JP3160900B2 - Manufacturing method of superconducting material - Google Patents

Manufacturing method of superconducting material

Info

Publication number
JP3160900B2
JP3160900B2 JP28406490A JP28406490A JP3160900B2 JP 3160900 B2 JP3160900 B2 JP 3160900B2 JP 28406490 A JP28406490 A JP 28406490A JP 28406490 A JP28406490 A JP 28406490A JP 3160900 B2 JP3160900 B2 JP 3160900B2
Authority
JP
Japan
Prior art keywords
phase
superconducting material
liquid phase
quench
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28406490A
Other languages
Japanese (ja)
Other versions
JPH04160062A (en
Inventor
栄治 名取
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP28406490A priority Critical patent/JP3160900B2/en
Publication of JPH04160062A publication Critical patent/JPH04160062A/en
Application granted granted Critical
Publication of JP3160900B2 publication Critical patent/JP3160900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は送電線、アンテナ、超伝導マグネット、超伝
導軸受け、エネルギー貯蔵(ロードレベリング)等に用
いるバルク的な超伝導材料に関する。
Description: TECHNICAL FIELD The present invention relates to a bulk superconducting material used for transmission lines, antennas, superconducting magnets, superconducting bearings, energy storage (load leveling), and the like.

[従来の技術] 臨界温度が液体窒素温度77Kを越え幅広い応用が期待
されるいゆる高温超伝導体はHousuton大学のC.W.Chuら
が発見したLn−Ba−Cu−O系(Lnは希土類元素を示
す)、Arkansau大学のA.M.Hermannらの発見したTl−Ba
−Ca−Cu−O系、金属材料技術研究所の前田の発見した
Bi−Sr−Ca−Cu−O系の3種類に大別できる。(これら
は安定性・再現性共に高い物質であるため公認の高温超
伝導体であるがこの他にもLa−Sr−Nb−O系、Tl−Sr−
V−O系等が鹿児島大学、日立等から報告されてい
る。)これらを用いた超伝導材料の従来の製造方法をバ
ルク(デバイスに用いられる薄膜に対向した言葉)超伝
導材料の代表例である線材で説明する。その基本工程は
粉末粉体冶金協会の昭和63年度春期大会講演概要集p26
〜27に述べられているように銀製チューブ(シース)に
予め作製した超伝導粉末を充填し、線引き・ロール圧延
等により成形加工した後銀チューブ内部の粉末を焼結す
る工程より成っていた。
[Prior art] Any high-temperature superconductor whose critical temperature exceeds liquid nitrogen temperature of 77K and is expected to be used widely is Ln-Ba-Cu-O system (Ln is a rare earth element) discovered by CWChu et al. Of the University of Houston. Tl-Ba discovered by AMHermann et al. Of Arkansau University
-Ca-Cu-O system, discovered by Maeda of National Institute for Metals Technology
Bi-Sr-Ca-Cu-O type can be roughly classified. (These are high-temperature superconductors that are certified because they are both highly stable and reproducible materials. In addition, La-Sr-Nb-O, Tl-Sr-
VO system and the like have been reported by Kagoshima University, Hitachi and others. A conventional method of manufacturing a superconducting material using these materials will be described with reference to a wire (a word facing a thin film used in a device) which is a typical example of a superconducting material. The basic process is p26 of the Powder and Powder Metallurgy Association
27, a silver tube (sheath) was filled with a superconducting powder prepared in advance, formed by drawing, roll rolling, etc., and then sintering the powder inside the silver tube.

[発明が解決しようとする課題] しかしながら従来の製造方法では高温超伝導体は結
晶構造に起因して異方性が強い物質であるにも関わらず
結晶方向の制御が成されていない。線引きや圧延を行な
う事により僅か配向するが粉体は互いに干渉して回転し
ずらい状態にあるため配向度は低い。粒界部等に非超
伝導体相を析出し易く超伝導体相が連続的に成長しな
い。粉体を成形した後の焼結であるため空孔が多く密
度が低い。
[Problems to be Solved by the Invention] However, in the conventional manufacturing method, the high-temperature superconductor is a substance having strong anisotropy due to the crystal structure, but the control of the crystal direction is not performed. Although slightly oriented by drawing or rolling, the degree of orientation is low because the powders interfere with each other and are hard to rotate. A non-superconductor phase easily precipitates at a grain boundary or the like, and the superconductor phase does not continuously grow. Since it is sintering after molding the powder, it has many holes and low density.

等の原因によりコンスタントに得られる臨界電流密度
は103A/cm2(77K)台前半と低いものになっていた。ま
た空孔が多いと機械強度が弱くなるだけでなく表面積が
多くなるため劣化し易く耐久性(耐環境性)も悪くして
いた。
As a result, the critical current density obtained constantly was as low as the lower 10 3 A / cm 2 (77K). In addition, when there are many holes, not only mechanical strength is weakened, but also the surface area is increased, so that they are liable to be deteriorated and have poor durability (environmental resistance).

本発明はこの様な問題を解決するものであり、臨界電
流密度が高く、機械的強度、耐久性(耐環境性)に優れ
た超伝導材料を得んとするものである。
The present invention solves such a problem, and an object of the present invention is to obtain a superconducting material having a high critical current density and excellent mechanical strength and durability (environmental resistance).

[課題を解決するための手段] 本発明は、原料を溶融物にする工程と、前記溶融物を
急冷してクエンチ塊にする工程と、前記クエンチ塊を、
前記クエンチ塊の結晶相と液相とが混相状態となる温度
に加熱して熱間加工する工程と、その後に熱間加工を行
いながら主相、非超伝導体相と液相との混相状態まで冷
却する工程と、を有することを特徴とする。
[Means for Solving the Problems] The present invention provides a step of forming a raw material into a melt, a step of rapidly cooling the melt to form a quench lump,
A step of heating to a temperature at which the crystal phase and the liquid phase of the quench mass are in a mixed phase state and hot working, and then performing a hot working while mixing a main phase, a non-superconductor phase and a liquid phase in a liquid phase And a step of cooling to below.

また、熱間加工された前記クエンチ塊をアニールする
工程を有することを特徴とする。
The method further includes a step of annealing the hot-worked quench mass.

[実施例] 以下実施例に従い本発明を詳細に説明する。EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples.

実施例−1 先ず原料Y2O3、BaCO3、CuO粉末を混合分散した後900
℃酸素雰囲気中で15時間仮焼する。次に仮焼物を粉砕攪
拌した後1350℃〜1450℃に加熱し溶融する。溶融時間が
長いとY2O3は凝集し不均一な分散状態となるため溶融は
3〜10分間と比較的短い時間で行なう事が好ましい。次
にこの溶融物を冷却されているシース内に鋳込む。この
時溶融物は急冷されるためアモルファス相の中に微細な
Y2O3粒子が分散した状態のクエンチ塊となる。
Example-1 First, raw materials Y2O3, BaCO3, and CuO powder were mixed and dispersed, and then 900
Calcination is performed for 15 hours in an oxygen atmosphere at ℃. Next, the calcined product is pulverized and stirred, and then heated to 1350 ° C. to 1450 ° C. to be melted. If the melting time is long, Y2O3 aggregates and becomes a non-uniform dispersion state, so that the melting is preferably performed in a relatively short time of 3 to 10 minutes. The melt is then cast into a cooled sheath. At this time, the melt is quenched, so fine
A quench mass in which the Y2O3 particles are dispersed.

次に該クエンチ塊をシースと共に1050℃〜1150℃に於
て圧延する。圧延により圧延初期では211相成長の核と
なるY2O3、更にYBa2Cu3O7−x(超伝導相以下123相とす
る)成長の核となる211相をより均一に分散させる。周
知のように123相は211相と液相(3BacuO2+2CuO)との
包晶反応により生々するため211相と液相の分散が不均
一の場合非超伝導体(211相等)相が多くなり超伝導体
相の繋りを切断する。つまり123相を連続的に成長させ
るには211相を均一に分散させる必要があるが所定の条
件下に於ける圧延はミキシング効果により211相の分散
を均一にする効果がある。
Next, the quench mass is rolled together with the sheath at 1050 ° C. to 1150 ° C. By rolling, in the initial stage of rolling, Y2O3, which is a nucleus of 211 phase growth, and 211 phase, which is a nucleus of YBa2Cu3O7-x (hereinafter referred to as 123 phase below superconducting phase), are more uniformly dispersed. As is well known, the 123 phase grows due to the peritectic reaction between the 211 phase and the liquid phase (3BacuO2 + 2CuO), so when the dispersion of the 211 phase and the liquid phase is not uniform, the non-superconductor (211 phase etc.) phase increases and the superconductivity Disconnect body connection. In other words, to grow the 123 phase continuously, it is necessary to uniformly disperse the 211 phase, but rolling under a predetermined condition has an effect of uniformizing the dispersion of the 211 phase by a mixing effect.

次に圧延を行いながら970℃〜1000℃即ち123相(主
相)、211相、液相の液相状態まで冷却、その後圧延を
止め更に室温まで徐冷する。この圧延により結晶は加圧
方向にパラレルにc軸を配向させられる。
Next, while rolling, it is cooled to 970 ° C. to 1000 ° C., ie, a liquid phase of 123 phase (main phase), 211 phase, and liquid phase. By this rolling, the c-axis of the crystal is oriented in parallel with the pressing direction.

この様にして得られた超伝導材料の臨界電流密度をシ
ースを剥離した後測定した。測定温度は77Kである。結
果を第1表の比較例と共に第2表に示す。
The critical current density of the superconducting material thus obtained was measured after the sheath was peeled off. The measurement temperature is 77K. The results are shown in Table 2 together with the comparative examples in Table 1.

表に示されているように本発明の製造方法より成る超
伝導材料は顕著に臨界電流密度が向上しているのが判
る。
As shown in the table, it can be seen that the critical current density of the superconducting material manufactured by the manufacturing method of the present invention is remarkably improved.

実施例−2 実施例−1と同様に20mm×20mm高さ20mm厚さ2mmの枡
型シースに溶融物を鋳込みクエンチ塊を得る。その後枡
型シースに蓋をし密閉する。ここで密閉するのは熱間加
工時の液相飛散を防ぐためである。次に熱間プレス機に
より1100℃〜1150℃即ち211相と液相との混相状態まで
加熱し20%圧縮、更に1000℃〜970℃即ち123相、211相
と液相との混相状態に冷却し60%圧縮加工を行なう。次
にシース剥離後900℃酸素雰囲気中に於いて5時間アニ
ール処理を行い超伝導材料を得た。
Example 2 In the same manner as in Example 1, a melt is cast into a square sheath having a size of 20 mm × 20 mm, a height of 20 mm, and a thickness of 2 mm to obtain a quench mass. After that, cover the masu-shaped sheath and seal it. Here, the sealing is performed to prevent the liquid phase from scattering during hot working. Next, it is heated by a hot press machine to 1100 ° C to 1150 ° C, ie, the mixed phase of 211 phase and liquid phase, and compressed by 20%. Then perform 60% compression. Next, after the sheath was peeled off, annealing was performed at 900 ° C. in an oxygen atmosphere for 5 hours to obtain a superconductive material.

得られた試料の臨界電流密度を測定した。測定温度は
77Kである。結果を第3表に示す。表より実施例−1同
様に顕著に臨界電流密が向上しているのが判る。
The critical current density of the obtained sample was measured. The measurement temperature is
77K. The results are shown in Table 3. From the table, it can be seen that the critical current density is remarkably improved as in Example 1.

これら実施例材料と比較例材料をX線回折・光学顕微
鏡・SEM観察等により比較したところ本発明よりなる超
伝導材料は比較例より結晶配向度が高く、123相が連続
的に成長し且つ空孔は少ないものであった。また溶融を
行なう比較例bは比較例aより空孔の数は顕著に少ない
が細長い鬆(ボイド)が見られた。この鬆の幅は比較例
aとほぼ同じであるが長さは数十倍〜数百倍長いため場
合によっては致命的になる事が考えられる。熱間加工は
鬆の発生を抑制する効果もあると言える。
Comparison of these Examples and Comparative Examples by X-ray diffraction, optical microscopy, SEM observation, etc. revealed that the superconducting material according to the present invention had a higher degree of crystal orientation than the Comparative Example, and that the 123 phase grew continuously and was empty. The holes were few. In Comparative Example b in which melting was performed, the number of pores was remarkably smaller than in Comparative Example a, but elongated pores were observed. The width of this void is almost the same as that of Comparative Example a, but the length is several tens to several hundred times longer, and in some cases, it can be fatal. It can be said that hot working also has the effect of suppressing the occurrence of porosity.

尚本実施例ではYBa2Cu3O7−x材料で説明したが結晶
構造に起因した異方性を持つ材料で結晶相と液相との混
相状態を得られる材料で有れば何等差し支えない。
Although the present embodiment has been described with reference to the YBa2Cu3O7-x material, any material having anisotropy due to the crystal structure and capable of obtaining a mixed phase state of a crystal phase and a liquid phase may be used.

[発明の効果] 請求項1に係る本発明によれば、異方性の強い物質で
あっても結晶方向を揃え、且つ超伝導相が連続的に成長
でき、更に空孔の発生を抑制し高密度化を図れるため高
い臨界電流密度を持つ超伝導材料を得ることが可能とな
る。また、空孔発生の抑制は、機械的強度を高めるだけ
ではなく表面積の減少につながるために腐食などによる
劣化を少なくして耐久性(耐環境性)を向上させること
ができる。
[Effect of the Invention] According to the first aspect of the present invention, even in the case of a substance having a strong anisotropy, the crystal direction can be aligned and the superconducting phase can be continuously grown, and the generation of vacancies can be further suppressed. Since the density can be increased, a superconducting material having a high critical current density can be obtained. In addition, suppressing the generation of vacancies not only increases the mechanical strength, but also leads to a decrease in surface area, so that deterioration due to corrosion or the like can be reduced and durability (environmental resistance) can be improved.

請求項2に係る本発明によれば、超伝導材料の結晶成
長をより促進し、且つ、歪みを除去することが可能とな
る。
According to the second aspect of the present invention, it is possible to further promote the crystal growth of the superconducting material and to remove the distortion.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/653 C01G 1/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/653 C01G 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料を溶融物にする工程と、前記溶融物を
急冷してクエンチ塊にする工程と、前記クエンチ塊を、
前記クエンチ塊の結晶相と液相とが混相状態となる温度
に加熱して熱間加工する工程と、その後に熱間加工を行
いながら主相、非超伝導体相と液相との混相状態まで冷
却する工程と、を有することを特徴とする超伝導材料の
製造方法。
Claims: 1. A step of converting a raw material into a melt, a step of rapidly cooling the melt to form a quench lump,
A step of heating to a temperature at which the crystal phase and the liquid phase of the quench mass are in a mixed phase state and hot working, and then performing a hot working while mixing a main phase, a non-superconductor phase and a liquid phase in a liquid phase And a step of cooling to a superconducting material.
【請求項2】熱間加工された前記クエンチ塊をアニール
する工程を有することを特徴とする請求項1に記載の超
伝導材料の製造方法。
2. The method for producing a superconducting material according to claim 1, further comprising a step of annealing the hot-worked quench mass.
JP28406490A 1990-10-22 1990-10-22 Manufacturing method of superconducting material Expired - Fee Related JP3160900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28406490A JP3160900B2 (en) 1990-10-22 1990-10-22 Manufacturing method of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28406490A JP3160900B2 (en) 1990-10-22 1990-10-22 Manufacturing method of superconducting material

Publications (2)

Publication Number Publication Date
JPH04160062A JPH04160062A (en) 1992-06-03
JP3160900B2 true JP3160900B2 (en) 2001-04-25

Family

ID=17673827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28406490A Expired - Fee Related JP3160900B2 (en) 1990-10-22 1990-10-22 Manufacturing method of superconducting material

Country Status (1)

Country Link
JP (1) JP3160900B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655797B2 (en) * 1993-03-25 1997-09-24 科学技術庁無機材質研究所長 Method for forming oriented thick film of bismuth-based superconducting ceramics
GB2349382A (en) * 1999-04-27 2000-11-01 Secr Defence Ceramic materials; superconductors

Also Published As

Publication number Publication date
JPH04160062A (en) 1992-06-03

Similar Documents

Publication Publication Date Title
EP0356969B1 (en) Method of producing oxide superconductor
JPH04212215A (en) Manufacture of bismuthal oxide superconductor
JP2839415B2 (en) Method for producing rare earth superconducting composition
JPH04292819A (en) Manufacture of oxide superconductive wire
WO2003002483A1 (en) Method of joining oxide superconductor and oxide superconductor joiner
Alford et al. Processing, properties and devices in high-Tc superconductors
US5849672A (en) Oxide superconducting material, process for preparing the same and applications thereof
JP3160900B2 (en) Manufacturing method of superconducting material
US5334578A (en) Method of manufacturing superconductor
EP0456182B1 (en) Oxide superconductor and process for producing the same
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
CN101450859A (en) Method for improving YBaCuO superconductor performance by doping BaCeO3
WO1993010047A1 (en) Method of fabricating thallium-containing ceramic superconductors
US5736489A (en) Method of producing melt-processed polycrystalline YBa2 Cu3 O.sub.
Nonaka et al. Influence of calcining temperature on critical current density of Ag/Bi2223 tapes
JP3160901B2 (en) Manufacturing method of superconducting material
US5929001A (en) Engineered flux-pinning centers in BSCCO TBCCO and YBCO superconductors
JP3219563B2 (en) Metal oxide and method for producing the same
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
Golden et al. The extrusion of continuous lengths of YBa2Cu3O7− x wire using hydroxypropyl methylcellulose
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP2966119B2 (en) Manufacturing method of oxide superconductor
JP2789103B2 (en) Oxide superconductor and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees