JP3160878B2 - Wastewater treatment method - Google Patents

Wastewater treatment method

Info

Publication number
JP3160878B2
JP3160878B2 JP27315095A JP27315095A JP3160878B2 JP 3160878 B2 JP3160878 B2 JP 3160878B2 JP 27315095 A JP27315095 A JP 27315095A JP 27315095 A JP27315095 A JP 27315095A JP 3160878 B2 JP3160878 B2 JP 3160878B2
Authority
JP
Japan
Prior art keywords
wastewater
organic matter
filter medium
denitrification
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27315095A
Other languages
Japanese (ja)
Other versions
JPH09108693A (en
Inventor
一彦 能登
直道 森
正行 小島
斉 川尻
博文 山本
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP27315095A priority Critical patent/JP3160878B2/en
Publication of JPH09108693A publication Critical patent/JPH09108693A/en
Application granted granted Critical
Publication of JP3160878B2 publication Critical patent/JP3160878B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃水の窒素除去方法
に係り、特に廃水中から窒素と有機物を同時に生物学的
に除去する廃水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing nitrogen from wastewater, and more particularly to a method for treating wastewater for biologically removing nitrogen and organic substances from wastewater at the same time.

【0002】[0002]

【従来の技術】廃水から窒素と有機物の両方を除去する
従来の廃水処理装置は、先ず廃水を濾過装置で廃水中の
浮遊物質を濾過した後、濾過水を硝化・脱窒装置で生物
学的に処理して窒素を除去する。この時、脱窒反応に必
要な水素供与体(微生物の栄養源)は廃水中に含有する
有機物から得るのが一般的であり、1gの窒素を脱窒処
理するには、化学量論的に2.86gの有機物が必要で
ある。
2. Description of the Related Art In a conventional wastewater treatment apparatus for removing both nitrogen and organic matter from wastewater, a wastewater is first filtered by a filtration device to remove suspended solids in the wastewater, and then the filtered water is subjected to biological treatment by a nitrification / denitrification device. To remove nitrogen. At this time, a hydrogen donor (a nutrient source of microorganisms) necessary for the denitrification reaction is generally obtained from organic matter contained in the wastewater. To denitrify 1 g of nitrogen, stoichiometrically 2.86 g of organic matter is required.

【0003】ところで、有機物には浮遊性有機物と溶解
性有機物があり、浮遊性有機物は濾過装置で浮遊物質と
して濾過される。一方、窒素成分は大部分が溶解性であ
るために濾過装置では濾過されず濾過水に溶解して硝化
・脱窒装置に送水される。
[0003] By the way, the organic substance includes a floating organic substance and a soluble organic substance, and the floating organic substance is filtered as a floating substance by a filtration device. On the other hand, most of the nitrogen component is soluble, so that it is not filtered by the filtration device but dissolved in the filtered water and sent to the nitrification / denitrification device.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、濾過処
理により過剰に浮遊性有機物が除去された場合には、脱
窒槽に流入する濾過水中の有機物/窒素の比率(BOD
/T−N比)が小さくなる。この結果、脱窒処理のため
に必要な水素供与体を得るための十分な有機物濃度が得
られずに脱窒反応が低下し、廃水中の窒素除去性能が低
下するという欠点がある。
However, if excessive floating organic matter is removed by the filtration treatment, the ratio of organic matter / nitrogen (BOD) in the filtered water flowing into the denitrification tank is reduced.
/ TN ratio) becomes smaller. As a result, there is a drawback that the denitrification reaction is reduced without obtaining a sufficient organic substance concentration for obtaining a hydrogen donor necessary for the denitrification treatment, and the performance of removing nitrogen in wastewater is reduced.

【0005】一方、濾過処理において浮遊性有機物の除
去が不十分な場合には、濾過水中の有機物/窒素の比率
(BOD/T−N比)が大きくなる。この結果、脱窒反
応に必要な以上の有機物が脱窒槽に流入することになる
ので、余剰な有機物を酸化分解するために多大な酸素要
求量が必要になり曝気動力費用が増加するという欠点が
ある。
[0005] On the other hand, if the removal of the floating organic matter is insufficient in the filtration treatment, the ratio of organic matter / nitrogen (BOD / TN ratio) in the filtered water becomes large. As a result, more organic matter than necessary for the denitrification reaction flows into the denitrification tank, so that a large amount of oxygen is required to oxidize and decompose excess organic matter, and the cost of aeration power increases. is there.

【0006】本発明は、このような事情に鑑みてなされ
たもので、濾過した濾過水の有機物濃度が脱窒反応に必
要な水素供与体を得るための有機物濃度になるように制
御することのできる廃水処理方法を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and is intended to control the concentration of organic matter in the filtered filtrate so as to be the concentration required for obtaining a hydrogen donor necessary for the denitrification reaction. It is an object of the present invention to provide a wastewater treatment method that can be used.

【0007】[0007]

【課題を解決する為の手段】本発明は前記目的を達成す
る為に、窒素と浮遊性有機物を含む廃水を浮上濾材を用
いた浮上濾材型濾過装置で濾過し、濾過した濾過水を硝
化・脱窒装置で生物学的に処理して前記廃水中の窒素を
除去すると共に、前記脱窒処理のための水素供与体とし
て前記廃水に由来する有機物を利用する廃水処理方法で
あって、前記浮上濾材型濾過装置を並列に複数台配置
し、前記浮上濾材型濾過装置の濾過速度と前記浮遊性有
機物の除去率との関係を予め求めると共に、前記廃水中
の窒素濃度と有機物濃度を検出し、前記廃水中の窒素濃
度から前記脱窒反応に必要な有機物濃度を算出すると共
に、前記予め求めた濾過速度と浮遊性有機物の除去率と
の関係に基づいて、前記浮上濾材型濾過装置の使用台数
を変化させることにより前記浮上濾材型濾過装置の濾過
速度を制御して前記検出した有機物濃度の廃水が前記算
出した脱窒反応に必要な有機物濃度の濾過水になるよう
にすることを特徴とする。
According to the present invention, in order to achieve the above object, waste water containing nitrogen and buoyant organic substances is filtered by a flotation filter using a flotation filter medium using a flotation filter medium. A wastewater treatment method using a biological treatment with a denitrification apparatus to remove nitrogen in the wastewater and using an organic matter derived from the wastewater as a hydrogen donor for the denitrification treatment, A plurality of filter medium type filtration devices are arranged in parallel, and the relationship between the filtration rate of the floating filter medium type filtration device and the removal rate of the buoyant organic matter is determined in advance, and the nitrogen concentration and the organic matter concentration in the wastewater are detected, Calculate the concentration of organic substances required for the denitrification reaction from the nitrogen concentration in the wastewater, and based on the relationship between the previously determined filtration rate and the removal rate of buoyant organic substances, the number of floating filter medium type filtration devices used. To change The effluent organic matter concentration controlled to have the detected filtered speed of the floating filter media filtration device is characterized in that so that the filtered water concentration of organic substances required for denitrification reactions the calculated Ri.

【0008】本発明によれば、廃水中に含有される有機
物には浮遊性有機物と溶解性有機物とが存在し、脱窒反
応にはどちらの有機物も水素供与体として使用されるこ
と、及び浮上濾材型濾過装置は、濾過速度と濾過水の有
機物濃度との間に一定の関係があることを見いだし、濾
過速度を制御して濾過水の有機物濃度を変えることによ
り脱窒処理に必要な有機物を硝化・脱窒装置に過不足な
く供給する。この時、前記浮上濾材型濾過装置を並列に
複数台配置し、その使用台数を変化させて流入する廃水
の前記浮上濾材型濾過装置の一台当たりの負荷水量を変
えることにより前記浮上濾材型濾過装置の濾過速度を制
御するようにした。これにより、濾過速度を変えた時に
変えた後の濾過速度になるまでの制御の応答性を良くし
た。
According to the present invention, floating organic matter and soluble organic matter are present in the organic matter contained in the wastewater, and both organic substances are used as a hydrogen donor in the denitrification reaction. The filter medium type filtration device finds that there is a certain relationship between the filtration rate and the organic matter concentration of the filtered water, and controls the filtration rate to change the organic matter concentration of the filtered water to remove the organic matter required for the denitrification treatment. Supply to nitrification and denitrification equipment without excess or shortage. At this time, the floating filter medium-type filtration device is disposed in parallel, and the number of used floating medium filter devices is changed to change the load water amount per one of the floating filter material-type filter devices by changing the number of used wastewater. The filtration rate of the device was controlled. Thereby, when the filtration speed was changed, the response of the control until the filtration speed was changed was improved.

【0009】[0009]

【発明の実施の形態】以下添付図面に従って本発明に係
る廃水処理方法の好ましい実施例について詳説する。図
1は、本発明の廃水処理方法を適用するための廃水処理
装置の実施の形態を説明する全体構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a wastewater treatment method according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is an overall configuration diagram illustrating an embodiment of a wastewater treatment apparatus for applying the wastewater treatment method of the present invention.

【0010】図1に示すように、廃水処理装置10は、
主として、複数台が並列に配置された浮上濾材型濾過装
置12、12…と、前記複数の浮上濾材型濾過装置12
の使用台数を制御する制御系14と、浮上濾材型濾過装
置12で濾過した濾過水を生物学的に処理する硝化・脱
窒装置16と、硝化・脱窒装置16で処理された処理水
に同伴する浮遊活性汚泥を分離する沈降分離装置18と
で構成される。
As shown in FIG. 1, a wastewater treatment apparatus 10 comprises:
Mainly, a plurality of floating filter medium type filtration devices 12, 12,...
A control system 14 for controlling the number of used filters, a nitrification / denitrification device 16 for biologically treating filtered water filtered by the floating filter medium type filtration device 12, and a treated water treated by the nitrification / denitrification device 16. And a sedimentation / separation device 18 for separating the accompanying suspended activated sludge.

【0011】前記浮上濾材型濾過装置12の台数を、図
1のように例えば4台とした場合、廃水供給管22は4
本の枝配管20、20…に分岐し、各枝配管20が各浮
上濾材型濾過装置12の下部に接続される。また、各枝
配管20にはそれぞれ供給ポンプ23が設けられ、各供
給ポンプ23はコントローラ32からの指示により個別
にON−OFFできるようになっている。
When the number of the floating filter medium type filtration devices 12 is, for example, four as shown in FIG.
The branch pipes 20 are branched into two, and each branch pipe 20 is connected to a lower portion of each floating filter medium type filtering device 12. Each branch pipe 20 is provided with a supply pump 23, and each supply pump 23 can be individually turned on and off according to an instruction from the controller 32.

【0012】前記浮上濾材型濾過装置12は、濾過槽2
4内に廃水よりも比重の小さな多数の濾材で形成した浮
上濾材層26を設けて構成される。この浮遊濾材層26
は、濾過槽24の高さの約1/2程度の層を形成し、濾
過槽24の下部から流入した廃水が濾過槽24内を上向
流として上昇し、廃水中の浮遊物質が浮遊濾材層26で
濾過される。
The floating filter medium type filtration device 12 includes a filtration tank 2.
4 is provided with a floating filter medium layer 26 formed of a large number of filter materials having a specific gravity smaller than that of the wastewater. This floating filter medium layer 26
Forms a layer about half the height of the filtration tank 24, the wastewater flowing from the lower part of the filtration tank 24 rises as an upward flow in the filtration tank 24, and the floating substances in the wastewater are Filtered in layer 26.

【0013】浮上濾材層を形成する濾材52は、多孔質
で通水抵抗の小さな構造に形成され、図2は濾材52の
一例である。図2に示すように、濾材52の平均粒径
(D)が約20mm程度の多数の開口52Cを有する網
目状円筒体に形成され、両端部52A、52Bとが開放
されている。また、網目52Dは太さが1〜5mm、好
ましくは2〜4mmの線材が用いられる。この濾材の見
かけ比重は約0.9であり、空隙率は約90%を有し、
比表面積は約300m2 /濾材m3 である。濾材52の
材質は、例えばポリプロピレン製等の軽比重で、且つ耐
食性に優れた材質が用いられる。
The filter medium 52 forming the floating filter medium layer is formed in a porous structure having a small water flow resistance. FIG. 2 shows an example of the filter medium 52. As shown in FIG. 2, the filter medium 52 is formed in a mesh cylindrical body having a large number of openings 52C having an average particle diameter (D) of about 20 mm, and both ends 52A and 52B are open. A wire having a thickness of 1 to 5 mm, preferably 2 to 4 mm is used for the mesh 52D. The apparent specific gravity of this filter medium is about 0.9, the porosity is about 90%,
The specific surface area is about 300 m 2 / m 3 of filter medium. As the material of the filter medium 52, a material having a low specific gravity, such as polypropylene, and having excellent corrosion resistance is used.

【0014】この浮上濾材型濾過装置12は、略全層濾
過を行うことができると共に、通水抵抗が極めて小さい
ので、廃水中の浮遊物質濃度が高い場合でも長期間安定
して高速濾過を行うことができる。また、この浮上濾材
型濾過装置12は、図3に示すように、その濾過速度と
BOD/T─N比との間には一定の関係がある。図3
は、前記浮上濾材型濾過装置12の濾過速度(m/日)
と濾過水中のBOD/T─N比を示したものであり、濾
過速度を約100(m/日)から約600(m/日)ま
で変化させた場合である。また、図中の曲線Aは、脱窒
処理において適切な水素供与体を得るためのBOD/T
─N比の下限ラインでこれ以下になると窒素除去性能が
低下する。また、図中の曲線Bは、脱窒処理において適
切な水素供与体を得るためのBOD/T─N比の上限ラ
インでこれ以上になると窒素除去性能は問題ないが余分
な有機物を酸化分解するためのエアが必要になり曝気動
力費用が嵩む。
The floating filter medium type filtration device 12 can perform substantially all-layer filtration and has extremely low water flow resistance, so that high-speed filtration can be performed stably for a long period of time even when the concentration of suspended solids in wastewater is high. be able to. Further, as shown in FIG. 3, the floating filter medium type filtration device 12 has a certain relationship between the filtration speed and the BOD / T─N ratio. FIG.
Is the filtration speed (m / day) of the floating filter type filtration device 12
And the BOD / T─N ratio in the filtered water, in which the filtration speed was changed from about 100 (m / day) to about 600 (m / day). The curve A in the figure represents a BOD / T for obtaining an appropriate hydrogen donor in the denitrification treatment.
If the ratio is less than the lower limit line of the 比 N ratio, the nitrogen removal performance is reduced. The curve B in the figure is the upper limit line of the BOD / T─N ratio for obtaining an appropriate hydrogen donor in the denitrification treatment. Above this, the nitrogen removal performance is not a problem, but excess organic matter is oxidatively decomposed. For this, air is required, and the aeration power cost increases.

【0015】図3に示すように、濾過速度を大きくする
に従ってBOD/T─N比が大きくなり、濾過速度が約
100(m/日)のBOD/T─N比は約1.6である
が、濾過速度を約600(m/日)にするとBOD/T
─N比は約3.6となり2倍以上に上昇する。ここで、
窒素成分は溶解性であることから、廃水中の窒素濃度
(T─N)はそのまま濾過水の窒素濃度(T─N)なる
ので、図3は濾過速度を変えることにより濾過水の有機
物濃度を調整できることを意味する。濾過により有機物
濃度が変わる理由は、有機物には浮遊性有機物と溶解性
有機物があり、濾過性能により浮遊性有機物の濾過され
る量が変わるためである。また、濾材型濾過装置12
は、前述したように長期間安定して濾過を行うことがで
きることから、濾過性能の変化要因として濾過速度以外
の要因を考慮する必要がないため、濾過時間に関係なく
濾過速度とBOD/T─N比を一定に維持できる。
As shown in FIG. 3, as the filtration rate increases, the BOD / TN ratio increases. When the filtration rate is about 100 (m / day), the BOD / TN ratio is about 1.6. However, when the filtration speed is about 600 (m / day), BOD / T
The ΔN ratio is about 3.6, which is more than doubled. here,
Since the nitrogen component is soluble, the nitrogen concentration (T─N) in the wastewater becomes the nitrogen concentration (T─N) of the filtered water as it is. FIG. It means that it can be adjusted. The reason why the concentration of the organic substance is changed by the filtration is that the organic substance includes a floating organic substance and a soluble organic substance, and the filtered amount of the floating organic substance changes depending on the filtration performance. In addition, the filter medium type filtration device 12
As described above, since filtration can be performed stably for a long period of time as described above, it is not necessary to consider factors other than the filtration speed as a change factor of the filtration performance. The N ratio can be kept constant.

【0016】次に、複数の浮上濾材型濾過装置12の使
用台数を制御する制御系14について説明する。廃水供
給管22には、BODバイオセンサ検出計28とT−N
自動分析計30が設けられ、廃水供給管22を流れる廃
水は、BODバイオセンサ検出計28で廃水中の有機物
濃度が検出されると共に、T−N自動分析計30で廃水
中の窒素濃度が検出される。コントローラ32では、廃
水中の窒素濃度から脱窒反応に必要な水素供与体を得る
ための有機物濃度を次の式から算出する。
Next, a description will be given of a control system 14 for controlling the number of floating filter medium type filtration devices 12 used. The wastewater supply pipe 22 has a BOD biosensor detector 28 and a TN
An automatic analyzer 30 is provided, and in the wastewater flowing through the wastewater supply pipe 22, the organic matter concentration in the wastewater is detected by the BOD biosensor detector 28, and the nitrogen concentration in the wastewater is detected by the TN automatic analyzer 30. Is done. The controller 32 calculates the organic substance concentration for obtaining the hydrogen donor necessary for the denitrification reaction from the nitrogen concentration in the wastewater from the following equation.

【0017】[0017]

【数1】BODin≧5.22×T−Nin−65.3 この式は、硝化・脱窒装置で処理された処理水の窒素濃
度を10mg─N/l以下にする場合、脱窒される窒素
量(T−Nin)と脱窒反応に必要な有機物量(BOD
in)の関係式である。
## EQU1 ## BODin ≧ 5.22 × T-Nin−65.3 This equation indicates that when the nitrogen concentration of the treated water treated by the nitrification / denitrification apparatus is set to 10 mg─N / l or less, denitrification is performed. Nitrogen amount (T-Nin) and organic matter amount (BOD) required for denitrification reaction
in).

【0018】また、コントローラ32には、濾過速度と
濾過水のBOD/T─N比の関係(即ち、濾過速度と有
機物の除去率の関係)が予め入力されている。そして、
脱窒反応に必要な濾過水中の有機物濃度データ、濾過速
度と濾過水のBOD/T─N比の関係データから、浮上
濾材型濾過装置12に廃水を供給する供給ポンプ23を
ON−OFFすることにより浮上濾材型濾過装置12の
使用台数を変化させると共に、廃水処理装置10に流入
する廃水量を処理するために、それに応じて使用する浮
上濾材型濾過装置12の供給ポンプ23の回転数を変化
させる。
The relationship between the filtration speed and the BOD / T─N ratio of the filtered water (ie, the relationship between the filtration speed and the organic matter removal rate) is input to the controller 32 in advance. And
From the data on the concentration of organic substances in the filtered water necessary for the denitrification reaction and the data on the relationship between the filtration rate and the BOD / TN ratio of the filtered water, the supply pump 23 for supplying wastewater to the floating filter medium type filtration device 12 is turned on and off. Changes the number of floating filter medium type filtration devices 12 used, and changes the number of revolutions of the supply pump 23 of the floating filter medium type filtration device 12 to be used in order to treat the amount of wastewater flowing into the wastewater treatment device 10. Let it.

【0019】次に、硝化・脱窒装置16について説明す
ると、硝化・脱窒装置16は脱窒槽34と硝化槽36で
構成され、それぞれの槽34、36には浮遊活性汚泥が
添加されると共に、硝化槽36には浮遊活性汚泥とは別
に硝化菌を一辺3mm程度の高分子材料に包括固定した
担体が添加され、硝化処理の性能アップが図られてい
る。脱窒槽34内には攪拌装置38が設けられ、ゆっく
りとした攪拌により嫌気性状態で脱窒処理が行われる。
この脱窒処理において、濾過水中の有機物が水素供与体
として使用されて消費される。一方、硝化槽36内には
曝気装置40が設けられ、好気性状態で硝化処理が行わ
れる。硝化処理された処理水の一部が循環路42により
脱窒槽に循環され、他の処理水は沈降分離装置18に送
られる。この硝化・脱窒処理により濾過水中の窒素成分
が除去される。
Next, the nitrification / denitrification apparatus 16 will be described. The nitrification / denitrification apparatus 16 is composed of a denitrification tank 34 and a nitrification tank 36. Each of the tanks 34, 36 is supplied with floating activated sludge. In addition, a carrier in which nitrifying bacteria are entrapped and fixed in a polymer material of about 3 mm on a side is added to the nitrification tank 36 separately from the floating activated sludge, thereby improving the performance of the nitrification treatment. A stirring device 38 is provided in the denitrification tank 34, and the denitrification process is performed in an anaerobic state by slow stirring.
In this denitrification treatment, the organic matter in the filtered water is used and consumed as a hydrogen donor. On the other hand, an aeration device 40 is provided in the nitrification tank 36, and nitrification is performed in an aerobic state. Part of the nitrified treated water is circulated to the denitrification tank via the circulation path 42, and the other treated water is sent to the sedimentation / separation device 18. This nitrification and denitrification removes nitrogen components in the filtered water.

【0020】沈降分離装置18は沈殿タンク44で構成
され、硝化・脱窒装置16で処理された処理水が沈殿タ
ンクに送水される。沈殿タンク44では、処理水に同伴
した浮遊活性汚泥を沈降分離し、上澄水が処理水配管4
6を介して河川等に放流される。また、沈降した浮遊活
性汚泥は、一部が余剰汚泥として汚泥排出管48から引
き抜かれ、残りの浮遊活性汚泥は汚泥循環配管50を通
って脱窒槽34に循環される。
The sedimentation / separation device 18 is constituted by a sedimentation tank 44, and the treated water treated by the nitrification / denitrification device 16 is sent to the sedimentation tank. In the sedimentation tank 44, the suspended activated sludge accompanying the treated water is settled and separated, and the supernatant water is supplied to the treated water pipe 4.
The water is released to rivers and the like through 6. A part of the settled suspended activated sludge is withdrawn from the sludge discharge pipe 48 as surplus sludge, and the remaining suspended activated sludge is circulated to the denitrification tank 34 through the sludge circulation pipe 50.

【0021】以上の如く構成された廃水処理装置10の
作用について説明する。廃水供給管22を通って浮上濾
材型濾過装置12に供給される廃水は、T−N自動分析
計30とBODバイオセンサ検出計28とにより、廃水
中の窒素濃度と有機物濃度が検出され、検出値がコント
ローラ32に入力される。コントローラ32では、廃水
中の窒素濃度から脱窒反応に必要な有機物濃度を算出す
る。そして、予め求めた濾過速度と濾過水のBOD/T
─N比の関係に基づいて、前記検出した有機物濃度の廃
水が前記算出した脱窒反応に必要な有機物濃度の濾過水
になるように複数の浮上濾材型濾過装置12の使用台数
を変化させる。これにより、廃水処理装置10に流入す
る廃水について浮上濾材型濾過装置12の一台当たりの
負荷水量が変わるので前記浮上濾材型濾過装置12の濾
過速度を制御することができる。この結果、浮上濾材型
濾過装置12で濾過された濾過水の有機物濃度を、脱窒
反応に必要な水素供与体を得るために必要なだけの有機
物濃度にすることができる。従って、脱窒処理の水素供
与体を得るための有機物を過不足なく脱窒槽34に供給
することができる。この場合、濾過速度を大きくすると
濾過性能が低下するが、浮上濾材層26がスクリーンの
役目をするので、浮遊性有機物以外の例えばきょう雑物
等の浮遊物質の濾過性能は低下しない。
The operation of the wastewater treatment apparatus 10 configured as described above will be described. The wastewater supplied to the floating filter medium type filtration device 12 through the wastewater supply pipe 22 is detected by detecting the nitrogen concentration and the organic matter concentration in the wastewater by the TN automatic analyzer 30 and the BOD biosensor detector 28. The value is input to the controller 32. The controller 32 calculates an organic substance concentration required for the denitrification reaction from the nitrogen concentration in the wastewater. Then, the previously determined filtration rate and BOD / T of the filtered water
Based on the relationship of the ─N ratio, the number of floating filter medium type filtration devices 12 used is changed so that the wastewater having the detected organic substance concentration becomes the filtered water having the organic substance concentration required for the denitrification reaction calculated above. Accordingly, the amount of load water per one floating filter medium type filtration device 12 changes with respect to the wastewater flowing into the wastewater treatment device 10, so that the filtration speed of the floating filter medium type filtration device 12 can be controlled. As a result, the organic matter concentration of the filtered water filtered by the floating filter medium type filtration device 12 can be adjusted to an organic matter concentration necessary for obtaining a hydrogen donor necessary for the denitrification reaction. Therefore, the organic matter for obtaining the hydrogen donor for the denitrification treatment can be supplied to the denitrification tank 34 without excess or shortage. In this case, if the filtration speed is increased, the filtration performance is reduced, but since the floating filter medium layer 26 functions as a screen, the filtration performance of floating substances other than the floating organic substances, such as impurities, does not decrease.

【0022】そして、本発明では、浮上濾材型濾過装置
12を並列に複数台配置し、使用台数を変えることによ
り浮上濾材型濾過装置12の濾過速度を制御するように
したので、濾過速度を変えてから変えた濾過速度になる
までの制御の応答性が良くなる。即ち、浮上濾材型濾過
装置12が1台の場合には、廃水処理装置10に流入す
る一定水量の廃水を処理するためには、濾過速度を変え
ることによる処理能力の変動を見込んで最大の処理能力
を想定した大容量の濾過槽24が必要となる。その結
果、濾過速度を変えるために供給ポンプ23の回転数を
変えても、変えた後の濾過速度になるのに時間を要し、
制御の応答性が悪くなる。制御の応答性が悪くなると、
濾過水中のBOD/T─N比のバランスが崩れるので、
安定した窒素除去を行うことができない。
In the present invention, a plurality of floating filter medium type filtration devices 12 are arranged in parallel, and the filtration speed of the floating filter medium type filtration device 12 is controlled by changing the number of used filter devices. The responsiveness of the control from when the filtration speed reaches the changed filtration speed is improved. That is, in the case where the number of the floating filter medium type filtration devices 12 is one, in order to treat a constant amount of wastewater flowing into the wastewater treatment device 10, the maximum treatment is performed in consideration of a change in treatment capacity due to a change in filtration speed. A large-capacity filtration tank 24 is required for its capacity. As a result, even if the rotation speed of the supply pump 23 is changed in order to change the filtration speed, it takes time to achieve the changed filtration speed,
Control responsiveness deteriorates. When control response becomes poor,
As the balance of BOD / T─N ratio in filtered water is lost,
Stable nitrogen removal cannot be performed.

【0023】次に、浮上濾材型濾過装置12で濾過され
た濾過水は硝化・脱窒装置16に送水されて硝化・脱窒
処理が行われる。この硝化・脱窒処理において、脱窒槽
34には濾過水を介して脱窒処理の水素供与体を得るた
めの有機物が過不足なく供給されるので、安定した窒素
除去を行うことができる。また、余剰の有機物を硝化槽
36で酸化分解するための余分なエアが必要ないので、
曝気動力費用も削減できる。
Next, the filtered water filtered by the floating filter medium type filtration device 12 is sent to a nitrification / denitrification device 16 where a nitrification / denitrification treatment is performed. In this nitrification / denitrification treatment, the denitrification tank 34 is supplied with an organic substance for obtaining a hydrogen donor for the denitrification treatment via filtered water without excess or deficiency, so that stable nitrogen removal can be performed. In addition, since there is no need for extra air for oxidatively decomposing excess organic matter in the nitrification tank 36,
Aeration power costs can also be reduced.

【0024】尚、本実施の形態では、廃水処理装置10
に流入する廃水の水量を一定と想定してが、水量が大き
く変動する場合には、廃水供給管22に流量計を設け
て、廃水量を考慮して浮上濾材型濾過装置12の使用台
数を決定するとよい。
In this embodiment, the wastewater treatment apparatus 10
It is assumed that the amount of wastewater flowing into the filter is constant, but when the amount of water fluctuates greatly, a flowmeter is provided in the wastewater supply pipe 22 and the number of floating filter medium type filtration devices 12 to be used is determined in consideration of the amount of wastewater. It is good to decide.

【0025】[0025]

【発明の効果】以上説明したように、本発明の廃水処理
方法によれば、並列に配置された複数の浮上濾材型濾過
装置の使用台数を変えることにより、廃水を濾過する濾
過速度を変え、これにより硝化・脱窒装置には脱窒反応
に必要な水素供与体を得るための有機物を過不足なく供
給するようにした。これにより、窒素除去を安定して行
うことができると共に、余剰の有機物を酸化分解する必
要がないので曝気運転費用を削減できる。
As described above, according to the wastewater treatment method of the present invention, the filtration speed for filtering wastewater is changed by changing the number of used floating filter media type filtration devices arranged in parallel, In this way, the nitrification / denitrification apparatus is supplied with an organic substance for obtaining a hydrogen donor necessary for the denitrification reaction without excess or deficiency. This makes it possible to stably perform nitrogen removal, and it is not necessary to oxidatively decompose excess organic substances, so that aeration operation costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る廃水処理方法を適用した廃水処理
装置の実施の形態を説明する全体構成図
FIG. 1 is an overall configuration diagram illustrating an embodiment of a wastewater treatment apparatus to which a wastewater treatment method according to the present invention is applied.

【図2】浮遊濾材層を形成する濾材を説明する説明図FIG. 2 is an explanatory view illustrating a filter medium forming a floating filter medium layer.

【図3】濾過速度と濾過水のBOD/T─N比の関係を
説明する説明図
FIG. 3 is an explanatory diagram for explaining a relationship between a filtration speed and a BOD / T─N ratio of filtered water.

【符号の説明】[Explanation of symbols]

10…廃水処理装置 12…浮上濾材型濾過装置 14…制御系 16…硝化・脱窒装置 22…廃水供給管 23…供給ポンプ 24…濾過槽 26…浮上濾材層 28…BODバイオセンサ検出計 30…T−N自動分析計 32…コントローラ 34…脱窒槽 36…硝化槽 38…攪拌装置 40…曝気装置 DESCRIPTION OF SYMBOLS 10 ... Wastewater treatment apparatus 12 ... Floating filter medium type filtration apparatus 14 ... Control system 16 ... Nitrification / denitrification apparatus 22 ... Wastewater supply pipe 23 ... Supply pump 24 ... Filtration tank 26 ... Floating filter medium layer 28 ... BOD biosensor detector 30 ... TN automatic analyzer 32 ... controller 34 ... denitrification tank 36 ... nitrification tank 38 ... stirrer 40 ... aerator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川尻 斉 東京都千代田区内神田1丁目1番14号 日立プラント建設株式会社内 (72)発明者 山本 博文 東京都千代田区内神田1丁目1番14号 日立プラント建設株式会社内 (56)参考文献 特公 平6−65400(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C02F 3/28 - 3/34 C02F 3/02 - 3/10 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hitoshi Kawajiri 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd. (72) Hirofumi Yamamoto 1-11-1 Uchikanda, Chiyoda-ku, Tokyo No. Hitachi Plant Construction Co., Ltd. (56) References JP 6-65400 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 3/28-3/34 C02F 3 / 02-3/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒素と浮遊性有機物を含む廃水を浮上濾材
を用いた浮上濾材型濾過装置で濾過し、濾過した濾過水
を硝化・脱窒装置で生物学的に処理して前記廃水中の窒
素を除去すると共に、前記脱窒処理のための水素供与体
として前記廃水に由来する有機物を利用する廃水処理方
法であって、 前記浮上濾材型濾過装置を並列に複数台配置し、 前記浮上濾材型濾過装置の濾過速度と前記浮遊性有機物
の除去率との関係を予め求めると共に、前記廃水中の窒
素濃度と有機物濃度を検出し、 前記廃水中の窒素濃度から前記脱窒反応に必要な有機物
濃度を算出すると共に、前記予め求めた濾過速度と浮遊
性有機物の除去率との関係に基づいて、前記浮上濾材型
濾過装置の使用台数を変化させることにより前記浮上濾
材型濾過装置の濾過速度を制御して前記検出した有機物
濃度の廃水が前記算出した脱窒反応に必要な有機物濃度
の濾過水になるようにすることを特徴とする廃水処理方
法。
1. A wastewater containing nitrogen and buoyant organic matter is filtered by a flotation filter using a flotation filter medium, and the filtered water is biologically treated by a nitrification / denitrification apparatus to form a wastewater. A wastewater treatment method that removes nitrogen and uses an organic matter derived from the wastewater as a hydrogen donor for the denitrification treatment, comprising: arranging a plurality of floating filter medium-type filtration devices in parallel; The relationship between the filtration rate of the type filtration device and the removal rate of the floating organic matter is determined in advance, and the nitrogen concentration and the organic matter concentration in the wastewater are detected, and the organic matter necessary for the denitrification reaction is determined from the nitrogen concentration in the wastewater. While calculating the concentration, based on the relationship between the previously determined filtration rate and the removal rate of the buoyant organic matter, the filtration rate of the floating filter medium type filtration device is changed by changing the number of the floating filter medium type filtration devices used. Control Wastewater treatment wherein the wastewater of organic matter concentrations the detection is made to be the filtered water concentration of organic substances required for denitrification reactions the calculated.
JP27315095A 1995-10-20 1995-10-20 Wastewater treatment method Expired - Lifetime JP3160878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27315095A JP3160878B2 (en) 1995-10-20 1995-10-20 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27315095A JP3160878B2 (en) 1995-10-20 1995-10-20 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH09108693A JPH09108693A (en) 1997-04-28
JP3160878B2 true JP3160878B2 (en) 2001-04-25

Family

ID=17523816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27315095A Expired - Lifetime JP3160878B2 (en) 1995-10-20 1995-10-20 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3160878B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113723A (en) * 2015-12-25 2017-06-29 株式会社クボタ Operation method of organic wastewater treatment apparatus, and organic wastewater treatment system

Also Published As

Publication number Publication date
JPH09108693A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
US6863818B2 (en) Method and apparatus for treating wastewater using membrane filters
US4415454A (en) Nitrification treatment of wastewater
JP4508694B2 (en) Water treatment method and apparatus
AU2001280766A1 (en) Method and apparatus for treating wastewater using membrane filters
US9975796B2 (en) Process, apparatus and membrane bioreactor for wastewater treatment
WO2001072643A1 (en) Method and apparatus for treating waste water
CA2300719A1 (en) Membrane supported biofilm process
JP3467671B2 (en) Nitrification denitrification method
JP3160878B2 (en) Wastewater treatment method
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
JP3095620B2 (en) Biological nitrogen removal equipment
US7976703B2 (en) Treating unit for simultaneous removal of carbon and nitrogen from wastewater and treating apparatus having the same
Churchouse Membrane bioreactors for wastewater treatment—operating experiences with the Kubota submerged membrane activated sludge process
JPH09253687A (en) Anaerobic and aerobic treatment apparatus for waste water
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor
JP2001087793A (en) Method and apparatus for treating waste water
JP3666064B2 (en) Wastewater treatment equipment
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
JP3819457B2 (en) Biological denitrification of wastewater
JP2520798B2 (en) Method and apparatus for biological dephosphorization of organic wastewater
WO2003045853A1 (en) Device and method for bio-membrane filtration
JP2001070968A (en) Waste water treatment apparatus
JP2001347291A (en) Method and apparatus for treating organic wasteliquid
JP2001096294A (en) Device for removing nitrogen oxide
JP3633001B2 (en) Cleaning method for biological filtration device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term