58.

【0038】このように本発明法によると引張強度8
0.4〜126.5kgf /mm2 で降伏強度73.7〜1
17.6kgf /mm2 、降伏比0.90〜0.96、疲労
強度42.6〜69.1kgf /mm2 、疲労限度比0.5
2〜0.59を得ることができ、比較例より高い降伏
比、優れた耐久性を有することがわかる。
As described above, according to the method of the present invention, the tensile strength of 8
Yield strength of 73.7 to 1 at 0.4 to 126.5 kgf / mm2
17.6 kgf / mm 2 , yield ratio 0.90 to 0.96, fatigue strength 42.6 to 69.1 kgf / mm 2 , fatigue limit ratio 0.5
2 to 0.59 can be obtained, which indicates that the sample has a higher yield ratio and superior durability than the comparative example.

【0039】[0039]

【発明の効果】以上述べたごとく、本発明法を用いれ
ば、高疲労強度を有する機械構造部品の熱処理が可能で
あり、機械構造部品の軽量化が可能となり、産業上の効
果は極めて顕著なるものがある。
As described above, when the method of the present invention is used, heat treatment of a machine structural part having high fatigue strength can be performed, the weight of the machine structural part can be reduced, and the industrial effect is extremely remarkable. There is something.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 子安 善郎 北海道室蘭市仲町12番地 新日本製鐵株 式会社室蘭製鐵所内 (72)発明者 安田 茂 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平1−259124(JP,A) 特開 平2−50917(JP,A) 特開 平2−50911(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 6/00 C22C 38/00 - 38/60 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoshiro Koyasu 12 Nakamachi, Muroran City, Hokkaido Nippon Steel Corporation Muroran Works (72) Inventor Shigeru Yasuda 1st Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Vehicle Stock In-company (56) References JP-A-1-259124 (JP, A) JP-A-2-50917 (JP, A) JP-A-2-50911 (JP, A) (58) Fields investigated (Int. . 7, DB name) C21D 6/00 C22C 38/00 - 38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比として、 C:0.20〜0.50%未満、 Si:0.15〜2.00%、 Mn:0.55〜2.00%、 S:0.01〜0.10%、 P:0.035%以下、 Al:0.015〜0.05%、 N:0.020%以下、 V:0.05〜0.50% を含有し、残部が鉄および不可避的不純物からなる成分
の鋼を焼き入れ焼戻しするに際して、1000℃以上1
300℃以下のオーステナイト化温度範囲に加熱し、そ
の温度から20℃/秒以上の冷却速度で焼入れを行う工
程と、その後650℃以上Ac1変態点未満の温度範囲で
焼戻しを行う工程を特徴とする引張強度が80〜130
kgf /mm2 でかつ降伏比が0.85以上、疲労限度比が
0.51以上である高疲労強度を有する機械構造部品の
熱処理方法。
C .: 0.20 to less than 0.50% , Si: 0.15 to 2.00%, Mn: 0.55 to 2.00%, S: 0.01 to 0 as weight ratios. .10%, P: 0.035% or less, Al: 0.015 to 0.05%, N: 0.020% or less, V: 0.05 to 0.50%, the balance being iron and inevitable 1000 ° C or higher when quenching and tempering steel with a component consisting of chemical impurities
It is characterized by a step of heating to an austenitizing temperature range of 300 ° C. or less and quenching from that temperature at a cooling rate of 20 ° C./second or more, and a step of thereafter tempering at a temperature range of 650 ° C. or more and less than the A c1 transformation point. 80-130 tensile strength
A heat treatment method for a machine structural part having high fatigue strength, which has a kgf / mm 2 , a yield ratio of 0.85 or more, and a fatigue limit ratio of 0.51 or more.
【請求項2】 成分が更に、 Ti:0.005〜0.050% Nb:0.01〜0.10% のうち一種または二種を含有する請求項1記載の低温靱
性の優れた高疲労強度を有する機械構造部品の熱処理方
法。
2. The high fatigue excellent in low temperature toughness according to claim 1, wherein the component further contains one or two of Ti: 0.005 to 0.050% and Nb: 0.01 to 0.10%. A heat treatment method for mechanical structural parts having strength.
【請求項3】 成分が更に、 Ti:0.005〜0.050%、 B:0.0003〜0.005% を含有する請求項1記載の高疲労強度を有する機械構造
部品の熱処理方法。
3. The method for heat treating a machine structural component having high fatigue strength according to claim 1, wherein the component further contains: Ti: 0.005 to 0.050%, and B: 0.0003 to 0.005%.
【請求項4】 成分が更に、 Cr:0.10〜1.20%未満、 Mo:0.05〜1.00%、 Ni:0.10〜3.60%、 のうち一種または二種以上を含有する請求項1、2、又
は3記載の高疲労強度を有する機械構造部品の熱処理方
法。
4. The composition further comprises one or more of Cr: 0.10 to less than 1.20% , Mo: 0.05 to 1.00%, Ni: 0.10 to 3.60%. The method for heat treating a mechanically structured component having high fatigue strength according to claim 1, containing:
JP01391593A 1993-01-29 1993-01-29 Heat treatment method for mechanical structural parts with high fatigue strength Expired - Lifetime JP3169464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01391593A JP3169464B2 (en) 1993-01-29 1993-01-29 Heat treatment method for mechanical structural parts with high fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01391593A JP3169464B2 (en) 1993-01-29 1993-01-29 Heat treatment method for mechanical structural parts with high fatigue strength

Publications (2)

Publication Number Publication Date
JPH06228633A JPH06228633A (en) 1994-08-16
JP3169464B2 true JP3169464B2 (en) 2001-05-28

Family

ID=11846470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01391593A Expired - Lifetime JP3169464B2 (en) 1993-01-29 1993-01-29 Heat treatment method for mechanical structural parts with high fatigue strength

Country Status (1)

Country Link
JP (1) JP3169464B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6246761B2 (en) * 2015-06-02 2017-12-13 Jfeスチール株式会社 Manufacturing method of steel member for machine structure
KR101654684B1 (en) * 2015-12-11 2016-09-06 주식회사 세아베스틸 Mooring chain steels with high strength and high impact toughness at low temperature and method for manufacturing the same

Also Published As

Publication number Publication date
JPH06228633A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
US7754029B2 (en) Steel with excellent delayed fracture resistance and tensile strength of 1801 MPa class or more, and its shaped article
EP0648853B1 (en) Non-heat-treated steel for hot forging, process for producing non-heat-treated hot forging, and non-heat-treated hot forging
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP3100492B2 (en) Manufacturing method of high fatigue strength hot forgings
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
CN114293098A (en) High-strength and high-toughness bainite non-quenched and tempered steel suitable for large-specification forge piece
JPH0772323B2 (en) Non-heat treated steel bar for hot forging
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
JP3499705B2 (en) 950N / mm2 class tempered high-strength steel sheet having excellent homogeneity in thickness direction and low anisotropy of toughness, and method for producing the same
JP2768062B2 (en) Manufacturing method of high strength tough steel
JP3169464B2 (en) Heat treatment method for mechanical structural parts with high fatigue strength
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP3042574B2 (en) Hot forged product having high fatigue strength and method of manufacturing the same
JP3059318B2 (en) Manufacturing method of high fatigue strength hot forgings
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP2576857B2 (en) High strength non-tempered tough steel
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
JP3205630B2 (en) Hot forged product with high fatigue strength and method of manufacturing the same
JPH10265891A (en) Ferrite/pearlite type non-heat treated steel
JP3196006B2 (en) Method of manufacturing non-heat treated steel for hot forging, hot forged non-heat treated product, and hot forged non-heat treated product
JP2563164B2 (en) High strength non-tempered tough steel
JP3762543B2 (en) Manufacturing method of non-tempered steel for hot forging and non-tempered hot forged product and hot forged non-tempered product
CN114262851A (en) High-strength and high-toughness non-quenched and tempered steel and round steel for hot forging and manufacturing method thereof
KR890002612B1 (en) Process for manufacturing steel of structure having a good tungsten

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

EXPY Cancellation because of completion of term