JP3161321B2 - Absorption heat pump - Google Patents

Absorption heat pump

Info

Publication number
JP3161321B2
JP3161321B2 JP03029696A JP3029696A JP3161321B2 JP 3161321 B2 JP3161321 B2 JP 3161321B2 JP 03029696 A JP03029696 A JP 03029696A JP 3029696 A JP3029696 A JP 3029696A JP 3161321 B2 JP3161321 B2 JP 3161321B2
Authority
JP
Japan
Prior art keywords
solution
absorber
heat exchanger
condenser
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03029696A
Other languages
Japanese (ja)
Other versions
JPH09229509A (en
Inventor
隆仁 石井
恭宏 河本
正満 近藤
敬 澤田
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03029696A priority Critical patent/JP3161321B2/en
Publication of JPH09229509A publication Critical patent/JPH09229509A/en
Application granted granted Critical
Publication of JP3161321B2 publication Critical patent/JP3161321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、作動媒体としてア
ンモニア、水等を用いる家庭用吸収式ヒートポンプに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a domestic absorption heat pump using ammonia, water or the like as a working medium.

【0002】[0002]

【従来の技術】従来この種の吸収式ヒートポンプは、家
庭用ものはなく業務用であり、図9にその冷媒回路を示
したように、発生器と精溜器とが一体に構成された発生
・精溜器50と、1次側に冷媒流路51と2次側に冷却
水流路52を備えた凝縮器53と、凝縮器冷媒流路51
出口に設けられた冷媒タンク54と、過冷却器55と、
膨張弁56と、1次側に冷媒流路57と2次側に冷水流
路58を備えた蒸発器59と、溶液熱交換器60と、減
圧弁61と、1次側に冷媒流路62と2次側に冷却水流
路63を備えた吸収器64と、前記吸収器冷媒流路62
出口に設けられた濃溶液タンク65と、溶液ポンプ66
と、前記各要素部品を接続する冷媒配管67と、前記凝
縮器及び吸収器の2次側冷却水流路を連結してなる冷却
水回路68と、前記蒸発器の2次側冷水回路を含む冷水
回路69とから構成されていた。冷房時には、冷水回路
69の冷水を室内側放熱機に、冷却水回路68の温水を
室外側放熱器に循環させる。また、暖房時には、冷水回
路69の冷水を室外側放熱機に、冷却水回路68の温水
を室内側放熱器に循環させる。冷房・暖房時の流路の切
り換えは、例えば8方弁を用いて行う。なお、室外及び
室内放熱器、8方弁は省略している。
2. Description of the Related Art Conventionally, this type of absorption heat pump is not for domestic use but is for business use. As shown in FIG. 9, a refrigerant circuit is shown in FIG. A rectifier 50, a condenser 53 having a refrigerant flow path 51 on the primary side and a cooling water flow path 52 on the secondary side, and a condenser refrigerant flow path 51
A refrigerant tank 54 provided at the outlet, a subcooler 55,
An expansion valve 56, an evaporator 59 having a refrigerant flow path 57 on the primary side and a cold water flow path 58 on the secondary side, a solution heat exchanger 60, a pressure reducing valve 61, and a refrigerant flow path 62 on the primary side. An absorber 64 having a cooling water channel 63 on the secondary side and the absorber refrigerant channel 62
A concentrated solution tank 65 provided at the outlet;
And a cooling water circuit 68 which connects a refrigerant pipe 67 connecting the respective component parts, a secondary cooling water flow path of the condenser and the absorber, and a cold water including a secondary cooling water circuit of the evaporator. And a circuit 69. During cooling, the cold water in the cold water circuit 69 is circulated to the indoor radiator, and the hot water in the cooling water circuit 68 is circulated to the outdoor radiator. During heating, the chilled water in the chilled water circuit 69 is circulated to the outdoor radiator, and the warm water in the chilled water circuit 68 is circulated to the indoor radiator. Switching of the flow path at the time of cooling / heating is performed using, for example, an 8-way valve. The outdoor and indoor radiators and the eight-way valve are omitted.

【0003】次に、動作及び性能について説明する。発
生・精溜器50内には、多量のアンモニア水濃溶液が満
たされており、こうした構成は満液式と呼ばれている。
発生・精溜器50は、大口径の筒状塔70に、金属管を
コイル状に巻いた構造(一般に、蛇管式熱交換器と呼ば
れる)の分縮器71とその回りに配置された充填材72
とからなる分縮部Dと、充填材73が充填された精溜段
部Eと、アンモニア水濃溶液(アンモニア濃度が高い水
溶液。以下、濃溶液と呼ぶ)流入管74とアンモニア水
希溶液(アンモニア濃度が低い水溶液。以下、希溶液と
呼ぶ)取り出し管75とを備えるとともに、多量の濃溶
液が保持された発生部Fと、発生部Fを加熱するガスバ
ーナー等の加熱源76とから構成されていた。
Next, the operation and performance will be described. The generator / rectifier 50 is filled with a large amount of aqueous ammonia solution, and such a configuration is called a full-liquid type.
The generator / rectifier 50 is composed of a large-diameter cylindrical tower 70 in which a metal tube is wound in a coil shape (generally referred to as a coiled-tube heat exchanger) and a packing device arranged around the same. Lumber 72
, A rectification step E filled with the filler 73, an ammonia water concentrated solution (aqueous solution having a high ammonia concentration; hereinafter, referred to as a concentrated solution) inflow pipe 74, and an ammonia water dilute solution (ammonia). An aqueous solution having a low concentration, which is hereinafter referred to as a dilute solution) is provided with a take-out tube 75, and includes a generating unit F in which a large amount of concentrated solution is held, and a heating source 76 such as a gas burner for heating the generating unit F. I was

【0004】溶液ポンプ66により濃溶液は、発生・精
溜器50の分縮器Dに送られそこで分縮熱により加熱さ
れる(分縮熱回収)。次に、溶液熱交換器60で精溜器
の希溶液取り出し管75より戻ってくる高温の希溶液と
熱交換し昇温する。続いて、濃溶液は、濃溶液流入管7
4より発生・精溜器50に導入され、加熱源76により
発生部Fにある濃溶液は加熱され蒸気を発生する。発生
した蒸気は、圧力・温度に見合う平衡蒸気であり、アン
モニアとともに水蒸気を含んでいる。発生した平衡蒸気
は、精溜段部E、分縮部Dと上昇してゆくが、分縮器7
1で生じた凝縮液と精溜段部Eで接触し冷却される。そ
の時、蒸気中の水蒸気の方が液化し易く、ほとんどの水
蒸気と小量のアンモニア蒸気は凝縮して滴下する。一
方、ほとんどのアンモニア蒸気はそのまま上昇して行
く。こうした分縮器71の冷却によるアンモニア蒸気の
濃縮過程が精溜段部Eの中で繰り返し行われる結果、塔
頂部の精溜ガス取り出し管67aからは高純度のアンモ
ニア蒸気を取り出す事ができる。
The concentrated solution is sent by the solution pump 66 to the condensing device D of the generating / rectifying device 50, where it is heated by the heat of partial condensing (recovering heat of condensing heat). Next, the solution heat exchanger 60 exchanges heat with a high-temperature dilute solution returned from the dilute solution take-out tube 75 of the rectifier to raise the temperature. Subsequently, the concentrated solution is supplied to the concentrated solution inflow pipe 7.
4, the concentrated solution in the generating section F is heated by the heating source 76 to generate steam. The generated steam is equilibrium steam corresponding to the pressure and temperature, and contains steam together with ammonia. The generated equilibrium vapor rises in the rectification stage E and the decompression unit D.
The condensate produced in step 1 comes into contact with the rectification stage E and is cooled. At that time, the steam in the steam is easier to liquefy, and most of the steam and a small amount of ammonia vapor are condensed and dropped. On the other hand, most ammonia vapor goes up as it is. As a result of the process of concentrating the ammonia vapor by the cooling of the decomposer 71 being repeatedly performed in the rectification stage E, high-purity ammonia vapor can be extracted from the rectification gas extraction pipe 67a at the top of the tower.

【0005】一方、高温・低濃度の平衡液体(希溶液)
は、発生・精溜器50の希溶液取り出し管75より溶液
熱交換器60に至り、そこで濃溶液と熱交換することに
より冷却される。その後、減圧弁61を経て吸収器64
に入る。また、低温・高濃度のアンモニア蒸気は、精溜
器の精溜ガス取り出し管67aより凝縮器53、過冷却
器55、膨張弁56、蒸発器59、過冷却器55を経て
吸収器64に入る。蒸発器59で冷水を作り出す事がで
きる。吸収器64内では、吸収熱が奪われることによ
り、希溶液にアンモニアガスが吸収され濃溶液が再生さ
れる。
On the other hand, a high-temperature and low-concentration equilibrium liquid (dilute solution)
Reaches the solution heat exchanger 60 from the dilute solution outlet pipe 75 of the generation / rectification unit 50, where it is cooled by heat exchange with the concentrated solution. After that, the pressure in the absorber 64
to go into. The low-temperature and high-concentration ammonia vapor enters the absorber 64 via the condenser 53, the subcooler 55, the expansion valve 56, the evaporator 59, and the subcooler 55 from the rectification gas outlet pipe 67a of the rectifier. . Cold water can be produced by the evaporator 59. In the absorber 64, the absorption heat is deprived, so that the ammonia gas is absorbed in the dilute solution and the concentrated solution is regenerated.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
吸収式ヒートポンプでは、以下に記したような課題を有
していた。
However, the conventional absorption heat pump has the following problems.

【0007】先ず、業務用でサイズが大きく、かつ発生
・精溜器を満液式としているので、アンモニア水の充填
量が多く、漏洩時には、大きな被害を及ぼす危険性があ
った。
First, since the size is large for business use and the generating / rectifying unit is of a liquid filling type, a large amount of ammonia water is charged, and there is a danger of serious damage at the time of leakage.

【0008】また、発生・精溜器内で生じた希溶液は、
流入する濃溶液と混合するため、発生・精溜器の希溶液
取り出し管より流出する希溶液(吸収液となる)の濃度
は高くなる。また、溶液熱交換器41に流入する濃溶液
の温度は、精溜器で回収する分縮熱により高くなるた
め、精溜器より流出する希溶液(吸収器内でアンモニア
ガスを吸収するための吸収液となる)の温度を濃溶液の
温度以下にすることができない(精溜器の分縮部の構成
を基本方式と呼ぶ)。その結果、溶液ポンプの循環量を
多くするとともに、希溶液の温度を下げる必要があり、
吸収熱はもとより多量の熱を系外に廃棄しなければなら
ず、システムの成績係数が低かった。
Further, the dilute solution generated in the generator / rectifier is:
Since it is mixed with the inflowing concentrated solution, the concentration of the dilute solution (which becomes an absorbing solution) flowing out from the dilute solution take-out pipe of the generator / rectifier becomes high. Also, the temperature of the concentrated solution flowing into the solution heat exchanger 41 becomes higher due to the partial heat of condensation recovered in the rectifier, so that the dilute solution flowing out of the rectifier (for absorbing ammonia gas in the absorber). The temperature of the solution cannot be reduced below the temperature of the concentrated solution (the structure of the decomposing section of the rectifier is called the basic method). As a result, it is necessary to increase the circulation amount of the solution pump and lower the temperature of the dilute solution,
A large amount of heat as well as the absorbed heat had to be discarded outside the system, and the coefficient of performance of the system was low.

【0009】また、蒸発器、低圧側過冷却器を経て吸収
器に至る冷媒ガス温度よりも希溶液温度の方が高いため
吸収器内での吸収速度が遅く、必要以上に伝熱面積を増
した吸収器が必要であった。
Further, since the temperature of the dilute solution is higher than the temperature of the refrigerant gas reaching the absorber via the evaporator and the low-pressure side subcooler, the absorption speed in the absorber is slow, and the heat transfer area is increased more than necessary. A required absorber was needed.

【0010】また、サイクル動作について言えば、希溶
液の循環量は、低圧が同じとすれば、サイクルの高圧
(低圧との圧力差)に依存している。そのため、外気温
が低い場合には、2時側冷却水温度が下がるため、高圧
が下がるとともに、凝縮器熱交換性能が増し、凝縮器出
口のアンモニア冷媒は十分な過冷却状態となる。そのた
め、場合によっては、蒸発器を経て低圧側過冷却器を出
るアンモニアガスが未蒸発になることがあった。そうす
ると、蒸発温度が上昇するとともに、希溶液循環量が低
下し、サイクル性能が低下する動作が見られた。なお、
ここでは、2次側冷却水の流し方を、熱交換器の小型化
を目的としては、パラレルに吸収器と凝縮器に流す方式
とした。一方、吸収器から凝縮器にシリーズに流す方式
もあるが、その場合には凝縮器に流入する冷却水温度が
吸収熱により上昇するため凝縮器を大きく設計する必要
がある。
[0010] Regarding the cycle operation, the circulation amount of the dilute solution depends on the high pressure of the cycle (the pressure difference from the low pressure) if the low pressure is the same. Therefore, when the outside air temperature is low, the 2:00 side cooling water temperature is lowered, so that the high pressure is reduced, the condenser heat exchange performance is increased, and the ammonia refrigerant at the condenser outlet is in a sufficiently supercooled state. Therefore, in some cases, the ammonia gas exiting the low-pressure subcooler via the evaporator may not be evaporated. Then, as the evaporating temperature rises, the circulation amount of the dilute solution decreases, and an operation in which the cycle performance decreases is observed. In addition,
Here, for the purpose of reducing the size of the heat exchanger, the flow of the secondary-side cooling water was set to a method of flowing the absorber and the condenser in parallel. On the other hand, there is also a system in which the refrigerant flows from the absorber to the condenser in series, but in this case, the temperature of the cooling water flowing into the condenser rises due to the absorbed heat, so that the condenser needs to be designed large.

【0011】また、蒸発器内の冷媒の流れを下から上向
きに流す構成としているため、蒸発温度が低い状態で長
時間運転した場合には、次第に蒸発器内にアンモニアガ
ス中の水分が蓄積する恐れがあった。水分が蓄積する
と、蒸発温度が上昇し、サイクル性能の低下をおこす。
また、なにがしかの不安定動作で、蒸発器に水分が流入
した場合には、この水分を排斥するために長時間を要
し、その間サイクル性能が低い状態となっていた。こう
した現象の一因としては、通常、精溜器の塔頂部より流
出する精溜ガスのアンモニア濃度としては、99.5w
t%程度に設計されている事が考えられる。その理由と
しては、このアンモニア濃度でサイクル的には支障がな
く、この濃度以上に精溜ガス濃度を高めるためには、精
溜器分縮器をかなり大きく設計しなければならず、コス
トアップにつながるためである。
Further, since the flow of the refrigerant in the evaporator is made to flow upward from below, when the evaporator is operated for a long time at a low evaporation temperature, the moisture in the ammonia gas gradually accumulates in the evaporator. There was fear. When moisture accumulates, the evaporating temperature rises, causing a decrease in cycle performance.
Further, when moisture flows into the evaporator due to some unstable operation, it takes a long time to repel the moisture, and the cycle performance is low during that time. One cause of such a phenomenon is that the ammonia concentration of the rectified gas flowing out from the top of the rectifier is usually 99.5 watts.
It is conceivable that it is designed to be about t%. The reason for this is that this ammonia concentration does not hinder the cycle, and in order to increase the concentration of the rectified gas beyond this concentration, the rectifier decomposer must be designed to be quite large, resulting in cost increase. It is to connect.

【0012】また、精溜器塔頂部から凝縮器まで直結さ
れているため、場合によっては、精溜ガスに混じって小
さい液滴(ミスト)が精溜器より流出した場合には、上
述したサイクル性能の低下をおこす。
In addition, since the liquid is directly connected from the top of the rectifier tower to the condenser, if the small droplets (mist) mixed with the rectified gas flow out of the rectifier, the above-described cycle may be performed. Causes performance degradation.

【0013】また、吸収器の設計としては、サイクル性
能が最大で吸収器出口の濃溶液の過冷却度をできるだけ
小さくとるように設計されている。吸収器出口の過冷却
度を大きくとりすぎるとサイクルの成績係数が低くなる
からである。また、溶液ポンプとしては、従来ダイアフ
ラム式ポンプが使われているが、定期的なメンテが必要
で、かつサイズが大きいので、家庭用としては、例えば
トロコイド形ポンプが用いられる。そして、従来の構成
では、サイクル動作によっては、濃溶液の過冷却度が0
となることがあり、その場合、溶液ポンプがキャビテー
ション(ガス咬み)をおこしていた。キャビテーション
をおこすと溶液ポンプの信頼生を著しく損なう。
The absorber is designed so that the cycle performance is maximum and the degree of supercooling of the concentrated solution at the outlet of the absorber is as small as possible. This is because if the degree of supercooling at the outlet of the absorber is set too large, the coefficient of performance of the cycle becomes low. A diaphragm pump is conventionally used as a solution pump. However, periodic maintenance is required and the size is large. For home use, for example, a trochoid pump is used. In the conventional configuration, depending on the cycle operation, the degree of supercooling of the concentrated solution becomes zero.
In such a case, the solution pump caused cavitation (gas biting). Cavitation significantly impairs the reliability of the solution pump.

【0014】また、要素部品及び配管の構成材料として
は、鉄またはステンレス材料が用いられるが、そのまま
では材料がアンモニア水により腐食をおこす。そのた
め、系内に、アンモニア水とともに、防錆剤として重ク
ロム酸アルカリ金属が添加されていた。しかし、この防
錆剤は水溶性であるが、アンモニアに対しては不溶性で
あるので、アンモニア回路(精溜器塔頂から蒸発器を経
て吸収器に至る冷媒回路)に流入した場合には、膨張弁
で固着する恐れがあった。
Further, iron or stainless steel is used as a constituent material of the element parts and the piping, but the material is corroded by ammonia water as it is. For this reason, alkali metal dichromate has been added to the system together with aqueous ammonia as a rust preventive. However, since this rust preventive is water-soluble but insoluble in ammonia, when it flows into the ammonia circuit (a refrigerant circuit from the top of the rectifier to the absorber through the evaporator), There was a risk of sticking with the expansion valve.

【0015】本発明は、上記課題を解決するもので、小
型で、安定したサイクル動作が可能で、サイクル成績係
数が高く、かつ信頼性の高い家庭用吸収式ヒートポンプ
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a home-use absorption heat pump having a small size, capable of performing stable cycle operation, having a high cycle coefficient of performance, and having high reliability. .

【0016】[0016]

【課題を解決するための手段】本発明の吸収式ヒートポ
ンプは、上記課題を解決するために、精溜器と、凝縮器
と、前記凝縮器出口に設けられた冷媒タンクと、高圧側
冷媒回路と低圧側冷媒回路とを有する過冷却器と、膨張
弁と、蒸発器と、溶液熱交換器と、減圧弁と、吸収器
と、前記吸収器出口に設けられた濃溶液タンクと、溶液
ポンプと、再生器と、前記蒸発器から過冷却器の低圧側
冷媒回路を経て吸収器に至る冷媒ガスと、精溜器下部よ
り流出し溶液熱交換器、減圧弁を経て吸収器に至る希溶
液との熱交換を行うガス−希溶液熱交換器と、前記各要
素部品を連結する配管とを設けて構成してある。
In order to solve the above-mentioned problems, an absorption heat pump according to the present invention comprises a rectifier, a condenser, a refrigerant tank provided at the condenser outlet, and a high-pressure side refrigerant circuit. A supercooler having a low pressure side refrigerant circuit, an expansion valve, an evaporator, a solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, and a solution pump. A regenerator, a refrigerant gas from the evaporator to the absorber through the low-pressure side refrigerant circuit of the subcooler, and a dilute solution flowing out of the lower part of the rectifier to the solution heat exchanger and the absorber through the pressure reducing valve. And a gas-dilute solution heat exchanger for exchanging heat with the components, and a pipe for connecting the respective component parts.

【0017】本発明は、上記した構成によって、蒸発器
から低圧側過冷却器を経て吸収器に至るアンモニアガス
と、精溜器下部から流出し溶液熱交換器・減圧弁を経て
吸収器に至る希溶液との熱交換を行い、アンモニアガス
温度を高く、希溶液温度を低くして、アンモニアを確実
にガス化させて吸収器に導入する事ができる。また、同
時に希溶液温度を下げるため、吸収器内での希溶液によ
る吸収速度を高める事ができる。
According to the present invention, the ammonia gas from the evaporator to the absorber through the low-pressure side subcooler and the ammonia gas flowing from the lower part of the rectifier to the absorber through the solution heat exchanger and the pressure reducing valve by the above structure. By performing heat exchange with the dilute solution, the ammonia gas temperature is raised, and the dilute solution temperature is lowered, so that ammonia can be surely gasified and introduced into the absorber. At the same time, since the temperature of the diluted solution is lowered, the absorption rate of the diluted solution in the absorber can be increased.

【0018】[0018]

【発明の実施の形態】本発明の請求項1に係る吸収式ヒ
ートポンプは、精溜器と、凝縮器と、前記凝縮器出口に
設けられた冷媒タンクと、高圧側冷媒回路と低圧側冷媒
回路とを有する過冷却器と、膨張弁と、蒸発器と、溶液
熱交換器と、減圧弁と、吸収器と、前記吸収器出口に設
けられた濃溶液タンクと、溶液ポンプと、再生器と、前
記蒸発器から過冷却器の低圧側冷媒回路を経て吸収器に
至る冷媒ガスと、精溜器下部より流出し溶液熱交換器、
減圧弁を経て吸収器に至る希溶液との熱交換を行うガス
−希溶液熱交換器と、前記各要素部品を連結する配管と
を備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An absorption heat pump according to a first aspect of the present invention comprises a rectifier, a condenser, a refrigerant tank provided at an outlet of the condenser, a high-pressure refrigerant circuit and a low-pressure refrigerant circuit. A supercooler having an expansion valve, an evaporator, a solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, and a regenerator. A refrigerant gas from the evaporator to the absorber via the low-pressure side refrigerant circuit of the subcooler, and a solution heat exchanger flowing out from the lower part of the rectifier,
A gas-dilute solution heat exchanger for exchanging heat with the dilute solution reaching the absorber via the pressure reducing valve, and a pipe for connecting the respective component parts are provided.

【0019】したがってこの構成によれば、蒸発器から
低圧側過冷却器を経て吸収器に至るアンモニアガスと、
精溜器下部から流出し溶液熱交換器・減圧弁を経て吸収
器に至る希溶液との熱交換を行い、アンモニアガス温度
を高く、希溶液温度を低くして、アンモニアを確実にガ
ス化させて吸収器に導入する事ができる。また、同時に
希溶液温度を下げるため、吸収器内での希溶液による吸
収速度を高める事ができる。
Therefore, according to this configuration, ammonia gas from the evaporator to the absorber via the low-pressure subcooler,
Heat exchange with the dilute solution flowing out of the lower part of the rectifier and passing through the solution heat exchanger / reducing valve to the absorber, and raise the ammonia gas temperature and lower the dilute solution temperature to reliably gasify ammonia. Can be introduced into the absorber. At the same time, since the temperature of the diluted solution is lowered, the absorption rate of the diluted solution in the absorber can be increased.

【0020】また請求項2に係る吸収式ヒートポンプ
は、精溜器と、凝縮器と、前記凝縮器出口に設けられた
冷媒タンクと、過冷却器と、膨張弁と、蒸発器と、溶液
熱交換器と、減圧弁と、吸収器と、前記吸収器出口に設
けられた濃溶液タンクと、溶液ポンプと、前記各要素部
品を連結する配管とを備え、前記蒸発器と過冷却器の下
に吸収器を配置するとともに、蒸発器内の冷媒の流れを
下向きとしてあり、水分が冷媒に混入しても確実に蒸発
器より排出する事ができる。
According to a second aspect of the present invention, there is provided an absorption heat pump, comprising: a rectifier, a condenser, a refrigerant tank provided at an outlet of the condenser, a supercooler, an expansion valve, an evaporator, a solution heat An exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the outlet of the absorber, a solution pump, and a pipe connecting the respective component parts are provided. In addition to the arrangement of the absorber, the flow of the refrigerant in the evaporator is directed downward, so that even if moisture is mixed in the refrigerant, it can be reliably discharged from the evaporator.

【0021】また請求項3に係る吸収式ヒートポンプ
は、精溜器と、凝縮器と、前記凝縮器出口に設けられた
冷媒タンクと、高圧側冷媒回路と低圧側冷媒回路とを有
する過冷却器と、膨張弁と、蒸発器と、溶液熱交換器
と、減圧弁と、吸収器と、前記吸収器出口に設けられた
濃溶液タンクと、溶液ポンプと、再生器と、前記凝縮器
より流出する冷媒凝縮液と、前記吸収器出口の濃溶液と
の熱交換を行う凝縮液−濃溶液熱交換器と、前記各要素
部品を連結する配管とを備えており、冷媒凝縮液により
吸収器出口濃溶液を冷却するので、溶液ポンプサクショ
ンの過冷却を確保する事ができる。
According to a third aspect of the present invention, there is provided an absorption type heat pump comprising a rectifier, a condenser, a refrigerant tank provided at an outlet of the condenser, a high pressure side refrigerant circuit and a low pressure side refrigerant circuit. , An expansion valve, an evaporator, a solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, a regenerator, and an outflow from the condenser. A refrigerant condensate, and a condensate-concentrated solution heat exchanger for performing heat exchange with the concentrated solution at the outlet of the absorber, and a pipe connecting each of the component parts. Since the concentrated solution is cooled, supercooling of the solution pump suction can be ensured.

【0022】また請求項4に係る吸収式ヒートポンプ
は、精溜器と、凝縮器と、前記凝縮器出口に設けられた
冷媒タンクと、高圧側冷媒回路と低圧側冷媒回路とを有
する過冷却器と、膨張弁と、蒸発器と、溶液熱交換器
と、減圧弁と、吸収器と、前記吸収器出口に設けられた
濃溶液タンクと、溶液ポンプと、再生器と、前記蒸発器
から過冷却器の低圧側冷媒回路を経て吸収器に至る冷媒
ガスと、前記吸収器出口の濃溶液との熱交換を行うガス
−濃溶液熱交換器と、前記ガス−濃液熱交換器を出た冷
媒ガスと、精溜器下部より流出し溶液熱交換器、減圧弁
を経て吸収器に至る希溶液との熱交換を行うガス−希溶
液熱交換器と、前記各要素部品を連結する配管とを備え
ている。すなわち、蒸発器から低圧側過冷却器を経て吸
収器に至るアンモニアガスと、吸収器出口濃溶液、及び
精溜器下部から流出し溶液熱交換器・減圧弁を経て吸収
器に至る希溶液との熱交換を2つの熱交換器を設けて行
う構成としているので、溶液ポンプサクション濃溶液の
過冷却を確保できるとともに、アンモニアを確実にガス
化させて吸収器に導入する事ができる。また、前述した
2つの熱交換器を積層式熱交換器として一体に設ける構
成としているので、熱交換器を小型にまとめることがで
きる。
According to a fourth aspect of the present invention, there is provided an absorption heat pump comprising a rectifier, a condenser, a refrigerant tank provided at an outlet of the condenser, a high-pressure side refrigerant circuit and a low-pressure side refrigerant circuit. , An expansion valve, an evaporator, a solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, a regenerator, and an evaporator. The refrigerant gas that reaches the absorber through the low-pressure side refrigerant circuit of the cooler and the gas-concentrated solution heat exchanger for performing heat exchange between the concentrated solution at the absorber outlet and the gas-condensed solution heat exchanger. Refrigerant gas, a solution heat exchanger flowing out from the lower part of the rectifier, a gas-dilute solution heat exchanger that performs heat exchange with a dilute solution reaching the absorber via a pressure reducing valve, and a pipe connecting the respective component parts. It has. That is, ammonia gas from the evaporator to the absorber via the low-pressure side subcooler, the concentrated solution at the outlet of the absorber, and the dilute solution flowing out of the lower part of the rectifier and reaching the absorber via the solution heat exchanger / pressure reducing valve. Since the heat exchange is performed by providing two heat exchangers, the supercooling of the concentrated solution of the solution pump suction can be ensured, and the ammonia can be surely gasified and introduced into the absorber. Further, since the two heat exchangers described above are integrally provided as a stacked heat exchanger, the heat exchangers can be miniaturized.

【0023】また請求項5に係る吸収式ヒートポンプ
は、冷媒−濃溶液熱交換器と冷媒−希溶液熱交換器とを
一体構成の積層式熱交換器としてあり、熱交換器の小型
化が図れる。
Further, the absorption heat pump according to the fifth aspect is a laminated heat exchanger having a refrigerant-concentrated solution heat exchanger and a refrigerant-dilute solution heat exchanger integrated with each other, so that the heat exchanger can be downsized. .

【0024】また請求項6に係る吸収式ヒートポンプ
は、精溜器と、凝縮器と、前記凝縮器出口に設けられた
冷媒タンクと、高圧側及び低圧側冷媒回路を有する過冷
却器と、膨張弁と、蒸発器と、溶液熱交換器と、減圧弁
と、前記過冷却器の低圧側冷媒回路を経て流出する冷媒
ガスの一部を、前記精溜器下部より流出し溶液熱交換
器、減圧弁を経て流出する希溶液に吸収させると共に、
その冷却を溶液ポンプ吐出濃溶液で行う熱回収器と、前
記過冷却器の低圧側冷媒回路を経て流出する残りの冷媒
ガスと、前記熱回収器より流出する熱回収液とが流入す
る吸収器と、前記吸収器出口に設けられた濃溶液タンク
と、溶液ポンプと、再生器と、前記各要素部品を連結す
る配管とを備えており、蒸発器から低圧側過冷却器を経
て吸収器に至るアンモニアガスの一部を、精溜器下部か
ら溶液熱交換器・減圧弁を経て流出する希溶液に吸収さ
せ、かつその冷却を溶液ポンプ吐出濃溶液で行う第1の
吸収器を設けた構成としているので、吸収熱の一部を再
生熱として用いる事ができる。
According to a sixth aspect of the present invention, there is provided an absorption heat pump, comprising: a rectifier, a condenser, a refrigerant tank provided at an outlet of the condenser, a supercooler having a high-pressure side and a low-pressure side refrigerant circuit, A valve, an evaporator, a solution heat exchanger, a pressure reducing valve, and a part of the refrigerant gas flowing out through the low pressure side refrigerant circuit of the supercooler, a solution heat exchanger flowing out from the lower part of the rectifier, While absorbing the dilute solution flowing out through the pressure reducing valve,
A heat recovery unit for performing the cooling by the concentrated solution discharged from the solution pump; an absorber into which the remaining refrigerant gas flowing out through the low-pressure side refrigerant circuit of the supercooler and the heat recovery liquid flowing out from the heat recovery unit flow. And a concentrated solution tank provided at the outlet of the absorber, a solution pump, a regenerator, and a pipe connecting the respective component parts, and the evaporator passes through the low-pressure side subcooler to the absorber. A structure in which a first absorber for absorbing a part of the ammonia gas reaching the dilute solution flowing out from the lower part of the rectifier through the solution heat exchanger / pressure reducing valve and cooling the solution with the concentrated solution discharged from the solution pump is provided. Therefore, part of the absorbed heat can be used as the regeneration heat.

【0025】また請求項7に係る吸収式ヒートポンプ
は、精溜器と、凝縮器と、前記凝縮器出口に設けられた
冷媒タンクと、高圧側及び低圧側冷媒回路を有する過冷
却器と、膨張弁と、蒸発器と、溶液熱交換器と、減圧弁
と、前記蒸発器から過冷却器の低圧側冷媒回路を経て吸
収器に至る冷媒ガスと、前記吸収器出口の濃溶液との熱
交換を行うガス−濃溶液熱交換器と、前記ガス−濃溶液
熱交換器を出た冷媒ガスの一部を、前記精溜器下部より
流出し溶液熱交換器、減圧弁を経て流出する希溶液に吸
収させると共に、その冷却を溶液ポンプ吐出濃溶液で行
う熱回収器と、前記ガス−濃溶液熱交換器を経て流出す
る冷媒ガスと前記熱回収器より流出する熱回収液との熱
交換を行うガス−熱回収液熱交換器と、前記ガス−熱回
収収液熱交換器より流出する冷媒ガスと熱回収液とが流
入する吸収器と、前記吸収器出口に設けられた濃溶液タ
ンクと、溶液ポンプと、再生器と、前記各要素部品を連
結する配管とを備えている。すなわち、第1の吸収器
と、蒸発器から低圧側過冷却器を経て吸収器に至るアン
モニアガスと、吸収器出口濃溶液、及び精溜器下部から
流出し溶液熱交換器・減圧弁を経て吸収器に至る希溶液
との熱交換器を設けた構成としているので、吸収熱の一
部を再生熱として用いることができ、溶液ポンプサクシ
ョン濃溶液の過冷却を確保できるとともに、アンモニア
を確実にガス化させて吸収器に導入する事ができる。
According to a seventh aspect of the present invention, there is provided an absorption heat pump comprising: a rectifier; a condenser; a refrigerant tank provided at an outlet of the condenser; a supercooler having a high-pressure side and a low-pressure side refrigerant circuit; Heat exchange between a valve, an evaporator, a solution heat exchanger, a pressure reducing valve, a refrigerant gas from the evaporator to the absorber through the low-pressure side refrigerant circuit of the subcooler, and a concentrated solution at the absorber outlet. Gas-concentrated solution heat exchanger, and a part of the refrigerant gas exiting the gas-concentrated solution heat exchanger, flowing out from the lower part of the rectifier and flowing out through the solution heat exchanger and the pressure reducing valve. And a heat recovery unit that performs cooling with the concentrated solution discharged from the solution pump, and heat exchange between the refrigerant gas flowing out through the gas-concentrated solution heat exchanger and the heat recovery liquid flowing out from the heat recovery unit. From the gas-heat recovery liquid heat exchanger and the gas-heat recovery liquid heat exchanger An absorber into which the refrigerant gas and the heat recovery liquid to be discharged flow, a concentrated solution tank provided at the outlet of the absorber, a solution pump, a regenerator, and a pipe connecting the respective component parts are provided. . That is, the first absorber, the ammonia gas from the evaporator to the absorber via the low-pressure side subcooler, the concentrated solution at the outlet of the absorber, and the solution flowing out from the lower part of the rectifier through the solution heat exchanger / pressure reducing valve. Since the heat exchanger with the dilute solution to the absorber is provided, a part of the absorption heat can be used as regeneration heat, and the supercooling of the solution pump suction concentrated solution can be ensured, and the ammonia can be reliably removed. It can be gasified and introduced into the absorber.

【0026】また請求項8に係る吸収式ヒートポンプ
は、精溜器と、凝縮器と、前記精溜器塔頂部から凝縮器
に至る配管途中に設けられたデミスタータンクと、前記
凝縮器出口に設けられた冷媒タンクと、高圧側及び低圧
側冷媒回路を有する過冷却器と、膨張弁と、蒸発器と、
溶液熱交換器と、減圧弁と、吸収器と、前記吸収器出口
に設けられた濃溶液タンクと、溶液ポンプと、再生器
と、前記各要素部品を連結する配管とを備え、前記デミ
スタータンク底部と前記凝縮器出口とを接続してあり、
精溜器塔頂部と凝縮器との間にデミスタータンクを設け
て、そこに溜まるミストを凝縮器をバイパスして凝縮器
出口に接続しているので、凝縮器へのミスト流入による
高圧変動を抑制することができる。
[0026] The absorption heat pump according to claim 8 is provided with a rectifier, a condenser, a demister tank provided in a pipe from the top of the rectifier tower to the condenser, and a demister tank provided at an outlet of the condenser. Refrigerant tank, a supercooler having a high pressure side and a low pressure side refrigerant circuit, an expansion valve, an evaporator,
A solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, a regenerator, and a pipe connecting the respective component parts, and the demister tank Connecting the bottom and the condenser outlet,
A demister tank is installed between the top of the rectifier tower and the condenser, and the mist that accumulates there is connected to the condenser outlet, bypassing the condenser, so high-pressure fluctuations due to mist flowing into the condenser are suppressed. can do.

【0027】また請求項9に係る吸収式ヒートポンプ
は、精溜器と、凝縮器と、前記精溜器塔頂部から凝縮器
に至る配管途中に設けられたデミスタータンクと、前記
凝縮器出口に設けられた冷媒タンクと、高圧側及び低圧
側冷媒回路を有する過冷却器と、膨張弁と、蒸発器と、
溶液熱交換器と、減圧弁と、吸収器と、前記吸収器出口
に設けられた濃溶液タンクと、溶液ポンプと、再生器
と、前記溶液ポンプ吐出濃溶液配管途中に設けられ、前
記デミスタータンクの塔底と接続されたエゼクターと、
前記各要素部品を連結する配管とを備えており、前記デ
ミスタータンクの底部に滞留した液をエゼクターにより
排液する構成としているので、濃溶液の濃度を高める事
ができる。
According to a ninth aspect of the present invention, there is provided an absorption heat pump, comprising: a rectifier, a condenser, a demister tank provided in a pipe from the top of the rectifier tower to the condenser, and a condenser outlet. Refrigerant tank, a supercooler having a high pressure side and a low pressure side refrigerant circuit, an expansion valve, an evaporator,
A solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at an outlet of the absorber, a solution pump, a regenerator, and a solution pump provided in the middle of the concentrated solution piping discharged from the solution pump; An ejector connected to the bottom of the tower,
A pipe for connecting the respective component parts is provided, and the liquid retained at the bottom of the demister tank is drained by an ejector, so that the concentration of the concentrated solution can be increased.

【0028】また請求項10に係る吸収式ヒートポンプ
は、作動媒体として、アンモニア水とともに、アンモニ
ア及び水の両方に溶解する防錆材を前記アンモニア水に
対して0.01〜5wt%用いてあり、請求項11に係
る吸収式ヒートポンプは防錆材として亜硝酸アルカリ金
属を用いてある。いずれも防錆剤として、作動媒体に溶
解するものを用いるので、サイクル動作に支障がなく、
信頼性を高める事ができる。
Further, the absorption heat pump according to claim 10 uses, as a working medium, an ammonia water and a rust preventive material soluble in both ammonia and water in an amount of 0.01 to 5% by weight based on the ammonia water. The absorption heat pump according to claim 11 uses an alkali metal nitrite as a rust preventive. In any case, as a rust preventive, a substance that dissolves in the working medium is used, so there is no problem in cycle operation,
Reliability can be improved.

【0029】以下、本発明の吸収式ヒートポンプの実施
例を図1〜図8を用いて説明する。 (実施例1)図1において、1は精溜器、2は積層式熱
交換器として凝縮器3と吸収器4とを一体構成としてな
る凝縮・吸収器、5は積層式熱交換器として過冷却器6
と蒸発器7とを一体構成としてなる過冷却・蒸発器、8
は溶液熱交換器、9は溶液ポンプ、10は再生器、11
は凝縮器3出口に設けた冷媒タンク(ここで言う冷媒と
はアンモニアのことを意味する)、12は吸収器4出口
に設けた濃溶液(アンモニア濃度が高いアンモニア水溶
液)タンク、13は膨張弁、14は減圧弁、15は分岐
量調節弁、16は各要素部品を連結する配管、17は凝
縮・吸収器2の2次側冷却水回路、18は蒸発器7の2
次側冷水回路、19は蒸発器7・低圧側過冷却器6を経
て吸収器4に至る冷媒ガス(吸収器4内で吸収されるガ
ス)と精溜器1下部より溶液熱交換器8・減圧弁14を
経て吸収器4に至る希溶液(アンモニア濃度が低いアン
モニア水。冷媒ガスを吸収する吸収液となる)とが熱交
換するガス−希溶液熱交換器である。
Hereinafter, an embodiment of the absorption heat pump of the present invention will be described with reference to FIGS. (Embodiment 1) In FIG. 1, 1 is a rectifier, 2 is a condensing / absorbing unit having a condenser 3 and an absorber 4 as an integrated heat exchanger, and 5 is a condensing / absorbing heat exchanger. Cooler 6
A supercooling / evaporator 8 having an integral structure with the evaporator 7
Is a solution heat exchanger, 9 is a solution pump, 10 is a regenerator, 11
Is a refrigerant tank provided at the outlet of the condenser 3 (the refrigerant means ammonia here), 12 is a concentrated solution (ammonia aqueous solution having a high ammonia concentration) tank provided at the outlet of the absorber 4, and 13 is an expansion valve , 14 is a pressure reducing valve, 15 is a branch amount control valve, 16 is a pipe connecting each element part, 17 is a secondary cooling water circuit of the condenser / absorber 2, and 18 is a 2nd cooling water circuit of the evaporator 7.
The secondary-side chilled water circuit 19 includes a refrigerant gas (gas absorbed in the absorber 4) that reaches the absorber 4 via the evaporator 7 and the low-pressure subcooler 6 and a solution heat exchanger 8 from the lower part of the rectifier 1. The gas-dilute solution heat exchanger exchanges heat with a dilute solution (ammonia water having a low ammonia concentration, which becomes an absorbing liquid that absorbs refrigerant gas) that reaches the absorber 4 via the pressure reducing valve 14.

【0030】精溜器1は、上方より精溜ガス取り出し管
20、溶液ポンプ9吐出濃溶液の一部が分岐量調節弁1
5により調節されて流入し、塔内に流出する蛇管式熱交
換器21とその周囲に充填された第1の充填材22とか
らなる分縮部Aと、第2の充填材23が充填された精溜
段部Bと、高温濃溶液流入管24と希溶液取り出し管2
5とを備えた空間を有する気液分離部Cである。なお、
分縮部A及び精溜段部Bの充填材22及び23の保持の
目的で図中では省略しているが、実際には上下にデミス
ターを配置している。精溜器1と再生器10とを分離し
た構成は貫流式と呼ばれ、再生器10、精溜器1ともに
必要最小限のサイズで設計できるとともに、濃度幅(濃
溶液と希溶液のアンモニア濃度の差)を大きく確保する
ことが出来る。そして、熱交換器を積層式としているの
で、熱交換器サイズを小さくすることができて、小型ア
ンモニア水の充填量を最小限にすることができる。
The rectifier 1 is provided with a rectified gas take-out pipe 20 and a solution pump 9 from which a part of the concentrated solution discharged from the upper part is supplied to the branching amount control valve 1.
5. A shrinking portion A comprising a coiled heat exchanger 21 which flows in and is adjusted by 5 and flows out into the tower, and a first filler 22 filled around the heat exchanger 21, and a second filler 23 are filled. Rectification step B, high-temperature concentrated solution inlet pipe 24 and dilute solution outlet pipe 2
5 is a gas-liquid separation section C having a space provided with 5. In addition,
Although not shown in the drawing for the purpose of holding the fillers 22 and 23 of the decompression section A and the rectification step B, demisters are actually arranged vertically. The configuration in which the rectifier 1 and the regenerator 10 are separated is called a once-through type. Both the regenerator 10 and the rectifier 1 can be designed with the minimum required size, and the concentration range (the ammonia concentration of the concentrated solution and the dilute solution) Large difference) can be secured. Further, since the heat exchanger is of a stacked type, the size of the heat exchanger can be reduced, and the filling amount of the small ammonia water can be minimized.

【0031】次に、サイクル動作について説明する。溶
液ポンプ9により、濃溶液の一部(溶液ポンプ9全吐出
量の3割程度))は精溜器分縮部Aに送られ、残りは溶
液熱交換器8に送られる。溶液熱交換器8に送られた濃
溶液は、そこで精溜器1の希溶液取り出し管25より流
出する希溶液と熱交換し加熱され昇温する。続いて、再
生器10に送られ所定の2相域の温度まで加熱され、精
溜器1内に高温濃溶液導入管24を通して流入する。一
方、分縮部Aに送られた濃溶液は、分縮熱により加熱さ
れ蒸気発生温度まで昇温する。そして、蒸気発生温度で
精溜器1内に導入される。
Next, the cycle operation will be described. A part of the concentrated solution (about 30% of the total discharge amount of the solution pump 9)) is sent to the rectifier decomposing unit A by the solution pump 9, and the rest is sent to the solution heat exchanger 8. The concentrated solution sent to the solution heat exchanger 8 exchanges heat with the dilute solution flowing out of the dilute solution take-out tube 25 of the rectifier 1 and is heated and heated. Subsequently, it is sent to the regenerator 10, heated to a predetermined two-phase temperature, and flows into the rectifier 1 through the high-temperature concentrated solution introducing pipe 24. On the other hand, the concentrated solution sent to the decompression unit A is heated by the heat of the decompression and rises to the steam generation temperature. Then, the steam is introduced into the rectifier 1 at the steam generation temperature.

【0032】こうした濃溶液の一部を精溜器内に導入す
る方法(以下、分岐方式と呼ぶ)は、従来の基本方式に
比べて成績係数COPを高くすることができる。その理
由は、精溜段部Bにおいて、再生器10を経て流入する
高温濃溶液の蒸気が有する熱の一部で、分縮部Aより蒸
気発生温度で精溜器1内に流入する濃溶液の一部を加熱
して低温のガスを発生させるとともに、高温蒸気自体は
低温の蒸気となり、所定量の低温の蒸気を発生させるこ
とができる。こうして、蒸気発生過程における発生器の
負担を低減することができるためである。なお、精溜段
部Bの設計は、分岐して流入する濃溶液の温度(蒸気発
生温度)をそこでの還流液温度とすることにより行われ
る。
The method of introducing a part of the concentrated solution into the rectifier (hereinafter referred to as the branching method) can increase the coefficient of performance COP as compared with the conventional basic method. The reason is that in the rectification stage B, part of the heat of the high-temperature concentrated solution flowing through the regenerator 10, and the concentrated solution flowing into the rectifier 1 at the steam generation temperature from the decompression unit A Is heated to generate a low-temperature gas, and the high-temperature steam itself becomes a low-temperature steam, so that a predetermined amount of low-temperature steam can be generated. Thus, the burden on the generator during the steam generation process can be reduced. The rectification step B is designed by setting the temperature (steam generation temperature) of the concentrated solution that branches and flows in as the reflux liquid temperature there.

【0033】精溜器1の精溜ガス取り出し管20より流
出した精溜(冷媒)ガスは、凝縮器3、冷媒タンク1
1、過冷却器6(高圧側)、膨張弁13、蒸発器7、過
冷却器6(低圧側)、ガス−希溶液熱交換器19を経て
吸収器4に至る。一方、精溜器1の希溶液取り出し管2
5より流出した希溶液は溶液熱交換器8、減圧弁14、
ガス−希溶液熱交換器19を経て吸収器4に至るが、ガ
ス−希溶液熱交換器19により、冷媒温度は加熱され、
希溶液は冷却され、吸収器4内に導入される。
The rectified (refrigerant) gas flowing out of the rectified gas outlet pipe 20 of the rectifier 1 is supplied to the condenser 3 and the refrigerant tank 1.
1. The supercooler 6 (high pressure side), the expansion valve 13, the evaporator 7, the supercooler 6 (low pressure side), and the gas-dilute solution heat exchanger 19 reach the absorber 4. On the other hand, the dilute solution extraction pipe 2 of the rectifier 1
The dilute solution flowing out of 5 is a solution heat exchanger 8, a pressure reducing valve 14,
The refrigerant reaches the absorber 4 via the gas-dilute solution heat exchanger 19, and the refrigerant temperature is heated by the gas-dilute solution heat exchanger 19,
The diluted solution is cooled and introduced into the absorber 4.

【0034】吸収器4内では、希溶液に冷媒ガス(アン
モニア)が吸収されて濃溶液が再生されるが、我々は鋭
意研究の結果、吸収器4の伝熱面を低温の希溶液で濡ら
した状態がガス吸収に効果的であることを見い出した。
また、なにがしかの要因で、冷媒ガスに水分が混入した
場合でも冷媒ガスが加熱されるため、確実に混入水分を
蒸発器7より排出することができる。こうして、吸収器
4の熱交換性能を高めて吸収器4をより小型にすること
ができると共に、安定したサイクル動作をも可能にでき
る。
In the absorber 4, the refrigerant gas (ammonia) is absorbed into the dilute solution to regenerate the concentrated solution. As a result of our intensive studies, we have wetted the heat transfer surface of the absorber 4 with the low-temperature dilute solution. Was found to be effective for gas absorption.
Further, even if moisture is mixed in the refrigerant gas for some reason, the refrigerant gas is heated, so that the mixed water can be reliably discharged from the evaporator 7. In this way, the heat exchange performance of the absorber 4 can be enhanced to make the absorber 4 smaller, and a stable cycle operation can be performed.

【0035】(実施例2)図2の実施例において、実施
例1と相違する点は、凝縮器3と吸収器4とを分離して
過冷却・蒸発器5の下に吸収器4を設けるとともに、過
冷却・蒸発器5を逆向きに設けた点である。この構成に
より、ガス−希溶液熱交換器19がなくても、蒸発器7
内に流入した水は滞留することなく自然落下で確実に吸
収器4に導入できて、安定したサイクル動作を実現でき
る。
(Embodiment 2) The embodiment of FIG. 2 is different from Embodiment 1 in that the condenser 3 and the absorber 4 are separated and the absorber 4 is provided below the supercooling / evaporator 5. In addition, the supercooling / evaporator 5 is provided in the opposite direction. With this configuration, even without the gas-dilute solution heat exchanger 19, the evaporator 7 can be used.
The water flowing into the inside can be reliably introduced into the absorber 4 by natural fall without staying, and a stable cycle operation can be realized.

【0036】(実施例3)図3の実施例において、実施
例1と相違する点は、冷媒タンク11出口の凝縮液と吸
収器4出口の濃溶液との熱交換を行う凝縮液−濃溶液熱
交換器26を設けた点にある。この熱交換器26によ
り、溶液ポンプ9サクションの濃溶液は凝縮液により冷
却され過冷却状態となる。よって、溶液ポンプ9のキャ
ビテーションは抑制され、溶液ポンプ9の信頼性を高め
ることができる。凝縮液−濃溶液熱交換器26の必要性
が増すのは、低い外気温により、冷房時、高圧が低い状
態で運転を行う場合であり、その場合でも濃溶液の過冷
却が保証されているため、溶液ポンプ9の回転数を増す
ことができるため、十分なサイクル性能を発揮すること
ができる。
(Embodiment 3) The embodiment of FIG. 3 is different from the embodiment 1 in that the condensate-concentrate exchanges heat between the condensate at the outlet of the refrigerant tank 11 and the concentrated solution at the outlet of the absorber 4. The point is that the heat exchanger 26 is provided. By this heat exchanger 26, the concentrated solution in the suction of the solution pump 9 is cooled by the condensed liquid to be in a supercooled state. Therefore, cavitation of the solution pump 9 is suppressed, and the reliability of the solution pump 9 can be improved. The need for the condensate-concentrated solution heat exchanger 26 increases when operating at low pressures during cooling due to low outside air temperature, and even in this case, the supercooling of the concentrated solution is guaranteed. Therefore, the number of rotations of the solution pump 9 can be increased, and sufficient cycle performance can be exhibited.

【0037】(実施例4)図4の実施例において、実施
例3と相違する点は、実施例3の熱交換器26に代え
て、蒸発器7・過冷却器(低圧側)6を経て吸収器4に
いたる冷媒ガスと吸収器4出口の濃溶液との熱交換を行
うガス−濃溶液熱交換器27を設けた点にある。冷媒ガ
スにより溶液ポンプ9サクションの濃溶液の過冷却を先
の実施例3と同様に保証できる。
(Embodiment 4) The embodiment of FIG. 4 is different from Embodiment 3 in that an evaporator 7 and a subcooler (low pressure side) 6 are used instead of the heat exchanger 26 of Embodiment 3. The point is that a gas-concentrated solution heat exchanger 27 for exchanging heat between the refrigerant gas reaching the absorber 4 and the concentrated solution at the outlet of the absorber 4 is provided. The supercooling of the concentrated solution in the suction of the solution pump 9 by the refrigerant gas can be guaranteed in the same manner as in the third embodiment.

【0038】(実施例5)図5の実施例では、図4の実
施例4において別々に設けたガス−希溶液熱交換器19
とガス−濃溶液熱交換器27を一体の積層式熱交換器と
して、ガス−溶液熱交換器28としている。2つの熱交
換器を小型コンパクトに設計することが可能となり、実
用的な吸収式ヒーチポンプを実現できる。
(Embodiment 5) In the embodiment of FIG. 5, the gas-dilute solution heat exchanger 19 provided separately in the embodiment 4 of FIG.
The gas-concentrated solution heat exchanger 27 is a gas-solution heat exchanger 28 as an integrated laminated heat exchanger. The two heat exchangers can be designed to be small and compact, and a practical absorption heat pump can be realized.

【0039】(実施例6)図6の実施例が実施例5と相
違する点は、ガス−溶液熱交換器28を出た冷媒ガスの
一部を希溶液に吸収させて、その冷却(吸収熱の回収)
は溶液ポンプ9吐出の濃溶液で行う熱回収器29を設け
た点にある。熱回収器29により、本来廃棄して吸収熱
の一部は再生熱として利用することができて、その結
果、サイクルの成績係数(COP)を高めることができ
る。熱回収器29を設けたことによりCOPを0.2高
めることができた。
(Embodiment 6) The embodiment of FIG. 6 is different from the embodiment 5 in that a part of the refrigerant gas exiting the gas-solution heat exchanger 28 is absorbed by a dilute solution, and its cooling (absorption) is performed. Heat recovery)
Is that a heat recovery unit 29 for performing a concentrated solution discharged from the solution pump 9 is provided. The heat recovery unit 29 allows the waste heat to be originally discarded and part of the absorbed heat to be used as regenerated heat. As a result, the coefficient of performance (COP) of the cycle can be increased. By providing the heat recovery unit 29, the COP could be increased by 0.2.

【0040】(実施例7)図7の実施例において、実施
例1と相違する点は、精溜器1の精溜ガス取り出し管2
0から凝縮器3間にデミスタータンク30を設けるとと
もに、そこに溜まる液を凝縮器3の出口に導く配管31
を設けた点にある。デミスタータンク30は筒状容器3
2内に金網等で作製されたデミスター33が配置されて
おり、ミスト(微小な液滴)はそこで分離される。精溜
器1から凝縮器3に至る配管内は高圧で、内部を流れる
精溜ガス速度が遅いために、その断熱が不十分な場合に
は、配管途中で精溜ガスが一部凝縮して、精溜ガス中に
ミストを含むようになる。また、なにがしかの原因で、
水をミストとして持ち出す不安定動作となる場合があ
る。このミストが凝縮器3内に入ると高圧の変動をおこ
す。そこで、デミスターによりミストを除去するととも
に、このミストを凝縮器3をバイパスして凝縮器3出口
に配管31により導入する。配管31は途中曲げ部34
を有し、ミストのみが配管31を通過できるようにして
いる。このデミスタータンクを設けた構成により、高圧
を安定に保つことができて安定したサイクル動作を実現
できる。
(Embodiment 7) The embodiment of FIG. 7 is different from Embodiment 1 in that
A demister tank 30 is provided between the condenser 3 and the condenser 3, and a pipe 31 for guiding the liquid stored therein to an outlet of the condenser 3.
Is provided. The demister tank 30 is a cylindrical container 3
A demister 33 made of a wire mesh or the like is disposed in the mist 2, and mist (fine droplets) is separated there. Since the pressure in the pipe from the rectifier 1 to the condenser 3 is high and the speed of the rectified gas flowing through the pipe is low, if the heat insulation is insufficient, the rectified gas partially condenses in the middle of the pipe. The mist is contained in the rectified gas. Also, for some reason,
Unstable operation may take out water as mist. When this mist enters the condenser 3, high-pressure fluctuations occur. Therefore, the mist is removed by a demister, and the mist is introduced into the outlet of the condenser 3 by a pipe 31 by bypassing the condenser 3. The pipe 31 is bent halfway 34
And only the mist can pass through the pipe 31. With the configuration provided with the demister tank, a high pressure can be stably maintained, and a stable cycle operation can be realized.

【0041】(実施例8)図8の実施例において実施例
7と相違する点は、デミスタータンク30で分離したミ
ストを溶液ポンプ9の吐出濃溶液配管35途中に設けた
エゼクター36により吸引する構成にした点にある。な
お、デミスタータンク30とエゼクター36との配管3
7途中には逆止弁38を設けている。この構成により、
アンモニア濃度の高いミストを濃溶液に導入し、濃溶液
のアンモニア濃度を高めることができる。その結果、サ
イクルの成績係数を高めることができるとともに、安定
動作とすることができる。
(Embodiment 8) The embodiment of FIG. 8 is different from the embodiment 7 in that the mist separated by the demister tank 30 is sucked by an ejector 36 provided in the middle of the concentrated solution pipe 35 of the solution pump 9. It is in the point which was made. The piping 3 between the demister tank 30 and the ejector 36
A check valve 38 is provided in the middle of 7. With this configuration,
A mist having a high ammonia concentration can be introduced into the concentrated solution to increase the ammonia concentration of the concentrated solution. As a result, the coefficient of performance of the cycle can be increased, and stable operation can be achieved.

【0042】(実施例9)この実施例はすでに説明した
実施例1〜8の作動媒体として、アンモニア水(アンモ
ニア濃度50wt%)と、アンモニア水に対しての両親
媒性(アンモニアと水の両方に溶解性を有する性質)の
防錆材として亜硝酸アルカリ金属塩(アルカリ金属;L
i、Na、K、Rb、Cs、Fr)を用いることを例示
するものである。亜硝酸ナトリウムをアンモニア水に対
して0.1wt%添加して実用耐久試験を行った結果、
無添加の場合に数百時間で性能が低下するのに対して、
本実施例品では1000時間以上性能を維持することを
確認した。添加量としては、0.01〜5wt%の範囲
内で有れば有効と考えられる。一般的には、有効な防錆
材として、重クロム酸アルカリ金属塩が用いられている
が、重クロム酸アルカリ金属塩は水溶性であるが、アン
モニアに対しては不溶性であるので、なにがしかの原因
(環境因子変動による不安定動作)で、アンモニア回路
(精溜器塔頂〜凝縮器・膨張弁・蒸発器のガスライン)
に流入した場合には、そこで析出し、特に絞り部である
膨張弁を閉塞する事がみられた。亜硝酸アルカリ金属塩
を用いた場合には、そうした際でも全く不具合を生じな
い。
(Embodiment 9) This embodiment uses ammonia water (ammonia concentration of 50 wt%) and amphipathicity to ammonia water (both ammonia and water) Alkali metal nitrite (alkali metal; L)
i, Na, K, Rb, Cs, and Fr). As a result of performing a practical durability test by adding 0.1 wt% of sodium nitrite to aqueous ammonia,
In the case of no addition, the performance decreases in several hundred hours,
It was confirmed that the product of this example maintained the performance for 1000 hours or more. It is considered effective if the added amount is in the range of 0.01 to 5 wt%. Generally, alkali metal dichromate is used as an effective rust preventive, but alkali metal dichromate is water-soluble, but is insoluble in ammonia. Ammonia circuit (top of rectifier-gas line of condenser, expansion valve, evaporator)
When it flowed in, it was found that it precipitated there, and particularly clogged the expansion valve which was the throttle portion. When an alkali metal nitrite is used, no problem occurs even in such a case.

【0043】なお、以上述べた実施例を組み合わせても
良いことは言うまでもない。また、実施例においては、
熱交換器を積層式の熱交換器としたが、これに限定する
ものでない事は言うまでもない。
It goes without saying that the embodiments described above may be combined. In the embodiment,
Although the heat exchanger is a stacked heat exchanger, it is needless to say that the heat exchanger is not limited to this.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
次のような効果がある。
As described above, according to the present invention,
The following effects are obtained.

【0045】(1)ガス−希溶液熱交換器を設けている
ので、ガスラインの水の速やかな除去と吸収器の高い吸
収性能を可能とし、高効率で安定したサイクル動作を有
する吸収式ヒートポンプを提供できる。
(1) Since a gas-dilute solution heat exchanger is provided, it is possible to quickly remove water in a gas line and to have a high absorption performance of an absorber, and to have an efficient and stable cycle operation of an absorption heat pump. Can be provided.

【0046】(2)蒸発器内の冷媒流れを下向きとして
いるので、より確実に水を排斥し、安定したサイクル動
作を実現できる。
(2) Since the flow of the refrigerant in the evaporator is directed downward, water can be more reliably discharged and a stable cycle operation can be realized.

【0047】(3)凝縮液−濃溶液熱交換器、あるいは
ガス−濃溶液熱交換器を設けているので、溶液ポンプサ
クションの過冷却を保証し、溶液ポンプの信頼性を高め
ることができる。
(3) Since a condensate-concentrated solution heat exchanger or a gas-concentrated solution heat exchanger is provided, supercooling of the solution pump suction is guaranteed, and the reliability of the solution pump can be improved.

【0048】(4)ガス−希溶液熱交換器とガス−濃溶
液熱交換器を一体の積層式熱交換器としているので、小
型コンパクトな冷媒回路を実現できる。
(4) Since the gas-dilute solution heat exchanger and the gas-concentrated solution heat exchanger are integrated into a single-layer heat exchanger, a small and compact refrigerant circuit can be realized.

【0049】(5)熱回収器を設けているので、サイク
ルの成績係数を高めることができる。
(5) Since the heat recovery unit is provided, the coefficient of performance of the cycle can be increased.

【0050】(6)デミスタータンクを設けて、凝縮器
へのミストの流入を防止するようにしているので、安定
したサイクル動作を実現できる。
(6) Since a demister tank is provided to prevent mist from flowing into the condenser, a stable cycle operation can be realized.

【0051】(7)デミスタータンクとエゼクターを設
けた構成としているので、溶液ポンプ吐出の濃溶液濃度
を高めて、サイクルの成績係数を高めることができる。
(7) Since the demister tank and the ejector are provided, the concentration of the concentrated solution discharged from the solution pump can be increased, and the coefficient of performance of the cycle can be increased.

【0052】(8)作動媒体に溶解する防錆材を用いる
ので、常に安定した運転を行うことができる。
(8) Since a rust preventive material that dissolves in the working medium is used, stable operation can always be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の吸収式ヒートポンプの実施例1を示す
構成断面図
FIG. 1 is a sectional view showing a configuration of an absorption heat pump according to a first embodiment of the present invention.

【図2】本発明の吸収式ヒートポンプの実施例2を示す
構成断面図
FIG. 2 is a sectional view showing the configuration of a second embodiment of the absorption heat pump of the present invention.

【図3】本発明の吸収式ヒートポンプの実施例3を示す
構成断面図
FIG. 3 is a sectional view showing the configuration of a third embodiment of the absorption heat pump of the present invention.

【図4】本発明の吸収式ヒートポンプの実施例4を示す
構成断面図
FIG. 4 is a sectional view showing the structure of an absorption heat pump according to a fourth embodiment of the present invention.

【図5】本発明の吸収式ヒートポンプの実施例5を示す
構成断面図
FIG. 5 is a sectional view showing a configuration of a fifth embodiment of the absorption heat pump of the present invention.

【図6】本発明の吸収式ヒートポンプの実施例6を示す
構成断面図
FIG. 6 is a sectional view showing the configuration of a sixth embodiment of the absorption heat pump of the present invention.

【図7】本発明の吸収式ヒートポンプの実施例7を示す
構成断面図
FIG. 7 is a sectional view showing a configuration of an absorption heat pump according to a seventh embodiment of the present invention.

【図8】本発明の吸収式ヒートポンプの実施例8を示す
構成断面図
FIG. 8 is a sectional view showing the configuration of an eighth embodiment of the absorption heat pump of the present invention.

【図9】従来の吸収式ヒートポンプの構成断面図FIG. 9 is a sectional view of a configuration of a conventional absorption heat pump.

【符号の説明】[Explanation of symbols]

1 精溜器 3 凝縮 4 吸収器 6 過冷却 7 蒸発器 8 溶液熱8交換器 9 溶液ポンプ 10 再生器 11 冷媒タンク 12 濃溶液タンク 13 膨張弁 14 減圧弁 15 分岐量調節弁 19 ガス−希溶液熱交換器 26 凝縮液−濃溶液熱交換器 27 ガス−濃溶液熱交換器 28 ガス−溶液熱交換器 29 熱回収器 30 デミスタータンク 36 エゼクター DESCRIPTION OF SYMBOLS 1 Rectifier 3 Condenser 4 Absorber 6 Undercooling 7 Evaporator 8 Solution heat 8 exchanger 9 Solution pump 10 Regenerator 11 Refrigerant tank 12 Concentrated solution tank 13 Expansion valve 14 Pressure reducing valve 15 Branch amount control valve 19 Gas-dilute solution Heat exchanger 26 Condensate-concentrated solution heat exchanger 27 Gas-concentrated solution heat exchanger 28 Gas-solution heat exchanger 29 Heat recovery unit 30 Demister tank 36 Ejector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤田 敬 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 竹村 晃一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平8−334275(JP,A) 特開 昭57−10086(JP,A) 特開 平9−196491(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 301 F25B 15/00 F25B 15/04 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takashi Sawada 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Koichi Takemura 1006 Kadoma Kadoma, Kadoma City, Osaka Pref. (56) References JP-A-8-334275 (JP, A) JP-A-57-10086 (JP, A) JP-A-9-196491 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 301 F25B 15/00 F25B 15/04

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】精溜器と、凝縮器と、前記凝縮器出口に設
けられた冷媒タンクと、高圧側冷媒回路と低圧側冷媒回
路とを有する過冷却器と、膨張弁と、蒸発器と、溶液熱
交換器と、減圧弁と、吸収器と、前記吸収器出口に設け
られた濃溶液タンクと、溶液ポンプと、再生器と、前記
蒸発器から過冷却器の低圧側冷媒回路を経て吸収器に至
る冷媒ガスと、精溜器下部より流出し溶液熱交換器、減
圧弁を経て吸収器に至る希溶液との熱交換を行うガス−
希溶液熱交換器と、前記各要素部品を連結する配管とを
備えた吸収式ヒートポンプ。
1. A rectifier, a condenser, a refrigerant tank provided at an outlet of the condenser, a supercooler having a high-pressure refrigerant circuit and a low-pressure refrigerant circuit, an expansion valve, and an evaporator. A solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the outlet of the absorber, a solution pump, a regenerator, and a low pressure side refrigerant circuit of a supercooler from the evaporator. A gas that exchanges heat between the refrigerant gas reaching the absorber and the dilute solution flowing out of the lower part of the rectifier and passing through the solution heat exchanger and the pressure reducing valve to the absorber.
An absorption heat pump including a dilute solution heat exchanger and a pipe connecting the respective component parts.
【請求項2】精溜器と、凝縮器と、前記凝縮器出口に設
けられた冷媒タンクと、過冷却器と、膨張弁と、蒸発器
と、溶液熱交換器と、減圧弁と、吸収器と、前記吸収器
出口に設けられた濃溶液タンクと、溶液ポンプと、前記
各要素部品を連結する配管とを備え、前記蒸発器と過冷
却器の下に吸収器を配置するとともに、蒸発器内の冷媒
の流れを下向きとした吸収式ヒートポンプ。
2. A rectifier, a condenser, a refrigerant tank provided at an outlet of the condenser, a supercooler, an expansion valve, an evaporator, a solution heat exchanger, a pressure reducing valve, Vessel, a concentrated solution tank provided at the outlet of the absorber, a solution pump, and a pipe connecting the respective component parts, and an absorber is disposed below the evaporator and the subcooler, and the evaporator is disposed. An absorption heat pump with a downward flow of refrigerant in the vessel.
【請求項3】精溜器と、凝縮器と、前記凝縮器出口に設
けられた冷媒タンクと、高圧側冷媒回路と低圧側冷媒回
路とを有する過冷却器と、膨張弁と、蒸発器と、溶液熱
交換器と、減圧弁と、吸収器と、前記吸収器出口に設け
られた濃溶液タンクと、溶液ポンプと、再生器と、前記
凝縮器より流出する冷媒凝縮液と、前記吸収器出口の濃
溶液との熱交換を行う凝縮液−濃溶液熱交換器と、前記
各要素部品を連結する配管とを備えた吸収式ヒートポン
プ。
3. A rectifier, a condenser, a refrigerant tank provided at the condenser outlet, a supercooler having a high-pressure refrigerant circuit and a low-pressure refrigerant circuit, an expansion valve, and an evaporator. A solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump, a regenerator, a refrigerant condensate flowing out of the condenser, and the absorber An absorption type heat pump comprising: a condensate-concentrated solution heat exchanger for performing heat exchange with a concentrated solution at an outlet; and a pipe connecting each of the component parts.
【請求項4】精溜器と、凝縮器と、前記凝縮器出口に設
けられた冷媒タンクと、高圧側冷媒回路と低圧側冷媒回
路とを有する過冷却器と、膨張弁と、蒸発器と、溶液熱
交換器と、減圧弁と、吸収器と、前記吸収器出口に設け
られた濃溶液タンクと、溶液ポンプと、再生器と、前記
蒸発器から過冷却器の低圧側冷媒回路を経て吸収器に至
る冷媒ガスと、前記吸収器出口の濃溶液との熱交換を行
うガス−濃溶液熱交換器と、前記ガス−濃溶液熱交換器
を出た冷媒ガスと、精溜器下部より流出し溶液熱交換
器、減圧弁を経て吸収器に至る希溶液との熱交換を行う
ガス−希溶液熱交換器と、前記各要素部品を連結する配
管とを備えた吸収式ヒートポンプ。
4. A rectifier, a condenser, a refrigerant tank provided at the outlet of the condenser, a supercooler having a high-pressure refrigerant circuit and a low-pressure refrigerant circuit, an expansion valve, and an evaporator. A solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the outlet of the absorber, a solution pump, a regenerator, and a low pressure side refrigerant circuit of a supercooler from the evaporator. A refrigerant gas reaching the absorber, a gas-concentrated solution heat exchanger for performing heat exchange with the concentrated solution at the absorber outlet, a refrigerant gas exiting the gas-concentrated solution heat exchanger, and from the lower part of the rectifier An absorption type heat pump comprising a gas-dilute solution heat exchanger for exchanging heat with a dilute solution flowing out of a solution heat exchanger, a pressure reducing valve, and reaching an absorber, and a pipe connecting each of the component parts.
【請求項5】冷媒−濃溶液熱交換器と冷媒−希溶液液熱
交換器とを一体構成の積層式ガス−溶液熱交換器として
なる請求項4記載の吸収式ヒートポンプ。
5. The absorption type heat pump according to claim 4, wherein the refrigerant-concentrated solution heat exchanger and the refrigerant-dilute solution liquid heat exchanger are integrated into a laminated gas-solution heat exchanger.
【請求項6】精溜器と、凝縮器と、前記凝縮器出口に設
けられた冷媒タンクと、高圧側及び低圧側冷媒回路を有
する過冷却器と、膨張弁と、蒸発器と、溶液熱交換器
と、減圧弁と、前記過冷却器の低圧側冷媒回路を経て流
出する冷媒ガスの一部を、前記精溜器下部より流出し溶
液熱交換器、減圧弁を経て流出する希溶液に吸収させる
と共に、その冷却を溶液ポンプ吐出濃溶液で行う熱回収
器と、前記過冷却器の低圧側冷媒回路を経て流出する残
りの冷媒ガスと、前記熱回収器より流出する熱回収液と
が流入する吸収器と、前記吸収器出口に設けられた濃溶
液タンクと、溶液ポンプと、再生器と、前記各要素部品
を連結する配管とを備えた吸収式ヒートポンプ。
6. A rectifier, a condenser, a refrigerant tank provided at the condenser outlet, a supercooler having a high-pressure side and a low-pressure side refrigerant circuit, an expansion valve, an evaporator, and a solution heat source. Exchanger, a pressure reducing valve, and a part of the refrigerant gas flowing out through the low pressure side refrigerant circuit of the subcooler, into a solution heat exchanger flowing out from the lower part of the rectifier, into a dilute solution flowing out through the pressure reducing valve. While absorbing, a heat recovery unit that performs cooling with a concentrated solution discharged from the solution pump, the remaining refrigerant gas flowing out through the low-pressure side refrigerant circuit of the supercooler, and the heat recovery liquid flowing out of the heat recovery unit are An absorption heat pump including an inflow absorber, a concentrated solution tank provided at an outlet of the absorber, a solution pump, a regenerator, and a pipe connecting the respective component parts.
【請求項7】精溜器と、凝縮器と、前記凝縮器出口に設
けられた冷媒タンクと、高圧側及び低圧側冷媒回路を有
する過冷却器と、膨張弁と、蒸発器と、溶液熱交換器
と、減圧弁と、前記蒸発器から過冷却器の低圧側冷媒回
路を経て吸収器に至る冷媒ガスと、前記吸収器出口の濃
溶液との熱交換を行うガス−濃溶液熱交換器と、前記ガ
ス−濃溶液熱交換器を出た冷媒ガスの一部を、前記精溜
器下部より流出し溶液熱交換器、減圧弁を経て流出する
希溶液に吸収させると共に、その冷却を溶液ポンプ吐出
濃溶液で行う熱回収器と、前記ガス−濃溶液熱交換器を
経て流出する冷媒ガスと前記熱回収器より流出する熱回
収液との熱交換を行うガス−熱回収液熱交換器と、前記
ガス−熱回収液熱交換器より流出する冷媒ガスと熱回収
液とが流入する吸収器と、前記吸収器出口に設けられた
濃溶液タンクと、溶液ポンプと、再生器と、前記各要素
部品を連結する配管とを備えた吸収式ヒートポンプ。
7. A rectifier, a condenser, a refrigerant tank provided at the outlet of the condenser, a subcooler having a high-pressure side and a low-pressure side refrigerant circuit, an expansion valve, an evaporator, and a solution heat source. Exchanger, a pressure reducing valve, a gas-concentrated solution heat exchanger for performing heat exchange between the refrigerant gas from the evaporator to the absorber via the low-pressure side refrigerant circuit of the subcooler and the concentrated solution at the outlet of the absorber. And a part of the refrigerant gas flowing out of the gas-concentrated solution heat exchanger is absorbed by the dilute solution flowing out of the lower part of the rectifier through the solution heat exchanger and the pressure reducing valve, and the cooling is performed by the solution. A heat recovery device that performs a concentrated solution discharged from a pump; and a gas-heat recovery liquid heat exchanger that performs heat exchange between a refrigerant gas flowing out through the gas-concentrated solution heat exchanger and a heat recovery solution flowing out of the heat recovery device. Absorption of the refrigerant gas and the heat recovery liquid flowing out of the gas-heat recovery liquid heat exchanger. When a concentrated solution tank provided in the absorber outlet, a solution pump, regenerator and the absorption heat pump and a pipe for connecting the respective component parts.
【請求項8】精溜器と、凝縮器と、前記精溜器塔頂部か
ら凝縮器に至る配管途中に設けられたデミスタータンク
と、前記凝縮器出口に設けられた冷媒タンクと、高圧側
及び低圧側冷媒回路を有する過冷却器と、膨張弁と、蒸
発器と、溶液熱交換器と、減圧弁と、吸収器と、前記吸
収器出口に設けられた濃溶液タンクと、溶液ポンプと、
再生器と、前記各要素部品を連結する配管とを備え、前
記デミスタータンク底部と前記凝縮器出口とを接続して
なる吸収式ヒートポンプ。
8. A rectifier, a condenser, a demister tank provided in a pipe from the top of the rectifier tower to the condenser, a refrigerant tank provided at an outlet of the condenser, a high pressure side, A supercooler having a low-pressure side refrigerant circuit, an expansion valve, an evaporator, a solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump,
An absorption heat pump comprising: a regenerator; and a pipe connecting the respective component parts, wherein the bottom of the demister tank and the condenser outlet are connected.
【請求項9】精溜器と、凝縮器と、前記精溜器塔頂部か
ら凝縮器に至る配管途中に設けられたデミスタータンク
と、前記凝縮器出口に設けられた冷媒タンクと、高圧側
及び低圧側冷媒回路を有する過冷却器と、膨張弁と、蒸
発器と、溶液熱交換器と、減圧弁と、吸収器と、前記吸
収器出口に設けられた濃溶液タンクと、溶液ポンプと、
再生器と、前記溶液ポンプ吐出濃溶液配管途中に設けら
れ、前記デミスタータンクの底部と接続されたエゼクタ
ーと、前記各要素部品を連結する配管とを備えた吸収式
ヒートポンプ。
9. A rectifier, a condenser, a demister tank provided in a pipe from the top of the rectifier tower to the condenser, a refrigerant tank provided at an outlet of the condenser, a high pressure side, A supercooler having a low-pressure side refrigerant circuit, an expansion valve, an evaporator, a solution heat exchanger, a pressure reducing valve, an absorber, a concentrated solution tank provided at the absorber outlet, a solution pump,
An absorption heat pump, comprising: a regenerator, an ejector provided in the middle of the concentrated solution discharge pipe of the solution pump, connected to the bottom of the demister tank, and a pipe connecting the respective component parts.
【請求項10】作動媒体として、アンモニア水ととも
に、アンモニア及び水の両方に溶解性を有する防錆材を
前記アンモニア水に対して0.01〜5wt%用いる請
求項1ないし9のいずれか1項記載の吸収式ヒートポン
プ。
10. The working medium according to claim 1, wherein a rust preventive having solubility in both ammonia and water is used in an amount of 0.01 to 5 wt% based on the ammonia water together with the ammonia water. Absorption heat pump as described.
【請求項11】防錆材として亜硝酸アルカリ金属を用い
る請求項10記載の吸収式ヒートポンプ。
11. The absorption heat pump according to claim 10, wherein an alkali metal nitrite is used as a rust preventive.
JP03029696A 1996-02-19 1996-02-19 Absorption heat pump Expired - Fee Related JP3161321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03029696A JP3161321B2 (en) 1996-02-19 1996-02-19 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03029696A JP3161321B2 (en) 1996-02-19 1996-02-19 Absorption heat pump

Publications (2)

Publication Number Publication Date
JPH09229509A JPH09229509A (en) 1997-09-05
JP3161321B2 true JP3161321B2 (en) 2001-04-25

Family

ID=12299782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03029696A Expired - Fee Related JP3161321B2 (en) 1996-02-19 1996-02-19 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP3161321B2 (en)

Also Published As

Publication number Publication date
JPH09229509A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
US4195485A (en) Distillation/absorption engine
JP3883838B2 (en) Absorption refrigerator
JP4885467B2 (en) Absorption heat pump
US4226089A (en) Waste heat recovery device
JP3161321B2 (en) Absorption heat pump
CN214665343U (en) Absorption heat pump unit
JPH07317507A (en) Non-azeotropic fluid cycle plant
JP5075346B2 (en) Absorption refrigerator
JP2787111B2 (en) Absorption heat pump
JPH07198222A (en) Heat pump including reverse rectifying part
CN112402995B (en) Air source multi-effect vacuum evaporation system applied to cutting fluid concentration
JP4073219B2 (en) Absorption chiller / heater
JP3780643B2 (en) Absorption refrigeration system
JPH08219575A (en) Absorption refrigerating device
US606326A (en) Absorption refrige-rating-machine
KR100314471B1 (en) Generator of absorption heat pump using ammonia
JPS6232384B2 (en)
JP4557468B2 (en) Absorption refrigerator
JPS6089645A (en) Absorption type heat pump
JPH0350373Y2 (en)
JPH05280820A (en) Absorption refrigeration system
KR100339361B1 (en) Absorption heating and cooling system
JPH08200874A (en) Absorption refrigerating equipment
JPS631510B2 (en)
JPH11257797A (en) Absorber for absorption type refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees