JP3168202U - 薄板型ヒートパイプの構造 - Google Patents

薄板型ヒートパイプの構造 Download PDF

Info

Publication number
JP3168202U
JP3168202U JP2011001519U JP2011001519U JP3168202U JP 3168202 U JP3168202 U JP 3168202U JP 2011001519 U JP2011001519 U JP 2011001519U JP 2011001519 U JP2011001519 U JP 2011001519U JP 3168202 U JP3168202 U JP 3168202U
Authority
JP
Japan
Prior art keywords
wick structure
heat pipe
thin plate
wick
plate type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011001519U
Other languages
English (en)
Inventor
俊銘 巫
俊銘 巫
Original Assignee
奇▲こう▼科技股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇▲こう▼科技股▲ふん▼有限公司 filed Critical 奇▲こう▼科技股▲ふん▼有限公司
Priority to JP2011001519U priority Critical patent/JP3168202U/ja
Application granted granted Critical
Publication of JP3168202U publication Critical patent/JP3168202U/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】作動流体の循環効率を高め、遠端への熱伝達効果を向上した薄板型ヒートパイプの構造を提供する。【解決手段】本体10及び少なくとも1つのウィック構造2を具え、本体10は、平板11,12により扁平な空間からなる密封チャンバを形成し、該チャンバ内に粉末焼結体などからなるウィック構造2をチャンバ全長に亘って配置すると共にウィック構造2に沿って冷却用作動流体の通路を形成する。本体の一端の第1の端部101とその反対側に位置する第2の端部102とにそれぞれ発熱素子及び放熱器を配置して、発熱素子の熱により蒸発・気化した作動流体を通路を経て他端側に導き、他端側の放熱器により冷却されて凝縮・液化した作動流体はウィック構造2により、還流する。【選択図】図1

Description

本考案は、薄板型ヒートパイプの構造に関し、特に、必要に応じて任意の形状に構成することができ、熱を遠端に伝達する機能を有し、作動流体の循環速度を高めることができることにより、極めて優れた放熱効果を実現することができる薄板型ヒートパイプの構造に関する。
科学技術が進歩するに伴い、電子素子の出力及び機能も向上している。これにより、電子素子が作動するとき、多くの熱が発生する。仮に、この熱を即座に放熱できない場合、熱が電子素子の内部に蓄積して温度が上昇し、機能が影響を受けてしまうのみならず、ひどい場合は、電子素子が損壊してしまう。そのため、電子素子の放熱問題を有効に解決するために、熱伝達効果に優れるベーパチャンバ(vapor chamber)及び薄型ヒートパイプ(heat pipe)が開発された。ベーパチャンバ及び薄型ヒートパイプは、放熱器と組み合わされて使用されることにより、放熱問題を有効に解決している。
従来の薄型ヒートパイプの構造においては、大口径のヒートパイプ内の中空部分に金属粉末が充填されて焼結されることにより、ヒートパイプの内壁に環状のウィック構造が形成される。その後、ヒートパイプの内部が真空状態にされて、作動流体が充填される。最後に、封止され、プレスされることにより、薄型ヒートパイプとなる。従来の薄型ヒートパイプの内部全体には、ウィック構造が環状に設けられるため、プレスされるとき、環状のウィック構造もプレスされる。これにより、ヒートパイプ内部の蒸気通路が狭くなったり、閉塞したりして、作動流体の気液相変化が影響を受け、熱伝達効果が低下する。
また、上述の従来の薄型ヒートパイプは、全体の管径が所定の管径に固定されており、ユーザーの必要に応じて形状及び管径を設計することができない(例えば、一方の端部の口径を大きくして他方の端部の口径を小さくしたり、或いは、両端の口径を同一にし、中間部の口径を大きくしたり、小さくしたりすることができない)。また、ヒートパイプ内のウィック構造も所定の環状に形成されるため、薄型ヒートパイプの形状を変更したとき、湾曲されたり、凹陥された部分のウィック構造(即ち、焼結された金属粉末)が剥離してしまう。これにより、薄型ヒートパイプの熱伝達効果が大幅に低下してしまう。また、薄型ヒートパイプは、環状のウィック構造を有するのみであり、他の構造に変更することができない。また、ヒートパイプがプレスされるとき、環状のウィック構造の上下層が押圧されて積層されるため、薄型化に限界があった。
従来のベーパチャンバは、矩形の筐体と、筐体内部のチャンバの壁面に設けられるウィック構造と、を具える。また、筐体内部には、作動流体が充填される。筐体の一方の面(即ち、蒸発部)が発熱素子(例えば、CPU、サウス/ノースブリッジチップ)上に貼設され、発熱素子から発生する熱を吸収する。これにより、液体状態の作動流体が筐体の蒸発部において蒸発して気体状態に相変化し、熱が筐体の凝縮部に伝達される。次に、気体状態の作動流体は、凝縮部において冷却された後、液体状態に相変化する。液体状態の作動流体は、重力又はウィック構造の作用により、蒸発部に回流する。この作動流体の循環により、有効に熱を伝達して放熱を行う。
従来のベーパチャンバは、好適な熱伝達効果を有する。しかし、ベーパチャンバの熱伝達方式は、一方の面によって熱を吸収した後、チャンバ内の作動流体の相変化により、他方の面に熱を伝達するものであるため、ヒートパイプのように、吸収した熱を遠端に伝達して放熱を行うことができない。即ち、ベーパチャンバは、大面積の熱伝達のみに適用し、遠端への熱伝達には、適用しない。
即ち、従来の薄型ヒートパイプ及びベーパチャンバは、以下(1)〜(3)に示す欠点を有する。
(1)薄型化に限界がある上、管径、ウィック構造及び形状を任意に変更することができない。
(2)熱を遠端に伝達することができない上、重量が重い。
(3)コストが高い。
本考案の考案者及び当業者は、上述の従来の問題及び欠点を解決するために、研究開発を行った。
特開2007−107870号公報
本考案の第1の目的は、少なくとも1つのウィック構造によって作動流体の循環効率が高められることにより、本体が吸収した熱を遠端に迅速に伝達することができる薄板型ヒートパイプの構造を提供することにある。
本考案の第2の目的は、コストが安い薄板型ヒートパイプの構造を提供することにある。
本考案の第3の目的は、重量が軽い上、厚さが薄い薄板型ヒートパイプの構造を提供することにある。
上述の課題を解決するために、本考案の薄板型ヒートパイプの構造は、本体及び少なくとも1つのウィック構造を具える。本体は、チャンバと、第1の端部と、第1の端部の反対側に位置する第2の端部と、を有する。少なくとも1つのウィック構造は、チャンバ内に設けられ、チャンバと共に少なくとも1つの通路を画定し、第1の端部から第2の端部に沿って延伸形成される。
本考案の薄板型ヒートパイプの構造により、作動流体の循環効率を大幅に高めることができ、吸収した熱を迅速に遠端まで伝達することができる。
本考案の第1実施形態による薄板型ヒートパイプの構造を示す分解斜視図である。 本考案の第1実施形態による薄板型ヒートパイプの構造の他の態様を示すの分解斜視図である。 本考案の第1実施形態による薄板型ヒートパイプの構造を示す斜視図である。 本考案の第1実施形態による薄板型ヒートパイプの構造を示す断面図である。 本考案の第1実施形態による薄板型ヒートパイプの構造の他の態様を示す斜視図である。 本考案の第1実施形態による薄板型ヒートパイプの構造の他の態様を示す斜視図である。 本考案の第2実施形態による薄板型ヒートパイプの構造を示す斜視図である。 本考案の第2実施形態による薄板型ヒートパイプの構造を示す断面図である。 本考案の第2実施形態による薄板型ヒートパイプの構造の他の態様を示す斜視図である。 本考案の第2実施形態による薄板型ヒートパイプの構造を示す分解斜視図である。 本考案の第2実施形態による薄板型ヒートパイプの構造の他の態様を示す分解斜視図である。 本考案の第3実施形態による薄板型ヒートパイプの構造を示す斜視図である。 本考案の第3実施形態による薄板型ヒートパイプの構造を示す断面図である。 本考案の第3実施形態による薄板型ヒートパイプの構造の他の態様を示す斜視図である。 本考案の第3実施形態による薄板型ヒートパイプの構造の他の態様を示す斜視図である。 本考案の第4実施形態による薄板型ヒートパイプの構造を示す斜視図である。 本考案の第4実施形態による薄板型ヒートパイプの構造を示す断面図である。 本考案の第4実施形態による薄板型ヒートパイプの構造の他の態様を示す斜視図である。 本考案の一実施形態による薄板型ヒートパイプの構造の使用状態を示す斜視図である。
本考案の目的、特徴および効果を示す実施形態を図面に沿って詳細に説明する。
(第1実施形態)
図1、図3、図4及び図19を参照する。図1、図3、図4及び図19に示すように、本考案の第1実施形態による薄板型ヒートパイプの構造1は、本体10及び少なくとも1つのウィック構造2からなる。本体10は、チャンバ100と、第1の端部101と、第1の端部101の反対側に位置する第2の端部102と、を有する。本体10は、第1の平板11と第2の平板12とが対向接続されて構成され、内部にチャンバ100が画定される。第1の平板11の第1の端部101と隣り合う外側(即ち、蒸発部)には、対応する発熱素子(例えば、CPU、サウス/ノースブリッジチップ、GPUなど)が貼設される。これにより、発熱素子(図示せず)から発生する熱が第1の端部101に伝達される。
第2の平板12の第2の端部102と隣り合う外側(即ち、凝縮部)には、少なくとも1つの放熱器4が対向接続される。本実施形態において、放熱器4は、複数の放熱フィンが積層されて構成される放熱器4を例示するが、これのみに限定されない。放熱器4は、アルミニウムがプレス加工された放熱器又は他の放熱体でもよい。
チャンバ100内は、第1の側壁1001と、第1の側壁1001と相対する第2の側壁1002と、第3の側壁1003と、第3の側壁1003と対向する第4の側壁1004と、を有する。また、第1の側壁1001、第2の側壁1002、第3の側壁1003及び第4の側壁1004が互いに接続されてチャンバ100の空間が形成される。 また、チャンバ100内には、作動流体が充填される。本考案の第1実施形態において、作動流体は、水を例示して説明するが、これのみに限定されない。本考案を実施する場合、純水、無機化合物、アルコール類、ケトン類、液体状金属、冷媒、有機化合物、それらの混合物などの流体を作動流体とすることができる。
第1の端部101は、本体10の一方の端部であり、第2の端部102は、本体10の他方の端部である。また、薄板型ヒートパイプが配置される位置と、必要とされる遠端への熱伝達効果と、に基づき、第1の平板11、第2の平板12及びウィック構造2の長さ、幅及び形状を構成することができる。例えば、図1に示すように、第1の平板11及び第2の平板12の形状は、略Z字状である。また、ウィック構造2は、第1の平板11及び第2の平板12の形状に合わせて略Z字状である。しかし、第1の平板11、第2の平板12及びウィック構造2の形状は、これのみに限定されず、曲線状、L字状又は任意の形状でもよい。
図1、図3及び図4を参照する。図1、図3及び図4に示すように、ウィック構造2は、チャンバ100内に設けられる。また、ウィック構造2は、チャンバ100内に少なくとも1つの通路5を画定する。通路5は、気体状態の作動流体を流動させるために用いられる。また、ウィック構造2は、チャンバ100内において、第1の端部101と反対側に位置する第2の端部102の方向に延伸形成される。ウィック構造2は、第1の側面201と、第1の側面201と反対側の第2の側面202と、第3の側面203と、第3の側面203と反対側の第4の側面204と、を有する。本考案の第1実施形態において、ウィック構造2は、第4の側壁1004と隣り合う位置に設けられる。これにより、ウィック構造2の第1の側面201は、チャンバ100内々の第1の側壁1001に当接され、第2の側面202は、第2の側壁1002に当接される。また、第4の側面204は、第4の側壁1004に貼設される。
しかし、本考案を実施する場合、ウィック構造2を第3の側壁1003と隣り合う位置に設け、第1の側面201が第1の側壁1001に当接し、第2の側面202が第2の側壁1002に当接され、第3の側面203が第3の側壁1003に貼設される態様でもよい。
ウィック構造2は、作動流体に対してガイド効果を有し、多数の回流通路(channel)を提供すると共に、チャンバ内部から補強する支持効果を有する。また、本考案の第1実施形態によるウィック構造2は、以下の第1の態様〜第3の態様を有する。
第1の態様によるウィック構造2は、粉末焼結体からなる。第2の態様によるウィック構造2は、扁平状の金属体から構成される。金属体は、アルミニウム、銅、銀又は合金からなる。また、金属体上には、ウィック構造が形成される。ウィック構造は、メッシュ(mesh)、繊維(fiber)、粉末焼結体(sintered powder)、メッシュと粉末焼結体との組み合わせ又は微小溝(groove)からなる。第3の態様によるウィック構造は、複数の扁平状の金属体から構成される。金属体は、アルミニウム、銅、銀又は合金からなる。また、金属体の外縁には、粉末焼結リングが嵌設される。
図1、図3及び図19を参照する。発熱素子から熱が発生すると、熱は、まず、第1の平板11に伝達される。第1の平板11の蒸発部内の液体状態の作動流体は、熱を吸収して蒸発し、気体状態の作動流体に相変化する。また、第2の端部102の温度が低いため、気体状態の作動流体は、通路5に沿って第2の端部102の方向に流動する。これにより、気体状態の作動流体は、第1の平板11の蒸発部から第2の平板12の凝縮部に移動するのみならず、第1の端部101から第2の端部102へと移動する。次に、第2の平板12上及び第2の端部102に配置された放熱器4により、吸収された熱は、放熱フィンに伝達されて外部に放熱される。第2の平板12及び第2の端部102の凝縮部により、気体状態の作動流体を冷却する速度が加速されるため、気体状態の作動流体は、迅速に液体状態と相変化する。次に、液体状態の作動流体は、ウィック構造2によって第1の平板11及び第1の端部101の蒸発部に迅速に回流して循環し続ける。これにより、作動流体の循環効率を有効に高め、吸収した熱を遠端に迅速に伝達し、極めて優れた放熱効果を実現することができる。
図5を参照する。図5は、前述のウィック構造2の他の実施形態を示す斜視図である。図5に示すように、ウィック構造2の一方の端部は、少なくとも1つの拡張部26を有する。拡張部26は、第1の端部101と隣り合う位置に設けられる。また、拡張部26は、ウィック構造2の一方の端部の側辺から対応する通路5の方向に突出して構成される。即ち、拡張部26は、ウィック構造3の第3の側面203から対応する通路5の方向に突出して構成される。仮に、ウィック構造2が第3の側壁1003と隣り合う位置に設けられる場合、拡張部26は、ウィック構造2の第4の側面204から対応する通路5の方向に突出して構成される。
図2を参照する。図2は、前述の第1の平板11及び第2の平板12の他の実施形態を示す分解斜視図である。図2に示すように、第1の平板11及び第2の平板12の内側には、ウィック構造13がそれぞれ設けられる。ウィック構造13は、液体状態の作動流体を蒸発部に回流させる速度を加速させるために用いられる。これにより、作動流体の循環効率が有効に促進される。
前述のウィック構造13は、メッシュ、繊維、粉末焼体、メッシュと粉末焼体との組み合わせ又は微小溝からなる。
図6を参照する。図6に示すように、ウィック構造13の他方の端部の第2の端部102との間には、空間15が形成される。空間15は、対応する通路5と連通する。
以上の説明から分かるように、本考案の第1実施形態による薄板型ヒートパイプの構造1は、熱を遠端に伝達する機能を有するため、放熱効果を大幅に高めることができる。また、設計上の融通性が高く、重量が軽く、厚さが薄く、コストを節約することができる。
(第2実施形態)
図7、図8及び図10を参照する。図7は、本考案の第2実施形態による薄板型ヒートパイプの構造を示す斜視図である。図8は、本考案の第2実施形態による薄板型ヒートパイプの構造を示す断面図である。図10は、本考案の第2実施形態による薄板型ヒートパイプの構造を示す分解斜視図である。本考案の第2実施形態による薄板型ヒートパイプの構造、連結関係及び効果は、第1実施形態と略同一であるため、同一部分は、ここでは詳しく述べない。本考案の第2実施形態による薄板型ヒートパイプの構造は、ウィック構造2がチャンバ100内の中央部分に設けられる点が第1実施形態と異なる。ウィック構造2の第3の側面203と、対向する第2の平板12の第3の側壁1003と、の間に、第1の通路51が画定される。また、ウィック構造2の第4の側面204と、対向する第2の平板12の第4の側壁1004と、の間に、第2の通路52が画定される。第1の通路51及び第2の通路52は、気体状態の作動流体を流動させるために用いられる。これにより、気体状態の作動流体は、第1の通路51及び第2の通路52による分流作用により、第1の通路51及び第2の通路52に沿って第2の端部102の方向に迅速に流動する。これにより、熱を遠端に伝達させる速度が有効に高められる。
図9を参照する。図9は、ウィック構造2の他の実施形態を示す斜視図である。図9に示すように、ウィック構造2の一方の端部は、少なくとも1つの拡張部26を有する。拡張部26は、第1の端部101と隣り合う位置に設けられる。また、拡張部26は、ウィック構造2の第3の側面203から第1の通路51の方向と、第4の側面204から第2の通路52の方向と、に突出して構成される。
図11を参照する。図11は、前述の第1の平板11及び第2の平板12の他の実施形態を示す分解斜視図である。図11に示すように、第1の平板11及び第2の平板12の内側には、ウィック構造13がそれぞれ設けられる。ウィック構造13は、液体状態の作動流体を迅速に蒸発部に回流させるために用いられる。これにより、作動流体の循環効率が有効に促進される。ウィック構造13は、メッシュ、繊維、粉末焼結体、メッシュと粉末焼結体との組み合わせ又は微小溝からなる。
(第3実施形態)
図12及び図13を参照する。図12は、本考案の第3実施形態による薄板型ヒートパイプの構造を示す斜視図である。図13は、本考案の第3実施形態による薄板型ヒートパイプの構造を示す断面図である。本考案の第3実施形態による薄板型ヒートパイプの構造、連結関係及び効果は、第1実施形態と略同一であるため、同一部分は、ここでは詳しく述べない。本考案の第3実施形態による薄板型ヒートパイプの構造は、ウィック構造2が第1のウィック構造21、第2のウィック構造22及び第3のウィック構造23を具える点が第1実施形態と異なる。第1のウィック構造21、第2のウィック構造22及び第3のウィック構造23は、チャンバ100内に間隔を空けて配列される。また、第1のウィック構造21と、対向する第2の平板12の第3の側壁1003との間には、第1の通路51が画定される。また、第1のウィック構造21と、第2のウィック構造22と、第3のウィック構造23と、の間には、それぞれ、第2の通路52及び第3の通路53が画定される。また、第3のウィック構造23と、対向する第2の平板12の第4の側壁1004と、の間には、第4の通路54が画定される。
第1の通路51、第2の通路52、第3の通路53及び第4の通路54は、気体状態の作動流体を流動させるために用いられる。気体状態の作動流体は、第1の通路51、第2の通路52、第3の通路53及び第4の通路54の分流作用により、第1の通路51、第2の通路52、第3の通路53及び第4の通路54に沿って第2の端部102の方向に迅速に流動する。また、液体状態の作動流体は、第1のウィック構造21、第2のウィック構造22及び第3のウィック構造23により、蒸発部に急速に回流する。これにより、作動流体の循環効率を有効に高め、有効に熱を遠端に伝達することができる。
ここで、ウィック構造2の数は、第1のウィック構造21、第2のウィック構造22及び第3のウィック構造23の3つに限定されない。即ち、本体10の幅、所望の熱伝導効率及び作動流体の循環効率に基づき、ウィック構造2の数を決定することができる。図14を参照する。図14に示すように、チャンバ100内には、4つのウィック構造2が間隔を空けて配列される。即ち、ウィック構造2は、第4のウィック構造24をさらに含む。第4のウィック構造24は、第3のウィック構造23と、第2の平板12の第4の側壁1004と、の間に設けられる。第4のウィック構造24により、第4の通路54及び第5の通路55が画定される。第5の通路55は、前述の第1の通路51の効果は、第2の通路52、第3の通路53及び第4の通路54と同一であるため、ここでは詳しく述べない。
図15を参照する。図15は、第1のウィック構造21、第2のウィック構造22及び第3のウィック構造23の他の実施形態を示す斜視図である。図15に示すように、第1のウィック構造21、第2のウィック構造22及び第3のウィック構造23の一方の端部は、少なくとも1つの拡張部26を有する。拡張部26は、第1の端部101と隣り合う位置に設けられる。また、各拡張部26は、それぞれ、第1のウィック構造21、第2のウィック構造22及び第3のウィック構造23の一方の端部から両側の対応する通路の方向に突出して構成される。さらに詳細に説明すると、第1のウィック構造21の拡張部26は、第1のウィック構造21の一方の端部の両側から第1の通路51及び第2の通路52の方向に突出して構成される。第2のウィック構造22の拡張部26は、第2のウィック構造22の一方の端部の両側から第2の通路52及び第3の通路53の方向に突出して構成される。第3のウィック構造23の拡張部26は、第3のウィック構造23の一方の端部の両側から第3の通路53及び第4の通路54の方向に突出して構成される。
(第4実施形態)
図16及び図17を参照する。図16は、本考案の第4実施形態による薄板型ヒートパイプの構造を示す斜視図である。図17は、本考案の第4実施形態による薄板型ヒートパイプの構造を示す断面図である。本考案の第4実施形態による薄板型ヒートパイプの構造、連結関係及び効果は、第1実施形態と略同一であるため、同一部分は、ここでは詳しく述べない。本考案の第4実施形態による薄板型ヒートパイプの構造は、ウィック構造2が第1のウィック構造21と、第1のウィック構造21と対向する第2のウィック構造22と、を含む点が第1実施形態と異なる。また、第1のウィック構造21は、第2の平板12の第3の側壁1003と隣り合う位置に設けられ、第2のウィック構造22は、第2の平板12の第4の側壁1004と隣り合う位置に設けられる。また、第1のウィック構造21及び第2のウィック構造22は、チャンバ100と共に通路5を画定する。
第1のウィック構造21及び第2のウィック構造22により、液体状態の作動流体は、蒸発部に迅速に回流する。これにより、作動流体の循環効率を有効に高め、有効に熱を遠端に伝達することができる。
図18を参照する。図18は、第1のウィック構造21及び第2のウィック構造22の他の実施形態を示す斜視図である。図18に示すように、第1のウィック構造21の一方の端部は、第1の拡張部261を有する。また、第2のウィック構造22の一方の端部は、第2の拡張部262を有する。第1の拡張部261及び第2の拡張部262は、第1の端部101と隣り合う位置に設けられる。第1の拡張部261は、対応する通路5の方向に突出して構成される。第2の拡張部262は、第1の拡張部261の方向(即ち、対応する通路5及び第1の拡張部261の方向)に突出して構成される。
上述したことから分かるように、本考案の薄板型ヒートパイプの構造1は、設計上の融通性が高く、重量が軽い上、ベーパチャンバと同等の薄さ又はベーパチャンバより薄型化することができる。また、ヒートパイプと同等の熱を迅速に遠端に伝達する機能を有し、有効にコストを節約できる上、極めて優れた放熱効果を実現することができる。
上述したことから分かるように、本考案の薄板型ヒートパイプは、従来技術と比較して以下(1)〜(5)の長所を有する。
(1)極めて優れた放熱効果を有する。
(2)重量が軽く、厚さが薄く、遠端に熱を迅速に伝達する機能を有する。
(3)コストを節約できる。
(4)作動流体の循環効率を高めることができる。
(5)設計上の融通性が高い。
以上の説明は、本考案の好適な実施形態を示すものであり、上述の本考案の方法、形状、構造、装置を利用した変更も全て本考案の範囲に含まれる。
1 薄板型ヒートパイプの構造
10 本体
100 チャンバ
1001 第1の側壁
1002 第2の側壁
1003 第3の側壁
1004 第4の側壁
101 第1の端部
102 第2の端部
11 第1の平板
12 第2の平板
13 ウィック構造
15 空間
2 ウィック構造
201 第1の側面
202 第2の側面
203 第3の側面
204 第4の側面
21 第1のウィック構造
22 第2のウィック構造
23 第3のウィック構造
24 第4のウィック構造
26 拡張部
261 第1の拡張部
262 第2の拡張部
3 ベース
4 放熱器
5 通路
51 第1の通路
52 第2の通路
53 第3の通路
54 第4の通路
55 第5の通路

Claims (20)

  1. 本体及び少なくとも1つのウィック構造を備える薄板型ヒートパイプの構造であって、
    前記本体は、作動流体を充填する空間を構成するチャンバを発熱素子に接する第1の端部と、前記第1の端部の反対側に位置して放熱器に接する第2の端部との間に形成し、
    前記少なくとも1つのウィック構造は、前記チャンバ内に該チャンバに沿って前記第1の端部から前記第2の端部の間に延長して配置されると共に、前記チャンバ内に作動流体を導く少なくとも1つの通路を画定した、ことを特徴とする薄板型ヒートパイプの構造。
  2. 前記チャンバ内は、第1の側壁と、前記第1の側壁と対向する第2の側壁と、第3の側壁と、前記第3の側壁と対向する第4の側壁と、を有し、前記チャンバ内には、作動流体が充填されることを特徴とする請求項1に記載の薄板型ヒートパイプの構造。
  3. 前記ウィック構造は、第1の側面と、前記第1の側面と反対側の第2の側面と、第3の側面と、前記第3の側面と反対側の第4の側面と、を有し、前記第1の側面及び前記第2の側面は、前記第1の側壁及び前記第2の側壁にそれぞれ当接され、前記第3の側面と前記第3の側壁との間には、第1の通路が画定され、前記第4の側面と第4の側壁との間には、第2の通路が画定されることを特徴とする請求項2に記載の薄板型ヒートパイプの構造。
  4. 前記ウィック構造の一方の端部には、少なくとも1つの拡張部が設けられ、前記拡張部は、前記第1の端部と隣り合う位置に設けられ、前記ウィック構造の一方の端部の側辺から、対応する前記通路の方向に突出して構成されることを特徴とする請求項1に記載の薄板型ヒートパイプの構造。
  5. 前記ウィック構造の一方の端部には、少なくとも1つの拡張部が設けられ、前記拡張部は、前記第1の端部と隣り合う位置に設けられ、前記拡張部は、前記第3の側面及び第4の側面から、対応する前記第1の通路及び前記第2の通路の方向に突出して構成されることを特徴とする請求項3に記載の薄板型ヒートパイプの構造。
  6. 前記ウィック構造は、第1のウィック構造、第2のウィック構造及び第3のウィック構造を有し、前記第1のウィック構造と、対向する前記第3の側壁と、の間には、第1の通路が画定され、前記第1のウィック構造と、前記第2のウィック構造と、前記第3のウィック構造と、の間には、第2の通路及び第3の通路がそれぞれ画定され、前記第3のウィック構造と、対向する前記第4の側壁と、の間には、第4の通路が画定されることを特徴とする請求項2に記載の薄板型ヒートパイプの構造。
  7. 前記ウィック構造は、第4のウィック構造をさらに具え、前記第4のウィック構造は、前記第3のウィック構造と前記第4の側壁との間に設けられ、前記第4のウィック構造により、第4の通路及び第5の通路が画定されることを特徴とする請求項6に記載の薄板型ヒートパイプの構造。
  8. 前記第1のウィック構造、前記第2のウィック構造、前記第3のウィック構造及び前記第4のウィック構造は、間隔を空けて設けられることを特徴とする請求項7に記載の薄板型ヒートパイプの構造。
  9. 前記第1のウィック構造、前記第2のウィック構造及び前記第3のウィック構造の一方の端部は、少なくとも1つの拡張部を有し、前記拡張部は、前記第1の端部と隣り合う位置に設けられ、前記各拡張部は、それぞれ、前記第1のウィック構造、前記第2のウィック構造及び前記第3のウィック構造の一方の端部から両側の対応する通路の方向に突出して構成されることを特徴とする請求項6に記載の薄板型ヒートパイプの構造。
  10. 前記ウィック構造は、第1のウィック構造と、前記第1のウィック構造と対向する第2のウィック構造と、を有し、前記第1のウィック構造は、前記第3の側壁と隣り合う位置に設けられ、前記第2のウィック構造は、前記第4の側壁と隣り合う位置に設けられ、前記第1のウィック構造及び前記第2のウィック構造は、前記チャンバと共に通路を画定することを特徴とする請求項2に記載の薄板型ヒートパイプの構造。
  11. 前記第1のウィック構造の一方の端部は、第1の拡張部を有し、前記第1の拡張部は、前記第1の端部と隣り合う位置に設けられると共に、対応する通路の方向に突出して構成されることを特徴とする請求項10に記載の薄板型ヒートパイプの構造。
  12. 前記第2のウィック構造の一方の端部は、第2の拡張部を有し、前記第2の拡張部は、前記第1の端部と隣り合う位置に設けられると共に、前記第1の拡張部と対向する方向に突出して構成されることを特徴とする請求項11に記載の薄板型ヒートパイプの構造。
  13. 前記ウィック構造は、粉末焼結体であることを特徴とする請求項1に記載の薄板型ヒートパイプの構造。
  14. 前記ウィック構造は、扁平状の金属体であり、前記金属体上には、ウィック構造が形成されることを特徴とする請求項1に記載の薄板型ヒートパイプの構造。
  15. 前記ウィック構造は、メッシュ、繊維、粉末焼結体、メッシュと粉末焼結体との組み合わせ又は微小溝からなることを特徴とする請求項14に記載の薄板型ヒートパイプの構造。
  16. 前記ウィック構造は、扁平状の金属体であり、前記金属体の外縁には、粉末焼結体リングが嵌設されることを特徴とする請求項1に記載の薄板型ヒートパイプの構造。
  17. 前記本体の一方の端部には、少なくとも1つの発熱素子が貼設され、前記本体の他方の端部には、少なくとも1つの放熱器が対向接続されることを特徴とする請求項1に記載の薄板型ヒートパイプの構造。
  18. 前記本体は、第1の平板と、前記第1の平板と対向接続される第2の平板と、を有し、前記第1の平板及び前記第2の平板の内側には、ウィック構造が設けられることを特徴とする請求項3に記載の薄板型ヒートパイプの構造。
  19. 前記ウィック構造の他方の端部と、前記第2の端部と、の間には、空間が形成され、前記空間は、前記第1の通路及び前記第2の通路と連通することを特徴とする請求項18に記載の薄板型ヒートパイプの構造。
  20. 前記金属体は、アルミニウム、銅、銀又は合金からなることを特徴とする請求項14又は16に記載の薄板型ヒートパイプの構造。
JP2011001519U 2011-03-22 2011-03-22 薄板型ヒートパイプの構造 Expired - Fee Related JP3168202U (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011001519U JP3168202U (ja) 2011-03-22 2011-03-22 薄板型ヒートパイプの構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011001519U JP3168202U (ja) 2011-03-22 2011-03-22 薄板型ヒートパイプの構造

Publications (1)

Publication Number Publication Date
JP3168202U true JP3168202U (ja) 2011-06-02

Family

ID=54879208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011001519U Expired - Fee Related JP3168202U (ja) 2011-03-22 2011-03-22 薄板型ヒートパイプの構造

Country Status (1)

Country Link
JP (1) JP3168202U (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5180385B1 (ja) * 2012-03-08 2013-04-10 株式会社Welcon ベーパチャンバ
JP2020038051A (ja) * 2018-08-31 2020-03-12 大日本印刷株式会社 ベーパーチャンバー、電子機器
CN114857967A (zh) * 2022-05-17 2022-08-05 中国科学院工程热物理研究所 超薄均热板及其制备方法、电子设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5180385B1 (ja) * 2012-03-08 2013-04-10 株式会社Welcon ベーパチャンバ
JP2020038051A (ja) * 2018-08-31 2020-03-12 大日本印刷株式会社 ベーパーチャンバー、電子機器
JP7363199B2 (ja) 2018-08-31 2023-10-18 大日本印刷株式会社 ベーパーチャンバー、電子機器
CN114857967A (zh) * 2022-05-17 2022-08-05 中国科学院工程热物理研究所 超薄均热板及其制备方法、电子设备
CN114857967B (zh) * 2022-05-17 2024-04-16 中国科学院工程热物理研究所 超薄均热板及其制备方法、电子设备

Similar Documents

Publication Publication Date Title
US10077945B2 (en) Heat dissipation device
US20170153066A1 (en) Heat dissipation device
EP2431701B1 (en) Heat dissipation device and radio frequency module with same
US9170058B2 (en) Heat pipe heat dissipation structure
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
TWI443944B (zh) Thin hot plate structure
CN111863746B (zh) 一种散热装置、电路板及电子设备
US20110088873A1 (en) Support structure for flat-plate heat pipe
US10451355B2 (en) Heat dissipation element
US20170343295A1 (en) Integrated heat dissipation device
US9273909B2 (en) Heat pipe structure, and thermal module and electronic device using same
JP3156954U (ja) 平板型ヒートパイプの支持構造
JP3168202U (ja) 薄板型ヒートパイプの構造
JP2007263427A (ja) ループ型ヒートパイプ
JP2008311399A (ja) ヒートシンク
CN107306486B (zh) 整合式散热装置
TWI802373B (zh) 散熱模組
TWI604173B (zh) Heat sink device applied to loop heat pipe and manufacturing method of its shell
CN216385225U (zh) 回路热管
JP3173270U (ja) ヒートパイプ
TW201041492A (en) Heat dissipation device
TWM477602U (zh) 散熱單元
WO2017082127A1 (ja) 電子機器の冷却装置
CN106793671B (zh) 散热单元
WO2013102974A1 (ja) 冷却装置

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees