JP3143987B2 - Evaporator - Google Patents

Evaporator

Info

Publication number
JP3143987B2
JP3143987B2 JP03266434A JP26643491A JP3143987B2 JP 3143987 B2 JP3143987 B2 JP 3143987B2 JP 03266434 A JP03266434 A JP 03266434A JP 26643491 A JP26643491 A JP 26643491A JP 3143987 B2 JP3143987 B2 JP 3143987B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
evaporator
inlet
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03266434A
Other languages
Japanese (ja)
Other versions
JPH05106937A (en
Inventor
山本  憲
山内  芳幸
良一 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP03266434A priority Critical patent/JP3143987B2/en
Publication of JPH05106937A publication Critical patent/JPH05106937A/en
Application granted granted Critical
Publication of JP3143987B2 publication Critical patent/JP3143987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は蒸発器に関し、詳しくは
自動車用空気調和装置等の冷凍サイクルに用いられる蒸
発器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporator, and more particularly, to an evaporator used in a refrigeration cycle of an air conditioner for a vehicle.

【0002】[0002]

【従来の技術】一般に、自動車用空気調和装置等に用い
られる冷凍サイクルは、圧縮機,凝縮器,受液器,膨張
弁,蒸発器等により構成されており、この密閉された回
路へ冷媒を循環させることにより、室内空気と蒸発器と
で熱交換を行なって室内を冷却している。
2. Description of the Related Art Generally, a refrigeration cycle used for an air conditioner for a vehicle is composed of a compressor, a condenser, a liquid receiver, an expansion valve, an evaporator, and the like. By circulating, heat is exchanged between the room air and the evaporator to cool the room.

【0003】上記冷凍サイクルにおいては、膨張弁を通
って断熱膨張した冷媒は、ガスと液との二相流の状態と
なって蒸発器に入り、ここで外部より熱を吸収して気化
(蒸発)し、等温膨張を続けて室内空気の冷却作用を果
たし、膨張した冷媒は過熱蒸気となって圧縮器に吸入さ
れる。
In the refrigeration cycle, the refrigerant adiabatically expanded through the expansion valve enters a two-phase flow of gas and liquid and enters the evaporator, where it absorbs heat from the outside and evaporates (evaporates). Then, the refrigerant undergoes isothermal expansion to cool the room air, and the expanded refrigerant is sucked into the compressor as superheated steam.

【0004】そして、上記の様な冷凍サイクルに使用さ
れる蒸発器としては、従来より製造が容易等の観点か
ら、積層型の蒸発器が提案されている(実公昭53−4
5875号公報参照)。この積層型蒸発器は、多くの管
板を積層して冷媒の複数の蒸発流路(分岐流路)を形成
したものであり、これらの蒸発流路に冷媒を分配して供
給することによって、冷媒と室内空気との熱交換を行な
う様に構成されている。
[0004] As an evaporator used in the refrigeration cycle as described above, a laminated evaporator has been proposed from the viewpoint of ease of manufacture and the like (Japanese Utility Model Publication No. 53-4).
No. 5875). This laminated evaporator is formed by laminating many tube sheets to form a plurality of refrigerant flow paths (branch flow paths). By distributing and supplying the refrigerant to these vapor flow paths, The heat exchange between the refrigerant and the room air is performed.

【0005】また、上記積層型蒸発器においては、蒸発
器の入口における乾き度を小さくする(即ち液体状態の
冷媒の割合を大きくする)と、各流路に冷媒がより均一
に分配されて熱交換性能が向上することが知られてい
る。そのため、近年では蒸発器の入口と出口とにおい
て、スーパーヒータを用いて冷媒の熱交換を行ない、入
口における冷媒の乾き度を小さくして、冷媒の分配性能
を向上させている。
In the above-mentioned laminated evaporator, when the dryness at the inlet of the evaporator is reduced (ie, the ratio of the refrigerant in the liquid state is increased), the refrigerant is more uniformly distributed to each flow path and heat is generated. It is known that the exchange performance is improved. Therefore, in recent years, heat exchange of the refrigerant is performed using a super heater at the inlet and the outlet of the evaporator, and the dryness of the refrigerant at the inlet is reduced to improve the refrigerant distribution performance.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記の様な
積層型蒸発器では、通常スーパーヒータから蒸発器内部
に供給される冷媒を、図6に示す様に、一旦管板P1の
端部に設けられた大径の冷媒導入部(入口タンク)P2
に導き、この入口タンクP2から幅の狭いコア部(蒸発
流路)P3に導入して蒸発させているので、冷媒は入口
タンクP2に導入された時点で膨張して乾き度が大きく
なり、その結果冷媒の分配性能が低下するという問題が
あった。
However, in the above-described laminated evaporator, the refrigerant normally supplied from the super heater to the inside of the evaporator is temporarily applied to the end of the tube sheet P1 as shown in FIG. Large-diameter refrigerant inlet (inlet tank) P2 provided
Since the refrigerant is introduced from the inlet tank P2 into the narrow core portion (evaporation flow path) P3 to evaporate, the refrigerant expands at the time of introduction into the inlet tank P2, and the dryness increases. As a result, there is a problem that the distribution performance of the refrigerant is reduced.

【0007】この対策として、入口タンクP2からコア
部P3への通路に絞り部P4を設ける手段が考えられる
が、この絞り部P4は、蒸発器の両側の管板P1の一部
を内側に突出させて形成するので、次の様な問題があり
必ずしも好適ではなかった。つまり、従来の積層型蒸発
器は、表面にろう材が塗布された複数の管板P1を、フ
ィンP5とともに積層した状態で加熱してろう付け接合
されるが、絞り部P4の隙間は僅かであるので、加熱の
際に軟化したろう材によって塞がれて、目詰まりを起こ
してしまうという問題があった。
As a countermeasure, a means for providing a throttle portion P4 in the passage from the inlet tank P2 to the core portion P3 can be considered. The throttle portion P4 projects a part of the tube sheet P1 on both sides of the evaporator inward. However, it is not always preferable because of the following problems. In other words, in the conventional laminated evaporator, a plurality of tube sheets P1 each having a surface coated with a brazing material are heated and brazed together in a state of being laminated together with the fins P5. As a result, there is a problem that the material is blocked by the brazing material softened at the time of heating to cause clogging.

【0008】また、多数の管板P1を精密にプレス形成
し、それらを正確に位置合わせしてろう付け接合し、そ
れによって、全ての流路に全く同一形状の絞り部P4を
設けることは、実際にはなかなか困難であった。本発明
の蒸発器は、上記課題を解決するためになされ、簡易な
構成で精密な寸法の絞り部を形成するとともに、絞り部
の目詰まりを防止し、それによって冷媒の分配性能を向
上させて熱交換性能を高めることができる蒸発器を提供
することを目的とする。
[0008] It is also necessary to press-form a large number of tube sheets P1 precisely, braze them by accurately aligning them, and thereby to provide a throttle portion P4 of exactly the same shape in all the flow paths. In practice it was quite difficult. The evaporator of the present invention has been made in order to solve the above-described problems, and forms a narrowed portion having a precise dimension with a simple configuration, prevents clogging of the narrowed portion, thereby improving the refrigerant distribution performance. An object of the present invention is to provide an evaporator capable of improving heat exchange performance.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明は、冷媒を循環させる冷凍サイクルに用いら
、入口流路の冷媒と出口流路の冷媒とを熱交換させる
冷媒熱交換部を備えるとともに、ろう付け接合により上
記冷媒の蒸発を行う分岐流路が形成された蒸発器におい
て、上記冷媒が上記入口流路から導入される冷媒導入部
と、該冷媒導入部から複数に分岐して、上記冷媒の蒸発
領域となる複数の分岐流路と、上記各分岐流路の入口部
に設けられて、該入口部の流路面積を狭くする絞り部
と、を備えるとともに、上記絞り部は、上記分岐流路を
構成する部材とは別体で該分岐流路の入口部に取り付け
られる嵌合部材よりなり、該嵌合部材には、一端が上記
分岐流路に開口し他端が上記冷媒導入路に開口して、上
記分岐流路と上記冷媒導入部とを連通する絞り流路を備
えるとともに、該絞り流路は、上記分岐流路より小径で
あり、しかも、上記絞り流路は、上記冷媒導入部側ほど
径の大きなロート状開口部を備えたことを特徴とする蒸
発器を要旨とする。
The present invention for achieving the above object is used in a refrigeration cycle for circulating a refrigerant, in which heat exchange is performed between a refrigerant in an inlet channel and a refrigerant in an outlet channel.
Equipped with a heat exchange section for the refrigerant and
In the evaporator in which a branch flow path for evaporating the refrigerant is formed , a refrigerant introduction part in which the refrigerant is introduced from the inlet flow path , and a plurality of branches from the refrigerant introduction part, and an evaporation region of the refrigerant. A plurality of branch channels, and a throttle portion provided at the inlet of each of the branch channels to reduce the flow channel area of the inlet portion, and the throttle portion includes the branch channel.
The member comprises a fitting member which is attached separately to the inlet of the branch flow path , and one end of the fitting member has the above-mentioned structure.
The other end opens to the branch flow path and opens to the refrigerant introduction path.
A throttle flow path is provided for communicating the branch flow path with the refrigerant introduction section.
In addition, the throttle channel has a smaller diameter than the branch channel.
Yes, and the throttle flow path is closer to the refrigerant introduction section side.
An evaporator which is characterized that you with a large funnel-shaped opening having a diameter the gist.

【0010】[0010]

【作用】上記構成を有する本発明の蒸発器では、例えば
膨張弁等から流出した冷媒は、入口タンク等の入口導入
部に導かれた後に、複数の分岐流路に分配される。ここ
で、各分岐流路の入口部には流路面積を狭くする絞り部
が形成されているので、冷媒導入部に導入された冷媒は
主として液体の状態で保持され、この絞り部を通過した
冷媒は、減圧されて蒸発するとともに低温となる。
In the evaporator of the present invention having the above-described structure, the refrigerant flowing out of, for example, an expansion valve is guided to an inlet introduction section such as an inlet tank, and is then distributed to a plurality of branch flow paths. Here, at the inlet of each branch flow channel, a throttle portion for reducing the flow channel area is formed, so that the refrigerant introduced into the refrigerant introduction portion is mainly held in a liquid state and passed through the throttle portion. The refrigerant is reduced in pressure and evaporates, and becomes low in temperature.

【0011】つまり、各分岐流路には冷媒導入部から液
単相状態の冷媒が均一に分配され、次いで絞り部を通過
した冷媒は減圧されて二相状態となり、例えば各分岐流
路間に設けられたフィン等を介して空気と熱交換する。
そして、特に本発明では、上記絞り部が嵌合部材から構
成されているので、この嵌合部材を分岐流路の入口部に
取り付けるだけで、流路の目詰まりを生ずることなく、
冷媒の流れを規制する絞り部を形成することができる。
つまり、この嵌合部材には、分岐流路より小径で分岐流
路と冷媒導入部とを連通する絞り流路を備えているの
で、冷媒導入部から絞り流路に流入した冷媒は、上述し
た様に分岐流路にて減圧されて蒸発し、低温になる。
In other words, the refrigerant in the liquid single-phase state is uniformly distributed from the refrigerant introduction part to each branch flow path, and the refrigerant that has passed through the throttle part is decompressed into a two-phase state. It exchanges heat with air through the provided fins and the like.
In the present invention, in particular, since the restricting portion is formed of a fitting member, the fitting member is simply attached to the inlet of the branch flow path without causing clogging of the flow path.
A restricting portion that regulates the flow of the refrigerant can be formed.
That is, since the fitting member includes the throttle flow path having a smaller diameter than the branch flow path and communicating the branch flow path and the refrigerant introduction part, the refrigerant flowing from the refrigerant introduction part into the throttle flow path is as described above. As described above, the pressure is reduced and evaporated in the branch flow channel to lower the temperature.

【0012】[0012]

【実施例】以上説明した本発明の構成・作用を一層明ら
かにするために、以下本発明の蒸発器の好適な実施例に
ついて説明する。図1は積層型蒸発器の模式図である。
図1に示す様に、積層型蒸発器(以下、単に蒸発器と呼
ぶ)1は、自動車用冷凍サイクルに用いられるものであ
り、膨張弁3の下流側に設けられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to further clarify the structure and operation of the present invention described above, a preferred embodiment of the evaporator of the present invention will be described below. FIG. 1 is a schematic diagram of a laminated evaporator.
As shown in FIG. 1, a laminated evaporator (hereinafter, simply referred to as an evaporator) 1 is used in a refrigeration cycle for automobiles, and is provided downstream of an expansion valve 3.

【0013】この蒸発器1は、膨張弁3から流出した冷
媒の導入及び蒸発器1外へ気化後の冷媒の送出を行なう
ジョイントブロック5と、冷媒間で熱交換を行なう冷媒
熱交換部(スーパーヒータ)7と、冷媒と空気とを熱交
換させる冷媒蒸発部9とから構成されている。尚、ジョ
イントブロック5の下流側の流路には、膨張弁3と接続
された感温筒11が配置されている。
The evaporator 1 includes a joint block 5 for introducing the refrigerant flowing out of the expansion valve 3 and sending out the vaporized refrigerant to the outside of the evaporator 1, and a refrigerant heat exchange section (super) for exchanging heat between the refrigerants. (Heater) 7 and a refrigerant evaporator 9 for exchanging heat between refrigerant and air. Note that a temperature-sensitive cylinder 11 connected to the expansion valve 3 is disposed in a flow path on the downstream side of the joint block 5.

【0014】上記ジョイントブロック5には、膨張弁3
から流出した二相状態の冷媒の入口となる流入口13
と、気化後の冷媒を送り出す流出口15とが設けられて
いる。冷媒熱交換部7は、入口冷媒と出口冷媒とが熱交
換される部分であり、板状のプレート(図示せず)をろ
う付けにより複数積層し、各プレートの間に冷媒を流す
様に構成されている。
The joint block 5 includes an expansion valve 3.
Inlet 13 that serves as an inlet for the two-phase refrigerant flowing out of
And an outlet 15 for sending out the vaporized refrigerant. The refrigerant heat exchange part 7 is a part in which the inlet refrigerant and the outlet refrigerant exchange heat, and is configured such that a plurality of plate-like plates (not shown) are laminated by brazing, and the refrigerant flows between the plates. Have been.

【0015】冷媒蒸発部9は、図2に示す様に、空気を
冷却するための波板状のコルゲートフィン17(以下、
フィンと呼ぶ)と、凹凸のあるプレート(管板)19
a,19b(19と総称する)とを、ろう付けにより多
数積層したものであり、該プレート19は、略長方形の
板状で、その上部に円筒形の入口タンク21と略四角筒
形の出口タンク23とが形成されている。
As shown in FIG. 2, the refrigerant evaporator 9 has corrugated fins 17 (hereinafter, referred to as corrugated fins) 17 for cooling air.
Fins) and an uneven plate (tube sheet) 19
a and 19b (collectively referred to as 19) are laminated by brazing, and the plate 19 has a substantially rectangular plate shape, and has a cylindrical inlet tank 21 and a substantially square cylindrical outlet at its upper part. A tank 23 is formed.

【0016】この入口タンク21は、冷媒熱交換部7の
上入口冷媒タンク部25に整合する位置に設けられ、そ
の中央に孔26が穿設されており、冷媒熱交換部7から
送られてきた冷媒が導入される部位となる。一方、出口
タンク23は、冷媒熱交換部7の上出口冷媒タンク部2
9に整合する位置に設けられ、その中央に孔30が穿設
されており、冷媒熱交換部7の上出口冷媒タンク部29
に冷媒を送り出す部位となる。
The inlet tank 21 is provided at a position corresponding to the upper inlet refrigerant tank portion 25 of the refrigerant heat exchanging portion 7, and has a hole 26 formed in the center thereof, and is sent from the refrigerant heat exchanging portion 7. This is where the refrigerant is introduced. On the other hand, the outlet tank 23 is an upper outlet refrigerant tank 2 for the refrigerant heat exchange section 7.
9, a hole 30 is formed in the center thereof, and the upper and lower outlet refrigerant tank portions 29 of the refrigerant heat exchange portion 7 are provided.
This is the part that sends the refrigerant to

【0017】上記プレート19は、積層したときにプレ
ート19間に冷媒の蒸発流路(コア部)20が形成され
る様に、外周に対して中央部がくぼんでおり、この中央
部である中央凹面部33には、冷媒の伝熱促進のための
複数のクロスリブ35と、冷媒を下方に導き更に方向転
換して出口タンク23に導く中央隔壁37が凸状に形成
されている。尚、向かい合わせてろう付けされるプレー
ト19bの形状は、左右反対、つまり一方のプレート1
9aに対して他方のプレート19bの形状を鏡に映した
形状としており、この両プレート19a,19bによっ
て、薄肉の袋状の上記蒸発流路20が形成されている。
The center of the plate 19 is depressed with respect to the outer periphery so that an evaporating flow path (core portion) 20 of the refrigerant is formed between the plates 19 when the plates 19 are stacked. The concave portion 33 has a plurality of cross ribs 35 for promoting heat transfer of the refrigerant, and a central partition wall 37 for guiding the refrigerant downward and further changing the direction to guide the refrigerant to the outlet tank 23 in a convex shape. The shape of the plate 19b to be brazed face-to-face is opposite to the left and right, that is, one plate 1b.
The shape of the other plate 19b is mirrored to 9a, and the thin plates 19a and 19b form the thin bag-shaped evaporation flow path 20.

【0018】また、図3に示す様に、一方のプレート1
9aにおける入口タンク21と中央凹面部33との間に
は、両者を結ぶ半円柱状の凹部39aが形成されてお
り、図4に示す様に、この凹部39aは、他方の向かい
合うプレート19bの凹部39bと一体となって、円筒
状の嵌合部41を構成している。そして、この嵌合部4
1に、段のある円筒状の絞り部材43が嵌合されてい
る。
Further, as shown in FIG.
9a, a semi-cylindrical concave portion 39a is formed between the inlet tank 21 and the central concave portion 33 to connect them, and as shown in FIG. 4, this concave portion 39a is formed by the concave portion of the other facing plate 19b. Together with 39b, a cylindrical fitting portion 41 is formed. And this fitting part 4
1 is fitted with a stepped cylindrical throttle member 43.

【0019】この絞り部材43は、一端が外方向に張り
出す鍔部45を備えており、その中心部分には、入口タ
ンク21側と蒸発流路20とを連通し、蒸発流路20の
厚さよりも小径の絞り流路47が形成されている。ま
た、絞り流路47の入口タンク21側には、外側に大き
く開口するロート状開口部49が形成されている。つま
り、この絞り流路47を備えた絞り部材43によって、
冷媒の流れを規制する絞り部が形成されている。
The throttle member 43 is provided with a flange portion 45 whose one end projects outwardly. The center portion of the throttle member 43 communicates with the inlet tank 21 side and the evaporation flow path 20. A throttle channel 47 having a smaller diameter than that is formed. On the inlet tank 21 side of the throttle channel 47, a funnel-shaped opening 49 that opens largely outward is formed. That is, by the throttle member 43 having the throttle channel 47,
A throttle section for regulating the flow of the refrigerant is formed.

【0020】そして、上述した構成を備えた蒸発器1を
製造する場合には、まずろう材を塗布したプレート19
とフィン17とを積層し、これらの部材を積層した状態
で加熱してろう材を軟化させ、その後冷却することによ
って一体にろう付け接合する。そして、この蒸発器1の
製造の際には、予め上記嵌合部41に絞り部材43の小
径部分43aを嵌め込んでおき、上記加熱によってプレ
ート19とフィン17との接合を行なうとともに、絞り
部材43を挟むプレート19のろう材にて絞り部材43
をろう付けして固定する。
When manufacturing the evaporator 1 having the above-described structure, first, the plate 19 coated with the brazing material is used.
And the fins 17 are laminated, the brazing material is softened by heating in a state where these members are laminated, and then cooled to be integrally joined by brazing. When the evaporator 1 is manufactured, the small-diameter portion 43a of the throttle member 43 is fitted in the fitting portion 41 in advance, and the plate 19 and the fins 17 are joined by the above-mentioned heating. Squeezing member 43 with brazing material of plate 19 sandwiching
And fix it by brazing.

【0021】次に、この様にして製造した蒸発器1の冷
媒の流れを、図2の矢印A〜Gにて示す。まず、冷媒熱
交換部7から各入口タンク21に送られた冷媒(矢印
A)は、分配されて各絞り部材43を通過し(矢印
B)、中央凹面部33間を下方に向かって流れ(矢印
C)、更に下部で方向転換して上方に向いて(矢印D,
E)、各出口タンク23に流れ込み(矢印F)、合流し
て冷媒熱交換部7の上出口冷媒タンク部29に送られる
(矢印G)。これによって、蒸発流路20を冷媒が流れ
るときに、冷媒はフィン17を介して空気と熱交換し蒸
発しつつ等温膨張を続ける。
Next, the flow of the refrigerant in the evaporator 1 thus manufactured is shown by arrows A to G in FIG. First, the refrigerant (arrow A) sent from the refrigerant heat exchange unit 7 to each inlet tank 21 is distributed, passes through each throttle member 43 (arrow B), and flows downward between the central concave portions 33 (arrow B). (Arrow C), turn further at the bottom and turn upward (arrow D,
E), flows into each outlet tank 23 (arrow F), merges and is sent to the upper outlet refrigerant tank unit 29 of the refrigerant heat exchange unit 7 (arrow G). As a result, when the refrigerant flows through the evaporating flow path 20, the refrigerant exchanges heat with the air via the fins 17, evaporates, and continues the isothermal expansion.

【0022】次に、以上の様に構成された蒸発器1での
冷媒の状態を、図5を用いて説明する。図5は、冷凍サ
イクル上での冷媒の状態を表すモリエ線図である。図示
しない圧縮機により圧縮された(図中線m部分)高圧の
冷媒は、コンデンサ51で放熱し(図中線n部分)、ガ
ス冷媒から液冷媒へと相変化する。ここで、線o上を点
Wまで膨張させることなく、冷媒熱交換部7で入口冷媒
と出口冷媒を熱交換させることで、冷媒を線p上に沿っ
て点Xまで変化させて液化している。このため、冷媒
は、冷媒蒸発部9の入口タンク21から各蒸発流路20
に均等に分配される。このとき、蒸発流路20の入口と
なる絞り部により、冷媒は線q上に沿って点Yにまで減
圧されて気液二相状態となり、フィン17を介して空気
と熱交換され蒸発を開始する(図中線r部分)。冷媒
は、蒸発が終了したときに(点Z)冷媒蒸発部19の出
口タンク23で合流し冷媒熱交換部7に送られる。この
冷媒(出口冷媒)は、冷媒熱交換部7のプレート間に形
成された出口冷媒流路(図示せず)を通過することで、
入口冷媒と熱交換され過熱(スーパーヒート)蒸気とな
って(図中線s部分)、感温筒11を経て圧縮機へと送
られる。
Next, the state of the refrigerant in the evaporator 1 configured as described above will be described with reference to FIG. FIG. 5 is a Mollier diagram showing the state of the refrigerant on the refrigeration cycle. The high-pressure refrigerant compressed by the compressor (not shown) (line m in the drawing) radiates heat in the condenser 51 (line n in the drawing), and changes phase from gas refrigerant to liquid refrigerant. Here, by exchanging heat between the inlet refrigerant and the outlet refrigerant in the refrigerant heat exchange unit 7 without expanding the line o to the point W, the refrigerant is changed to the point X along the line p to liquefy. I have. Therefore, the refrigerant flows from the inlet tank 21 of the refrigerant evaporating section 9 to each of the evaporating flow paths 20.
Are evenly distributed. At this time, the refrigerant is decompressed to the point Y along the line q by the constricted portion serving as the inlet of the evaporating flow path 20 to be in a gas-liquid two-phase state. (Line r in the figure). When the evaporation ends (point Z), the refrigerant joins at the outlet tank 23 of the refrigerant evaporator 19 and is sent to the refrigerant heat exchanger 7. This refrigerant (outlet refrigerant) passes through an outlet refrigerant flow path (not shown) formed between the plates of the refrigerant heat exchange unit 7,
The heat is exchanged with the inlet refrigerant to become superheated (superheat) steam (line s in the figure), and is sent to the compressor through the temperature-sensitive cylinder 11.

【0023】以上説明した様に、本実施例の蒸発器1に
よれば、冷媒熱交換部7と絞り部材43による絞り部と
を設けたことにより、入口冷媒と出口冷媒とを熱交換す
るとともに、冷媒の乾き度を小さくして各蒸発流路20
に冷媒を均一に分配することができ、しかも、蒸発流路
20における冷媒の温度を一定に維持することができ
る。この結果、冷媒の均一分配により熱交換性能が向上
し、冷媒の等温膨張により空気との熱交換を均一にする
ことができ、フィン17を通過した空気の温度を均一に
することができる。
As described above, according to the evaporator 1 of the present embodiment, the provision of the refrigerant heat exchanging section 7 and the restricting section formed by the restricting member 43 allows heat exchange between the inlet refrigerant and the outlet refrigerant. , The degree of dryness of the refrigerant is reduced, and
The refrigerant can be evenly distributed to the refrigerant, and the temperature of the refrigerant in the evaporation passage 20 can be kept constant. As a result, the heat exchange performance is improved by the uniform distribution of the refrigerant, the heat exchange with the air can be made uniform by the isothermal expansion of the refrigerant, and the temperature of the air passing through the fins 17 can be made uniform.

【0024】また、本実施例では、プレート19に設け
た嵌合部41に絞り部材43を挟み、全体のろう付けの
際に、絞り部材43もろう付けすることによって絞り部
を形成しているので、この絞り部の形成が極めて容易で
あるという特長がある。しかも、絞り部材43を別体に
て切削加工等によって精密に製造することができるの
で、プレート19のプレス精度や接合精度が多少低くて
も、精密な寸法の絞り流路47を形成できるという利点
がある。
In this embodiment, the aperture member 43 is sandwiched between the fitting portions 41 provided on the plate 19, and the aperture member 43 is formed by brazing the aperture member 43 during the entire brazing. Therefore, there is a feature that the formation of the constricted portion is extremely easy. In addition, since the aperture member 43 can be manufactured precisely by cutting or the like as a separate body, even if the press accuracy or joining accuracy of the plate 19 is somewhat low, an advantage that the aperture channel 47 having a precise dimension can be formed. There is.

【0025】更に、絞り部材43自体にはろう材が塗布
されておらず、しかも絞り流路47は絞り部材43の中
央に形成され、そのうえ入口タンク21側が大きく開口
するロート状とされているので、ろう付けの際にろう材
が軟化しても絞り流路47が目詰まりを起こし難いとい
う顕著な効果を奏する。
Further, since no brazing material is applied to the throttle member 43 itself, the throttle channel 47 is formed in the center of the throttle member 43, and furthermore, has a funnel shape with a large opening on the inlet tank 21 side. In addition, even when the brazing material is softened during brazing, a remarkable effect is obtained in that the throttle channel 47 is unlikely to be clogged.

【0026】以上本発明の実施例について説明したが、
本発明はこうした実施例に何等限定されるものではな
く、本発明の要旨を逸脱しない範囲において、種々なる
態様で実施し得ることは勿論である。例えば、膨張弁3
を廃止し、コンデンサ51を出た後の液冷媒を冷媒蒸発
部9の入口タンク21に導入して、絞り部で蒸発させる
構成にしてもよく、その場合でも、入口タンク21に導
入した冷媒が液単相であるために、気液二相に比較する
と分配性能は向上することになる。
The embodiments of the present invention have been described above.
The present invention is not limited to these embodiments at all, and it goes without saying that the present invention can be implemented in various modes without departing from the gist of the present invention. For example, expansion valve 3
May be abolished, and the liquid refrigerant after leaving the condenser 51 may be introduced into the inlet tank 21 of the refrigerant evaporator 9 and evaporated in the throttle unit. Even in such a case, the refrigerant introduced into the inlet tank 21 Since it is a liquid single phase, the distribution performance is improved as compared with the gas-liquid two phase.

【0027】また、本実施例では、蒸発器1を冷媒蒸発
部9と冷媒熱交換部7との一体型としているが、冷媒蒸
発部9と冷媒熱交換部7とを分離して配管等により接続
した別置タイプにしてもよい。例えば、自動車用エアコ
ンの場合、冷媒蒸発部9を車室内に配置し、冷媒熱交換
部7を車室外に設置して配管接続してもよい。
Further, in this embodiment, the evaporator 1 is an integral type of the refrigerant evaporating section 9 and the refrigerant heat exchanging section 7. However, the refrigerant evaporating section 9 and the refrigerant heat exchanging section 7 are separated from each other by piping or the like. It may be a separate type that is connected. For example, in the case of an air conditioner for an automobile, the refrigerant evaporating unit 9 may be arranged in the vehicle interior, and the refrigerant heat exchanging unit 7 may be installed outside the vehicle interior and connected by piping.

【0028】[0028]

【発明の効果】以上詳述したように、本発明の蒸発器に
よれば、入口流路の冷媒と出口流路の冷媒とを熱交換さ
せているため、冷媒の蒸発を行なう各分岐流路へ液状の
冷媒を送ることができ、冷媒の分配の不均一を低減して
冷却性能を向上することができる。また、出口流路で冷
媒を過熱蒸気にすることができるため、各分岐流路の冷
媒の温度を一定に維持して、空気を均一に冷却すること
ができる。しかも、本発明では、絞り部が嵌合部材から
構成されているので、この嵌合部材を分岐流路の入口部
に取り付けるだけで、ろう付けの際に、流路の目詰まり
を生ずることなく、溶媒の流れを規制する絞り部を容易
に形成することができる。それによって、簡易な構成で
良好な熱交換性能を得ることができる。
As described above in detail, according to the evaporator of the present invention, since the refrigerant in the inlet channel and the refrigerant in the outlet channel exchange heat, each branch channel for evaporating the refrigerant is provided. The liquid refrigerant can be sent to the cooling medium, and uneven distribution of the refrigerant can be reduced to improve the cooling performance. Further, since the refrigerant can be made into superheated vapor in the outlet flow path, the temperature of the refrigerant in each branch flow path can be kept constant and the air can be uniformly cooled. In addition, in the present invention, since the restricting portion is formed of the fitting member, the fitting member is simply attached to the inlet of the branch flow path, without causing clogging of the flow path during brazing. In addition, it is possible to easily form a throttle portion that regulates the flow of the solvent. Thereby, good heat exchange performance can be obtained with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蒸発器の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of an evaporator.

【図2】蒸発器の一部を示す説明図である。FIG. 2 is an explanatory view showing a part of an evaporator.

【図3】絞り部材の取付位置を一部破断して示す斜視図
である。
FIG. 3 is a perspective view showing a mounting position of the aperture member, partially broken away.

【図4】絞り部材の取付位置近傍を一部破断して示す正
面図である。
FIG. 4 is a partially cutaway front view showing the vicinity of a mounting position of a throttle member.

【図5】冷媒の状態を表すモリエ線図である。FIG. 5 is a Mollier diagram showing a state of a refrigerant.

【図6】従来技術を示す説明図である。FIG. 6 is an explanatory diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1…積層型蒸発器(蒸発器) 7…冷媒熱
交換部 9…冷媒蒸発部 17…コル
ゲートフィン(フィン) 19,19a,19b…プレート(管板) 20…蒸発
流路(コア部) 39,39a,39b…凹部 41…嵌合
部 43…絞り部材 47…絞り
流路
DESCRIPTION OF SYMBOLS 1 ... Laminated type evaporator (evaporator) 7 ... Refrigerant heat exchange part 9 ... Refrigerant evaporating part 17 ... Corrugated fin (fin) 19,19a, 19b ... Plate (tube plate) 20 ... Evaporation flow path (core part) 39, 39a, 39b: recess 41: fitting part 43: throttle member 47: throttle channel

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−147296(JP,A) 特開 昭51−77952(JP,A) 実開 昭63−172870(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 39/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-147296 (JP, A) JP-A-51-77952 (JP, A) Jikai 63-172870 (JP, U) (58) Field (Int.Cl. 7 , DB name) F25B 39/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒を循環させる冷凍サイクルに用いら
、入口流路の冷媒と出口流路の冷媒とを熱交換させる
冷媒熱交換部を備えるとともに、ろう付け接合により上
記冷媒の蒸発を行う分岐流路が形成された蒸発器におい
て、 上記冷媒が上記入口流路から導入される冷媒導入部と、 該冷媒導入部から複数に分岐して、上記冷媒の蒸発領域
となる複数の分岐流路と、 上記各分岐流路の入口部に設けられて、該入口部の流路
面積を狭くする絞り部と、 を備えるとともに、 上記絞り部は、上記分岐流路を構成する部材とは別体で
分岐流路の入口部に取り付けられる嵌合部材よりな
り、 該嵌合部材には、一端が上記分岐流路に開口し他端が上
記冷媒導入路に開口して、上記分岐流路と上記冷媒導入
部とを連通する絞り流路を備えるとともに、 該絞り流路は、上記分岐流路より小径であり、しかも、
上記絞り流路は、上記冷媒導入部側ほど径の大きなロー
ト状開口部を備えたこ とを特徴とする蒸発器。
1. A refrigeration cycle for circulating a refrigerant, in which heat exchange is performed between a refrigerant in an inlet channel and a refrigerant in an outlet channel.
Equipped with a heat exchange section for the refrigerant and
In the evaporator in which the branch flow path for evaporating the refrigerant is formed , a refrigerant introduction part in which the refrigerant is introduced from the inlet flow path , and a plurality of branches from the refrigerant introduction part, and an evaporation region of the refrigerant. A plurality of branch channels, and a throttle unit provided at the inlet of each of the branch channels to reduce the channel area of the inlet, and the throttle unit constitutes the branch channel. Separate from the material
A fitting member attached to an inlet of the branch flow path, the fitting member having one end opening to the branch flow path and the other end being upward;
Opening to the refrigerant introduction path, the branch flow path and the refrigerant introduction
And a throttle channel communicating with the branch portion, and the throttle channel has a smaller diameter than the branch channel, and
The throttle flow path has a smaller diameter as it approaches the refrigerant introduction section.
Evaporator, wherein a call with the door-like opening.
JP03266434A 1991-10-15 1991-10-15 Evaporator Expired - Fee Related JP3143987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03266434A JP3143987B2 (en) 1991-10-15 1991-10-15 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03266434A JP3143987B2 (en) 1991-10-15 1991-10-15 Evaporator

Publications (2)

Publication Number Publication Date
JPH05106937A JPH05106937A (en) 1993-04-27
JP3143987B2 true JP3143987B2 (en) 2001-03-07

Family

ID=17430884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03266434A Expired - Fee Related JP3143987B2 (en) 1991-10-15 1991-10-15 Evaporator

Country Status (1)

Country Link
JP (1) JP3143987B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292995A (en) * 1997-02-21 1998-11-04 Zexel Corp Lamination-type heat exchanger

Also Published As

Publication number Publication date
JPH05106937A (en) 1993-04-27

Similar Documents

Publication Publication Date Title
US5245843A (en) Evaporator
US5701760A (en) Refrigerant evaporator, improved for uniform temperature of air blown out therefrom
KR100830301B1 (en) Heat exchanger with multiple stage fluid expansion in header
US5678422A (en) Refrigerant evaporator
US8365552B2 (en) Evaporator unit having tank provided with ejector nozzle
US5390507A (en) Refrigerant evaporator
JP4978686B2 (en) Evaporator unit
JP3635715B2 (en) Evaporator for air conditioner
JP3143987B2 (en) Evaporator
WO2022030376A1 (en) Heat exchanger
JP2002228299A (en) Composite heat exchanger
JP3735983B2 (en) Stacked evaporator
JP3633030B2 (en) Evaporator for air conditioner
JPH05141811A (en) Heat exchanger
JPH06194001A (en) Refrigerant evaporator
JPH05157402A (en) Heat exchanger
JP3633005B2 (en) Evaporator for air conditioner
JP2000055573A (en) Refrigerant evaporator
JPH05157401A (en) Heat exchanger
JP3143990B2 (en) Evaporator
JP3114280B2 (en) Evaporator
JP3674054B2 (en) Evaporator
JPH05149651A (en) Vaporizer
US5778974A (en) Laminated type heat exchanger having small flow resistance
JPH06117727A (en) Vaporizer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees