JP3141584B2 - Reversible optical recording material - Google Patents

Reversible optical recording material

Info

Publication number
JP3141584B2
JP3141584B2 JP04317328A JP31732892A JP3141584B2 JP 3141584 B2 JP3141584 B2 JP 3141584B2 JP 04317328 A JP04317328 A JP 04317328A JP 31732892 A JP31732892 A JP 31732892A JP 3141584 B2 JP3141584 B2 JP 3141584B2
Authority
JP
Japan
Prior art keywords
molecule
thin film
optical recording
recording material
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04317328A
Other languages
Japanese (ja)
Other versions
JPH06162560A (en
Inventor
裕 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP04317328A priority Critical patent/JP3141584B2/en
Publication of JPH06162560A publication Critical patent/JPH06162560A/en
Application granted granted Critical
Publication of JP3141584B2 publication Critical patent/JP3141584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、螢光の発消光を利用し
た可逆的光記録材に係り、特に薄膜中の光により構造変
化をする分子が構造変化に伴い、螢光を発する分子に対
する消光物質に変化すること、および構造変化が光によ
り可逆的に生じるものであることから、光のみにより消
光物質の生成・消滅すなわち繰り返し情報の形成・消去
を行なう書き込み消去可能な高密度記録の光記録材に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reversible optical recording material utilizing the emission and quenching of fluorescence, and more particularly to a molecule which undergoes a structural change due to light in a thin film due to a structural change. Since it changes to an extinction substance and the structural change is reversibly caused by light, the light of high-density recording that is writable and erasable, in which the extinction substance is generated and annihilated by light alone, that is, repeatedly forms and erases information. It relates to a recording material.

【0002】[0002]

【従来の技術】従来、非銀塩写真においては、画像増幅
として用いられたのは、 A:光重合,B:自己接触点反応,C:光増感反応,
D:爆発反応,E:光と熱とをともに利用,F:その他 などである。しかし上述のような従来技術においては、
液中での現像による増幅か連鎖反応による増幅かのいず
れかであり、取扱いが簡便でなかったり、反応分子を中
心にして均等な増幅が行われていたものであった。これ
らは高密度記録においては不都合な点である。
2. Description of the Related Art Conventionally, in non-silver salt photography, the following are used for image amplification: A: photopolymerization, B: self-contact point reaction, C: photosensitization reaction,
D: explosive reaction, E: use both light and heat, F: other. However, in the prior art as described above,
Either amplification by development in a liquid or amplification by a chain reaction was used, and handling was not easy, and uniform amplification was performed mainly on reaction molecules. These are disadvantageous points in high-density recording.

【0003】光を利用した有機分子による高密度記録と
しては種々試みがある。第一に、ラングミュア・ブロジ
ェット膜(以下単にLB膜という)中での光異性化反
応、光二量化反応という光化学反応を利用したものが研
究されている。しかしながら、これらの反応による記録
は増幅過程を有せず、したがって書き込み特性において
不利な点となる。加えて記録内容の読み取りは屈折率の
変化または透過率の変化を検知して行なうが、変化率の
大なる物質は見い出すのが容易ではない。これも従来の
不利な点である。
Various attempts have been made for high-density recording using organic molecules using light. First, a photochemical reaction called a photoisomerization reaction or a photodimerization reaction in a Langmuir-Blodgett film (hereinafter simply referred to as an LB film) has been studied. However, recording by these reactions does not have an amplification step, and thus is disadvantageous in writing characteristics. In addition, reading of recorded contents is performed by detecting a change in refractive index or a change in transmittance, but it is not easy to find a substance having a large change rate. This is also a disadvantage of the related art.

【0004】第二に、LB膜中での光エネルギー移動を
利用したものがある。特願昭63−136255号は、
紫外光照射により生成した薄膜中の螢光を発する分子の
酸化体が非酸化体の螢光を消失するという現象を利用し
たものである。エネルギー移動であることから、等方的
増幅過程となり、またLB法により成膜したために、薄
膜全体に消光作用が及びコントラストの高い高密度記録
を可能としたものである。しかしながら、これは可逆的
でなく、書き込みのみであった。これも従来の不利な点
である。
[0004] Second, there is a method utilizing light energy transfer in an LB film. Japanese Patent Application No. 63-136255,
This utilizes the phenomenon that an oxidized form of a molecule emitting fluorescence in a thin film formed by irradiation with ultraviolet light loses the fluorescence of a non-oxidized form. Since the energy transfer is performed, an isotropic amplification process is performed, and since the film is formed by the LB method, a quenching effect is achieved on the entire thin film and high-density recording with high contrast is enabled. However, this was not reversible, only writing. This is also a disadvantage of the related art.

【0005】最後に、エネルギー移動を利用しかつ可逆
的に書き込み消去可能な記録体は、例えば、下村らによ
るPolymer Preprints,Japan. vol.38,(1989)p464に見ら
れる。これは、陽イオン性水溶性高分子と水溶性螢光分
子ローダミンBとを含有した水溶液面上に、アゾベンゼ
ン長鎖誘導体単分子膜を形成し、無螢光基板上にLB法
により推積することで光記録材を形成するものである。
[0005] Finally, a reversibly writable and erasable recording medium utilizing energy transfer can be found, for example, in Shimomura et al., Polymer Preprints, Japan. Vol. 38, (1989) p464. In this method, an azobenzene long-chain derivative monolayer is formed on an aqueous solution containing a cationic water-soluble polymer and a water-soluble fluorescent molecule rhodamine B, and is deposited on a non-fluorescent substrate by the LB method. Thus, an optical recording material is formed.

【0006】この方法は、調整下層液上に一度だけ単分
子膜を形成すれば良いという利点はあるが、螢光性分子
を水中から単分の膜に吸着させるという手法のために、
光記録体における分の密度の正確な制御が難しい、水溶
性分子に限られる、さらに吸着分子密度が大なるにつれ
て、アゾベンゼンの光異性化反応が生じにくくなるなど
二種分子間の複雑な相互作用が生じるという欠点がみら
れる。
Although this method has the advantage that a monomolecular film only needs to be formed once on the adjusted lower layer liquid, the method involves adsorbing fluorescent molecules from water to a single-part film.
Precise control of the density of the optical recording medium is difficult, it is limited to water-soluble molecules, and as the adsorbed molecular density increases, the azobenzene photoisomerization reaction becomes difficult to occur, and complex interactions between two types of molecules. Is disadvantageous in that

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来の非銀
塩写真感光体にみられる上記したような欠点すなわち非
等方増幅を、等方的増幅とすること、螢光を利用して読
み取り特性を向上すること、さらに、書き込み−消去可
能な可逆的記録体とすること、最後に機能をはたす分子
各々を別の単分子膜として積層することにより、発現す
る機能の制御性を高めること及び機能の向上をはかるこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to make the above-mentioned disadvantages, ie, anisotropic amplification, of a conventional non-silver photographic photoreceptor an isotropic amplification, and to utilize fluorescence. Improve the reading characteristics, furthermore, make it a writable and erasable reversible recording medium, and finally improve the controllability of the functions to be expressed by stacking each of the functioning molecules as a separate monolayer. And to improve the functions.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、少な
くとも螢光を発する分子を含む薄膜と光による構造変化
を示す分子を含む薄膜とを無螢光基材上に積層した光記
録材であって、該構造変化を示す分子の構造変化後(又
は前)の状態が前記螢光を発する分子の螢光を消光し、
構造変化前(又は後)の状態にあれば消光せず、さらに
積層膜に可視光照射すれば構造変化前の状態にもどるこ
とを特徴とする可逆的光記録材である。
That is, the present invention relates to an optical recording material in which at least a thin film containing a molecule emitting fluorescence and a thin film containing a molecule showing a structural change by light are laminated on a non-fluorescent substrate. The state after (or before) the structural change of the molecule exhibiting the structural change quenches the fluorescence of the fluorescent molecule,
A reversible optical recording material characterized in that it does not extinguish if it is in a state before (or after) the structural change, and returns to a state before the structural change by irradiating the laminated film with visible light.

【0009】本発明を図面に基づいてさらに詳述する。
図1に示すように、石英、アルミナ等の無機質、あるい
は合成樹脂フィルムのような有機質の無螢光基材(1)
上に光により構造変化を示す分子(4)と薄膜形成用の
分子(5)を適度に混合して薄膜(7)と、螢光を発す
る分子(3)と薄膜形成用の分子(2)を適度に混合し
た薄膜(6)とを積層する。図1の例では、薄膜(7)
は光により構造変化を示す分子(4)の形成する水面上
単分子膜に水中から薄膜形成用の分子(5)を吸着さ
せ、LB法によって作成した膜となっている。
The present invention will be described in further detail with reference to the drawings.
As shown in FIG. 1, an inorganic non-fluorescent substrate such as quartz or alumina, or an organic non-fluorescent substrate such as a synthetic resin film (1)
A thin film (7), a molecule (3) emitting fluorescence, and a molecule (2) for forming a thin film are prepared by appropriately mixing a molecule (4) showing a structural change by light and a molecule (5) for forming a thin film. And a thin film (6) obtained by appropriately mixing the above. In the example of FIG. 1, the thin film (7)
Is a film formed by adsorbing a molecule (5) for forming a thin film from water onto a monomolecular film on the water surface formed by a molecule (4) showing a structural change by light, and formed by the LB method.

【0010】この光記録材に対して、紫外線を部分選択
的に照射する。かくすれば図2に示すように薄膜(7)
中の分子(4)が構造変化をおこした分子(4’)とな
る。続いて図3に示すように読み取りのために可視光線
(a)を照射する。このときに照射される光は書き込
み、消去に伴う照射光よりも長波長側のものでかつ弱い
光であり、光記録体に変化を生じないものを用いる。図
3によれば図1で構造変化を起こした分子(4’)は、
螢光を発しないかもしくは極めて螢光が弱いが、それば
かりでなく周囲の螢光を発する分子(3)にも消光作用
を及ぼし、螢光消去領域(8)を形成する。すなわち消
光機能が周囲に等方的に作用することで等方的な増幅が
なされる。このような状態でフォトセンサーにより螢光
の有無を検知し、電気信号に変換することで光記録内容
の読み取りがなされる。蛍光消去領域(8)外では分子
(3)の螢光(9)が観測される。
The optical recording material is partially and selectively irradiated with ultraviolet rays. Thus, as shown in FIG.
The molecule (4) in the inside becomes the molecule (4 ′) having undergone a structural change. Subsequently, as shown in FIG. 3, visible light (a) is irradiated for reading. The light irradiated at this time is light having a longer wavelength than the irradiation light for writing and erasing and is weaker, and light that does not change the optical recording medium is used. According to FIG. 3, the molecule (4 ′) having undergone a structural change in FIG.
It does not fluoresce or is very weak, but it also has a quenching effect on the surrounding fluorescing molecules (3), forming a fluorescence erasing region (8). That is, the extinction function isotropically acts on the surroundings, so that isotropic amplification is performed. In such a state, the presence or absence of fluorescence is detected by a photo sensor and converted into an electric signal, thereby reading the optically recorded contents. Outside the fluorescence erasure area (8), the fluorescence (9) of the molecule (3) is observed.

【0011】以上が書き込み及び読み取りの操作である
が、次に消去及び書き換えを、図4および図5に基づい
て説明する。図4に示すように、紫外光で書き込んだ光
記録体の全面に可視光線(b)を照射する。あるいは紫
外光照射領域に選択的に照射する。これにより、図5に
示すように薄膜(7)中の構造変化を起こした分子
(4’)は、螢光を発する分子(4)にもどり、消光機
能を果たす分子が消失したために分子(3)の発する螢
光は全面均一となり書き込み前の状態に戻ったわけであ
る。
The writing and reading operations have been described above. Next, erasing and rewriting will be described with reference to FIGS. As shown in FIG. 4, the entire surface of the optical recording medium written with ultraviolet light is irradiated with visible light (b). Alternatively, the ultraviolet light irradiation area is selectively irradiated. As a result, as shown in FIG. 5, the molecule (4 ′) that has undergone a structural change in the thin film (7) returns to the molecule (4) that emits fluorescence, and the molecule (3) is lost due to the disappearance of the molecule that performs the quenching function. The fluorescence emitted by the parentheses) becomes uniform over the entire surface and returns to the state before writing.

【0012】以上の図1〜図3に基づいた説明では機能
を果たす分子、即ち螢光を発する分子または光異性化を
示す分子に、薄膜形成用の分子(2)を添加して薄膜を
形成する例である。しかし本発明はこれに限られず、螢
光を発する分子単独で薄膜を形成できるものも含まれ
る。螢光を発する分子のみで薄膜が構成されるので螢光
の光量が多くなり、コントラストの高い記録材となる。
光異性化を示す分子を含む薄膜では、分子の構造変化を
許容する程度の隙間が分子間に存在する必要があり、薄
膜形成用の分子は必要である。この事実は、栗原らによ
るPolymer Prepr-ints, Japan. Vol.38,(1989)p2588 〜
2590により確認された。
In the above description with reference to FIGS. 1 to 3, a thin film is formed by adding a thin film forming molecule (2) to a molecule that functions, that is, a molecule that emits fluorescence or a molecule that exhibits photoisomerization. Here is an example. However, the present invention is not limited to this, and also includes those in which a thin film can be formed using only a molecule that emits fluorescence. Since the thin film is composed only of the molecules emitting fluorescent light, the amount of fluorescent light increases, and a recording material with high contrast is obtained.
In a thin film containing a molecule exhibiting photoisomerization, a gap that allows structural change of the molecule must exist between the molecules, and a molecule for forming the thin film is necessary. Kurihara et al., Polymer Prepr-ints, Japan.Vol. 38, (1989) p2588 ~
Confirmed by 2590.

【0013】本発明に用いることのできる分子は、螢光
を発する分子、光異性化の分子別々に選定できるのでは
なく、それらの組合せとして定まるものである。はじめ
に、螢光を発する分子としては、薄膜の形成のしやすさ
からカルボキシル基のような極性基を末端に有する有機
螢光物質であってシアニン基、メロシアニン基を備えた
ものがあげられ、一例として下記のメロシアニン色素が
あげられる。
The molecule which can be used in the present invention is not limited to a molecule which emits fluorescence or a molecule for photoisomerization, but is determined as a combination thereof. First, as a molecule emitting fluorescence, an organic fluorescent substance having a polar group such as a carboxyl group at the terminal and having a cyanine group and a merocyanine group in order to facilitate the formation of a thin film. And the following merocyanine dyes.

【0014】[0014]

【化1】 Embedded image

【0015】シアニン色素の例としては、色素自体に極
性があることから、長鎖疎水基を有する下記のものをあ
げることができる。
Examples of the cyanine dye include the following having a long-chain hydrophobic group because the dye itself has polarity.

【0016】[0016]

【化2】 Embedded image

【0017】一方、薄膜を形成する分子としては同様に
カルボキシル基のような極性基を有する脂肪酸が良く、
とりわけ炭素数16〜24程度の長鎖脂肪酸で上記シア
ニン色素においては、長鎖疎水基とその長さが似かよっ
たものから炭素数にして3程度長いものが良く、メロシ
アニン色素の場合には、分子とその長さが似かよったも
のを用いるのが良い。
On the other hand, as a molecule forming a thin film, a fatty acid having a polar group such as a carboxyl group is also preferable.
In particular, in the above-mentioned cyanine dye, which is a long-chain fatty acid having about 16 to 24 carbon atoms, the one having a similar length to the long-chain hydrophobic group is preferably about 3 carbon atoms long. In the case of a merocyanine dye, It is better to use one whose length is similar.

【0018】次に本発明の可逆的記録材を構成する光異
性化を生じる分子としては、一例としてアゾベンゼン部
位を有する下記のものがあげられる。
Next, examples of the molecules that cause photoisomerization that constitute the reversible recording material of the present invention include the following having an azobenzene moiety.

【0019】[0019]

【化3】 Embedded image

【0020】この分子は、長鎖脂肪酸を混入せずともL
B法により基板上に単分子膜として累積できるが、光異
性化反応は生じない。これは光異性化反応に伴う、形状
変化を許容する隙間がないためとされ、栗原らによるPo
lymer Preprints, Japan. Vol.38,(1989)p2588〜2590
は、水溶性高分子とのポリイオンコンプレクスとするこ
とで、1分子当り面積を増大させ、光異性化を生ぜしめ
た。水溶性高分子としては、以下に示す日東紡績(株)
製商品名「ポリアクリルアミン」が用いられ、本発明も
これにならった。
This molecule has a low L chain content without the incorporation of long chain fatty acids.
Although it can be accumulated as a monomolecular film on the substrate by the method B, no photoisomerization reaction occurs. This is believed to be due to the fact that there is no gap that allows shape change due to the photoisomerization reaction.
lymer Preprints, Japan.Vol. 38, (1989) p2588-2590
Produced a polyion complex with a water-soluble polymer, which increased the area per molecule and caused photoisomerization. Nitto Boseki Co., Ltd. shown below as the water-soluble polymer
The product name "polyacrylamine" was used, and the present invention followed this.

【0021】[0021]

【化4】 Embedded image

【0022】以上のように作成したLB膜は、紫外光に
より光異性化反応が生じるが、その後には光によっては
光異性化の逆反応は生じない。しかしながら、色素単分
子膜と積層し、あらかじめ紫外光を照射しておいてから
強い可視光を照射すると螢光強度は増大し、紫外光照射
前に戻った。これは光により光異性化の逆反応が生じた
ことを示してしる。
In the LB film formed as described above, a photoisomerization reaction occurs due to ultraviolet light, but thereafter, a reverse reaction of photoisomerization does not occur depending on light. However, when laminated with the dye monomolecular film, irradiated with ultraviolet light in advance, and then irradiated with strong visible light, the fluorescence intensity increased and returned to that before irradiation with ultraviolet light. This indicates that the light caused the reverse reaction of photoisomerization.

【0023】[0023]

【作用】本発明の可逆的光記録材は、情報読取りに螢光
を用いるので螢光体からの発光の有無というデジタル量
を識別し読み誤りの少ない記録材となる。消光機能によ
る増幅は、消光機能を有する分子を中心とする球形領域
において生じるので等方的増幅となる。またLB膜とし
て形成すれば分子レベルで配列した超薄膜となり、一個
の消光分子で薄膜の下面から上面に達する消光領域を形
成することができ、これにより螢光を読み取り易くし、
かつ高密度記録を可能とする。さらに、消光機能をもつ
ものは光によって異性化した分子であり、強い可視光照
射により元の分子に戻り、消光機能を失うため可逆的記
録を可能とする。
The reversible optical recording material of the present invention uses a fluorescent light for reading information, so that it is possible to identify a digital quantity indicating the presence or absence of light emission from the fluorescent material, and to obtain a recording material with few reading errors. Amplification by the quenching function occurs in a spherical region centered on a molecule having the quenching function, and is isotropic amplification. Also, if formed as an LB film, it becomes an ultrathin film arranged at the molecular level, and a single quenching molecule can form a quenching region reaching from the lower surface to the upper surface of the thin film, thereby making it easier to read fluorescence,
In addition, high-density recording is enabled. Further, those having a quenching function are molecules that are isomerized by light, and return to the original molecules by intense visible light irradiation, and lose the quenching function, thereby enabling reversible recording.

【0024】[0024]

【実施例】【Example】

<実施例1> シアニン色素:3−Octadecyl−2−〔3−
(3−octadecyl−2−benzothiaz
olinylidene)−1−propenyl〕b
enzothiazolium perchlorat
e(3,3’−Dioctadecyl−2,2’−t
hiacarbocyanine perchlora
te) の1mMクロロホルム溶液、および、 アゾベンゼン長鎖誘導体:4−Octyl−4’−(5
−carboxy pentamethyleneox
y)azobenzene の1mMクロロホルム溶液を作成した。
<Example 1> Cyanine dye: 3-Octadecyl-2- [3-
(3-octadecyl-2-benzothiaz
olylidene) -1-propenyl] b
Enzothiazolium perchlorate
e (3,3'-Dioctadecyl-2,2'-t
hiacarbocyanine perchlora
te) in 1 mM chloroform solution and azobenzene long-chain derivative: 4-Octyl-4 ′-(5
-Carboxy pentamethyleneox
y) A 1 mM chloroform solution of azobenzene was prepared.

【0025】最初にシアニン色素LB膜を作成した。下
層水は Milli−Qフィルターを通した超純水を用いた。
液温を20℃に保ち、シアニン色素クロロホルム溶液
を、水面に展開し30分間放置し、仕切り板を動かし水
面積を縮小し、単分子膜を圧縮した。膜圧を25dyne/
cm一定に保持しながら、無螢光石英板上に垂直浸漬法で
6層累積した。無螢光石英板は有機溶剤中で超音波洗浄
したのち、アルゴンガス中でのプラズマ処理を行ない、
さらに、ヘキサメチルジシラザン飽和蒸気下に一昼夜瀑
し疎水化したものである。
First, a cyanine dye LB film was prepared. As the lower layer water, ultrapure water passed through a Milli-Q filter was used.
The liquid temperature was kept at 20 ° C., the chloroform solution of the cyanine dye was spread on the water surface and allowed to stand for 30 minutes, the partition plate was moved to reduce the water area, and the monomolecular film was compressed. The membrane pressure is 25dyne /
While keeping the cm constant, 6 layers were accumulated on a non-fluorescent quartz plate by a vertical immersion method. After cleaning the non-fluorescent quartz plate ultrasonically in an organic solvent, perform a plasma treatment in argon gas.
Furthermore, it is a waterfall that has fallen all day long under saturated steam of hexamethyldisilazane and has been rendered hydrophobic.

【0026】次にアゾベンゼン長鎖誘導体LB膜を積層
した。前記シアニン色素LB膜は作成後一昼夜放置し乾
燥させた。下層水は Milli−Qフィルターを通した超純
水して日東紡績(株)製商品名「ポリアリルアミン」を
溶解させ、0.25mM水溶液としたものを用いた。ア
ゾベンゼン長鎖誘導体クロロホルム溶液を下層水上に展
開・圧縮後、膜圧30dyne/cm一定に保持し、シアニン
色素LB膜のついた無螢光石英板を垂直浸漬法で浸漬し
6層累積した。累積比はいづれの基板浸漬でも70%〜
100%でY膜であった。
Next, an azobenzene long chain derivative LB film was laminated. After the preparation of the cyanine dye LB film, the film was allowed to stand for one day and dried. The lower layer water used was ultrapure water passed through a Milli-Q filter to dissolve “polyallylamine” (trade name, manufactured by Nitto Boseki Co., Ltd.), and used as a 0.25 mM aqueous solution. After developing and compressing the chloroform solution of the azobenzene long-chain derivative on the lower layer water, the film pressure was kept constant at 30 dyne / cm, and the fluorescent-free quartz plate provided with the cyanine dye LB film was immersed by the vertical immersion method to accumulate 6 layers. Cumulative ratio is 70% ~
100% was a Y film.

【0027】アゾベンゼン長鎖誘導体LB膜作成後ただ
ちに紫外光(360μm波長)照射、可視光(波長54
0μm) 照射を交互に3分間ずつ行ない、その度ごとに
螢光スペクトルを測定したところ励起光560μmで、
580μm〜650μmでの螢光強度が交互に増減し
た。図6にその結果を示す。測定は島津製作所製UV分
光光度計R−5000で行なった。図6の番号は、L
B膜作成直後の螢光スペクトル、紫外光照射後の螢光ス
ペクトルが図6の番号であり、可視光照射後が番号
である。再び紫外光照射後が番号である。
Immediately after forming the azobenzene long-chain derivative LB film, irradiation with ultraviolet light (wavelength of 360 μm) and visible light (wavelength of 54
0 μm) Irradiation was performed alternately for 3 minutes, and the fluorescence spectrum was measured each time.
The fluorescence intensity between 580 μm and 650 μm alternately increased and decreased. FIG. 6 shows the result. The measurement was performed with a UV spectrophotometer R-5000 manufactured by Shimadzu Corporation. The number in FIG.
The fluorescence spectrum immediately after the B film was formed and the fluorescence spectrum after irradiation with ultraviolet light are the numbers in FIG. 6, and the number after irradiation with visible light is the number. The number after ultraviolet light irradiation is the number again.

【0028】<実施例2> メロシアニン色素:3−Carboxymethyl−
5〔2−(5−chloro−3−octadecyl
−2−benzothiazolinylidene)
ethylidene〕rhodanineと、 アラキジン酸:CH3 (CH2 18COOHとを、モル
比で1対1.54の割合で混合し1mMクロロホルム溶
液を作成した。下層液は Milli−Qフィルターを通した
超純水に塩化カルシウム、重炭酸ナトリウムを溶解した
ものであり、濃度は塩化カルシウム0.3mM、重炭酸
ナトリウム0.05mMの水溶液である。
<Example 2> Merocyanine dye: 3-Carboxymethyl-
5 [2- (5-chloro-3-octadecyl)
-2-benzothiazolinylidene)
[ethylidene] rhodane and arachidic acid: CH 3 (CH 2 ) 18 COOH were mixed at a molar ratio of 1: 1.54 to prepare a 1 mM chloroform solution. The lower layer solution is obtained by dissolving calcium chloride and sodium bicarbonate in ultrapure water passed through a Milli-Q filter, and has a concentration of 0.3 mM calcium chloride and 0.05 mM sodium bicarbonate.

【0029】液温を20℃に保ち、下層液上にクロロホ
ルム溶液を展開、30分間放置し、クロロホルムを蒸発
させた後に圧縮、膜圧を30dyne/cm一定に保持した。
実施例1と同様の処理を行なった無螢光石英板上に垂直
浸漬法で6層累積した。累積比は75%〜100%でY
膜となった。
The temperature of the solution was maintained at 20 ° C., a chloroform solution was spread on the lower layer solution, and the solution was allowed to stand for 30 minutes. After evaporating the chloroform, the solution was compressed and the film pressure was maintained at 30 dyne / cm.
Six layers were accumulated on a non-fluorescent quartz plate treated in the same manner as in Example 1 by the vertical immersion method. Cumulative ratio is 75% -100% and Y
It became a film.

【0030】一昼夜放置乾燥の後、実施例1と同様に、
アゾべンゼン長鎖誘導体LB膜を積層した。積層終了
後、ただちに紫外光(360μm波長)照射、可視光
(波長500μm) 照射を交互に3分間ずつ行ない、そ
の度ごとに螢光スペクトルを測定したところ、励起光5
40μmで560μm〜700μmでの螢光強度が交互
に増減した。図7にその結果を示す。番号〜は実施
例1と同様である。
After leaving to dry for one day and night, the same as in Example 1,
An azobenzene long-chain derivative LB film was laminated. Immediately after the lamination, irradiation with ultraviolet light (360 μm wavelength) and irradiation with visible light (wavelength 500 μm) were performed alternately for 3 minutes, and the fluorescence spectrum was measured each time.
At 40 μm, the fluorescence intensity at 560 μm to 700 μm alternately increased and decreased. FIG. 7 shows the result. The numbers are the same as in the first embodiment.

【0031】[0031]

【発明の効果】本発明の可逆的記録材によれば、従来の
非銀塩写真感光体にみられる欠点すなわち非等方増幅
を、等方的増幅にしたことにより、螢光の読み取り特性
を向上させることに成功した。また、書き込み−消去可
能な可逆的記録体であり、さらに、機能を果たす分子各
々を別の単分子膜として積層したことにより、発現する
機能の制御性を高め、かつ高密度記録を可能としたので
ある。以上のように、本発明の可逆的記録材は、実用上
極めて優れている。
According to the reversible recording material of the present invention, the disadvantage of the conventional non-silver salt photographic photoreceptor, that is, the anisotropic amplification is replaced with the isotropic amplification, so that the fluorescence reading characteristics can be improved. Successfully improved. In addition, it is a writable-erasable reversible recording medium, and furthermore, by stacking each functioning molecule as a separate monomolecular film, the controllability of the function to be developed is improved, and high density recording is enabled. It is. As described above, the reversible recording material of the present invention is extremely excellent in practical use.

【0032】[0032]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の可逆的光記録材の一実施例を模式的に
示す説明図である。
FIG. 1 is an explanatory view schematically showing one embodiment of a reversible optical recording material of the present invention.

【図2】本発明の可逆的光記録材の一実施例を模式的に
示す説明図である。
FIG. 2 is an explanatory view schematically showing one embodiment of the reversible optical recording material of the present invention.

【図3】本発明の可逆的光記録材の一実施例を模式的に
示す説明図である。
FIG. 3 is an explanatory view schematically showing one embodiment of the reversible optical recording material of the present invention.

【図4】本発明の可逆的光記録材の一実施例を模式的に
示す説明図である。
FIG. 4 is an explanatory view schematically showing one embodiment of the reversible optical recording material of the present invention.

【図5】本発明の可逆的光記録材の一実施例を模式的に
示す説明図である。
FIG. 5 is an explanatory view schematically showing one embodiment of the reversible optical recording material of the present invention.

【図6】本発明の実施例1の可逆的光記録材の螢光スペ
クトルの変化を示すグラフ図である。
FIG. 6 is a graph showing changes in the fluorescence spectrum of the reversible optical recording material of Example 1 of the present invention.

【図7】本発明の実施例2の可逆的光記録材の螢光スペ
クトルの変化を示すグラフ図である。
FIG. 7 is a graph showing changes in the fluorescence spectrum of the reversible optical recording material of Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

(1) 基材 (2) 薄膜形成用の分子 (3) 螢光を発する分子 (4) 光により構造変化を示す分子 (4’) 構造変化を起こした分子 (5) 薄膜形成用の分子 (6) 薄膜 (7) 薄膜 (8) 螢光消去領域 (9) 螢光 (1) Substrate (2) Thin film forming molecule (3) Fluorescent molecule (4) Molecule showing structural change by light (4 ') Structural change causing molecule (5) Thin film forming molecule ( 6) Thin film (7) Thin film (8) Fluorescence erasing area (9) Fluorescence

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無螢光基材上に可視光の螢光を発する分子
を含む薄膜と、紫外線の照射により構造変化を示す分子
を含む薄膜とを積層した光記録材であって、該構造変化
を示す分子の構造変化後(又は前) の状態では、前記螢
光を発する分子の螢光を消光し、構造変化前(又は後)
の状態では消光せず、両薄膜の積層膜に対し可視光照射
により、構造変化前の状態にもどることを特徴とする可
逆的光記録材。
An optical recording material comprising: a thin film containing molecules emitting fluorescent light of visible light on a non-fluorescent substrate; and a thin film containing molecules showing a structural change upon irradiation with ultraviolet rays. In the state after (or before) the structural change of the molecule showing the change, the fluorescence of the fluorescent molecule is quenched, and before (or after) the structural change.
A reversible optical recording material characterized in that it does not quench in the state of (1), but returns to the state before the structural change by irradiating visible light to the laminated film of both thin films.
【請求項2】螢光を発する分子に薄膜形成用の分子を添
加して薄膜を設ける請求項1記載の可逆的光記録体。
2. The reversible optical recording medium according to claim 1, wherein a thin film is formed by adding a molecule for forming a thin film to a molecule emitting fluorescence.
【請求項3】螢光を発する分子がシアニン色素またはメ
ロシアニン色素である請求項1記載の可逆的光記録材。
3. The reversible optical recording material according to claim 1, wherein the molecule emitting fluorescence is a cyanine dye or a merocyanine dye.
【請求項4】光により構造変化を示す分子が、アゾベン
ゼン部位を有する分子である請求項1記載の可逆的光記
録材。
4. The reversible optical recording material according to claim 1, wherein the molecule showing a structural change by light is a molecule having an azobenzene moiety.
【請求項5】光により構造変化を示す分子に薄膜形成用
の分子を添加して薄膜を設ける請求項1記載の可逆的光
記録材。
5. The reversible optical recording material according to claim 1, wherein a thin film is provided by adding a molecule for forming a thin film to a molecule showing a structural change by light.
【請求項6】螢光分子を含む薄膜がLB法により形成さ
れたものである請求項1記載の可逆的光記録材。
6. The reversible optical recording material according to claim 1, wherein the thin film containing fluorescent molecules is formed by an LB method.
【請求項7】光により構造変化を示す分子を含む薄膜が
LB法により形成されたものである請求項1または6記
載の可逆的光記録材
7. The reversible optical recording material according to claim 1, wherein the thin film containing a molecule showing a structural change by light is formed by an LB method.
JP04317328A 1992-11-26 1992-11-26 Reversible optical recording material Expired - Fee Related JP3141584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04317328A JP3141584B2 (en) 1992-11-26 1992-11-26 Reversible optical recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04317328A JP3141584B2 (en) 1992-11-26 1992-11-26 Reversible optical recording material

Publications (2)

Publication Number Publication Date
JPH06162560A JPH06162560A (en) 1994-06-10
JP3141584B2 true JP3141584B2 (en) 2001-03-05

Family

ID=18086988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04317328A Expired - Fee Related JP3141584B2 (en) 1992-11-26 1992-11-26 Reversible optical recording material

Country Status (1)

Country Link
JP (1) JP3141584B2 (en)

Also Published As

Publication number Publication date
JPH06162560A (en) 1994-06-10

Similar Documents

Publication Publication Date Title
US4737427A (en) Optical high density recording mediums, method for making same and method for recording optical information in the medium
JPS60228194A (en) Optical recording element
EP0179436B1 (en) Optical recording medium
JP2000514468A (en) Photo-addressable substrates and photo-addressable side-group polymers exhibiting highly induced birefringence
JP2001508221A (en) Polymer photochromic composition
JPH02155689A (en) Optical recording system
JPH0246538A (en) Optical memory element
JPH0419614B2 (en)
Matsui et al. Application of Photochromic S-Dimethylaminoindolylfulgide to Photon-Mode Erasable Optical Memory Media with Non-Destructive Readout Ability Based on Wavelength Dependence of Bleaching Quantum Yield.
JP3141584B2 (en) Reversible optical recording material
US4538252A (en) Light induced capacitance changes in donor polymers (or small molecules) films and its use for information storage in video disks and the like
KR920006313B1 (en) Optical information recording media and optical recording method
JPH0470619B2 (en)
JPH02308439A (en) Optical recording medium and reproducing method thereof
JPH0434140B2 (en)
JPH0284640A (en) Optical recording material and photographic sensitive body using same
JP4368622B2 (en) Memory element
JP2794809B2 (en) Optical recording medium
JP2005008781A (en) Film, optical memory material using the same film and method for producing the same film
JP2732942B2 (en) Photochromic material and rewritable optical recording medium using the same
JPS63135937A (en) Optical recording medium and optical recording and reproducing method
JPH01155343A (en) Method for recording and reproducing to optical recording medium
JPH01100539A (en) Optical recording medium
JPH0550757A (en) Optical recording method
JP2617231B2 (en) Optical recording and reading method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees