JP3140908B2 - Refrigerant circulation system - Google Patents

Refrigerant circulation system

Info

Publication number
JP3140908B2
JP3140908B2 JP06116966A JP11696694A JP3140908B2 JP 3140908 B2 JP3140908 B2 JP 3140908B2 JP 06116966 A JP06116966 A JP 06116966A JP 11696694 A JP11696694 A JP 11696694A JP 3140908 B2 JP3140908 B2 JP 3140908B2
Authority
JP
Japan
Prior art keywords
refrigerant
low
pressure
pressure receiver
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06116966A
Other languages
Japanese (ja)
Other versions
JPH07324828A (en
Inventor
修 森本
不二夫 人見
守也 宮本
秀一 谷
智彦 河西
嘉裕 隅田
等 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06116966A priority Critical patent/JP3140908B2/en
Priority to EP95101830A priority patent/EP0685692B1/en
Priority to DE69533120T priority patent/DE69533120D1/en
Priority to CNB951026712A priority patent/CN1135341C/en
Publication of JPH07324828A publication Critical patent/JPH07324828A/en
Priority to US08/681,488 priority patent/US5987907A/en
Priority to US08/957,738 priority patent/US6032473A/en
Application granted granted Critical
Publication of JP3140908B2 publication Critical patent/JP3140908B2/en
Priority to CNB021275335A priority patent/CN1201124C/en
Priority to CNB021275343A priority patent/CN1201125C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷媒に数種のハイドロ
フルオロカーボンをブレンドした非共沸混合冷媒を用い
る冷凍・空調装置等に使用される冷媒循環システムに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant circulation system for use in a refrigerating / air-conditioning apparatus using a non-azeotropic mixed refrigerant obtained by blending several kinds of hydrofluorocarbons with a refrigerant.

【0002】[0002]

【従来の技術】図11は、例えば特公平6−12201
号に示された従来の非共沸混合冷媒を用いた冷凍・空調
装置であり、図中1は圧縮機、2は負荷側熱交換器、
3,4は主絞り装置、6は熱源側熱交換器で、これらを
冷媒配管にて接続されて、冷凍サイクルの主回路を形成
している。8は精留塔で、その塔頂部には冷媒配管17
と冷却源9が配設された冷媒配管18とにより塔頂貯留
器11が接続され、また、上記精留塔底部には冷媒配管
19と加熱源10が配設された冷媒配管20とにより塔
底貯留器12が接続されている。
2. Description of the Related Art FIG.
Is a conventional refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant, wherein 1 is a compressor, 2 is a load side heat exchanger,
Reference numerals 3 and 4 denote main expansion devices, and reference numeral 6 denotes a heat source side heat exchanger, which are connected by a refrigerant pipe to form a main circuit of a refrigeration cycle. A rectification column 8 has a refrigerant pipe 17 at the top.
The tower reservoir 11 is connected by a refrigerant pipe 18 in which the cooling source 9 is disposed, and a refrigerant pipe 19 and a refrigerant pipe 20 in which the heating source 10 is disposed at the bottom of the rectification tower. The bottom reservoir 12 is connected.

【0003】負荷側熱交換器2と熱源側熱交換器6の間
には、開閉弁15が設置された冷媒配管21により塔頂
貯留器11が接続され、また、開閉弁16が設置された
冷媒配管22により塔底貯留器12が接続されている。
熱源側熱交換器6の上流側には、副絞り装置5と開閉弁
13は設置された冷媒配管23により塔頂貯留器11が
接続され、また、副絞り装置5と開閉弁14が設置され
た冷媒配管24により塔底貯留器12が接続されてい
る。そして、塔頂貯留器11から冷媒配管23への流出
口は塔頂貯留器11の底部に、また、塔底貯留器12か
ら冷媒配管24への流出口は塔底貯留器12の底部にそ
れぞれ設置されている。
The top reservoir 11 is connected between the load side heat exchanger 2 and the heat source side heat exchanger 6 by a refrigerant pipe 21 provided with an on-off valve 15, and an on-off valve 16 is provided. The tower bottom reservoir 12 is connected by the refrigerant pipe 22.
On the upstream side of the heat source side heat exchanger 6, the tower top reservoir 11 is connected by a refrigerant pipe 23 provided with the sub-throttle device 5 and the on-off valve 13, and the sub-throttle device 5 and the on-off valve 14 are provided. The tower bottom reservoir 12 is connected by the refrigerant pipe 24. The outlet from the top reservoir 11 to the refrigerant pipe 23 is at the bottom of the top reservoir 11, and the outlet from the bottom reservoir 12 to the refrigerant pipe 24 is at the bottom of the bottom reservoir 12. is set up.

【0004】上記構成において、圧縮機1で圧縮された
高温高圧の非共沸混合冷媒(以下、冷媒と言う)の蒸気
は矢印Aの方向に流れ、負荷側熱交換器2で凝縮して主
絞り装置3に入る。通常運転時には開閉弁15,16は
閉じられているのでそのまま主絞り装置4に入り、低温
低圧になった冷媒は、熱源側熱交換器6で蒸発して再び
圧縮機1に戻る。
In the above configuration, the vapor of the high-temperature and high-pressure non-azeotropic refrigerant (hereinafter referred to as refrigerant) compressed in the compressor 1 flows in the direction of arrow A, and is condensed in the load-side heat exchanger 2 to be condensed. The diaphragm device 3 is entered. During normal operation, since the on-off valves 15 and 16 are closed, the refrigerant enters the main throttle device 4 as it is, and the low temperature and low pressure refrigerant evaporates in the heat source side heat exchanger 6 and returns to the compressor 1 again.

【0005】この主回路を流れる冷媒組成を変える場合
において、まず、主回路を流れる冷媒の組成を非常に高
沸点成分に富んだものにするには、開閉弁13,15を
閉じ、開閉弁14,16を開く。そうすると、主絞り装
置3を出た主回路を流れる冷媒の一部は、開いている開
閉弁16へ分流し、残りは主絞り装置4に流入して通常
の運転と同様の回路で流れる。開閉弁16へ流入した冷
媒は、塔底貯留器12に入る。塔底貯留器12に入った
冷媒は、一部は開いている開閉弁14を通って副絞り装
置5に入り、熱源側熱交換器6の上流側で主回路を流れ
る冷媒と合流し、残りは加熱源10が設置された冷媒配
管20に入り、加熱されて冷媒精留塔8内を蒸気となっ
て上昇する。このとき、塔頂貯留器11に貯留されてい
る冷媒液も冷媒配管17から冷媒精留塔8内を下降し、
上昇してくる冷媒蒸気と気液接触して、いわゆる精留作
用を行う。
When the composition of the refrigerant flowing through the main circuit is changed, first, the on-off valves 13 and 15 are closed and the on-off valve 14 is turned on in order to make the composition of the refrigerant flowing through the main circuit very rich in high boiling point components. , 16 are opened. Then, a part of the refrigerant flowing out of the main circuit from the main throttle device 3 is diverted to the open / close valve 16, and the rest flows into the main throttle device 4 and flows in the same circuit as in the normal operation. The refrigerant flowing into the on-off valve 16 enters the tower bottom reservoir 12. Part of the refrigerant that has entered the tower bottom reservoir 12 enters the sub-throttle device 5 through the open / close valve 14, merges with the refrigerant flowing in the main circuit upstream of the heat source side heat exchanger 6, and Enters the refrigerant pipe 20 in which the heating source 10 is installed, is heated, and rises as vapor in the refrigerant rectification column 8. At this time, the refrigerant liquid stored in the top reservoir 11 also descends from the refrigerant pipe 17 in the refrigerant rectification column 8,
The so-called rectification is performed by gas-liquid contact with the rising refrigerant vapor.

【0006】こうして、冷媒蒸気は上昇するにつれて低
沸点成分に富んだものとなり、冷却源9が設置された冷
媒配管18に導入されて液化し、開閉弁13が閉じられ
ていることにより塔頂貯留器11に貯留される。このよ
うな精留作用が繰り返され、ついには、塔頂貯留器11
には非常に低沸点成分に富んだ冷媒だけが貯留されるこ
とになる。したがって、主回路を流れる冷媒の組成は、
非常に高沸点成分に富んだものにするようにしていた。
[0006] Thus, the refrigerant vapor becomes rich in low-boiling components as it rises, is introduced into the refrigerant pipe 18 in which the cooling source 9 is installed, liquefies, and is stored at the top due to the on-off valve 13 being closed. Is stored in the vessel 11. Such rectification is repeated, and finally, the top reservoir 11
, Only the refrigerant having a very low boiling point component is stored. Therefore, the composition of the refrigerant flowing through the main circuit is:
It was designed to be very rich in high boiling components.

【0007】主回路を流れる冷媒の組成を、低沸点成分
に富んだものとするには、開閉弁13,15を開き、開
閉弁14,16を閉じる。そうすると、主絞り装置3を
出た主回路を流れる冷媒の一部は分流して、開いている
開閉弁15を通り、塔頂貯留器11に流入するが、開閉
弁13も開いているため、流入してきた冷媒の一部は冷
媒配管23を通り、副絞り装置5を通って主回路に合流
する。そして、残りの冷媒は、冷媒配管17から冷媒精
留塔8内に入り下降する。このとき、塔底貯留器12内
の冷媒の一部が加熱源10で加熱されて冷媒精留塔内を
上昇し、下降する液と気液接触して、いわゆる精留作用
を行う。このようにして、下降する冷媒液は徐々に高沸
点成分に富んだものになり、開閉弁14が閉じられてい
るため塔底貯留器12に貯留される。そして、このよう
な精留作用が繰り返され、ついには、塔底貯留器12に
は、非常に高沸点成分に富んだ冷媒だけが貯留されるこ
とになる。したがって、主回路を流れる冷媒の組成は、
非常に低沸点成分に富んだものにするようにしていた。
To make the composition of the refrigerant flowing in the main circuit rich in low boiling point components, the on-off valves 13 and 15 are opened and the on-off valves 14 and 16 are closed. Then, a part of the refrigerant flowing out of the main circuit exiting the main throttle device 3 is divided and flows into the tower top reservoir 11 through the open on-off valve 15, but the on-off valve 13 is also open. A part of the inflowing refrigerant passes through the refrigerant pipe 23 and passes through the sub-throttling device 5 to join the main circuit. Then, the remaining refrigerant enters the refrigerant rectification tower 8 from the refrigerant pipe 17 and descends. At this time, a part of the refrigerant in the tower bottom reservoir 12 is heated by the heating source 10 and rises in the refrigerant rectification tower, and comes into gas-liquid contact with the descending liquid to perform a so-called rectification action. In this manner, the descending refrigerant liquid gradually becomes rich in the high boiling point component, and is stored in the tower bottom reservoir 12 because the on-off valve 14 is closed. Then, such a rectifying operation is repeated, and finally, only the refrigerant having a very high boiling point component is stored in the tower bottom storage device 12. Therefore, the composition of the refrigerant flowing through the main circuit is:
It was intended to be very rich in low boiling components.

【0008】[0008]

【発明が解決しようとする課題】このような従来の冷凍
・空調装置等に使用される冷媒循環システムでは、精留
塔によって精留された成分を貯留する構成としているの
で、冷媒の濃度が冷媒回路内で一定しない圧縮機起動時
等の急激な圧力変動に対応できなくなり、また、精留塔
自身の構造も複雑で大きく、コストもかかるなどの問題
があった。本発明は、上記の課題を解決するもので、定
常運転時のみならず起動時などの非定常運転時にも素早
く冷媒回路内の組成を調節し、かつ、組成調節機構を簡
素化し、低コスト化を実現するものである。
The refrigerant circulation system used in such a conventional refrigeration / air-conditioning apparatus is configured to store the components rectified by the rectification tower. There is a problem that it is not possible to cope with sudden pressure fluctuations at the time of starting the compressor which is not constant in the circuit, and the structure of the rectification column itself is complicated, large and costly. The present invention solves the above-mentioned problem, and quickly adjusts the composition in the refrigerant circuit not only during steady operation but also during non-steady operation such as startup, and simplifies the composition adjustment mechanism to reduce cost. Is realized.

【0009】[0009]

【課題を解決するための手段】この発明にかかる冷凍循
環システムでは、圧縮機吐出部から冷媒回路の低圧側構
成機器または低圧側配管の少なくとも1ケ所へ接続され
冷媒液を冷媒液寝込部分にバイパスするバイパス管を設
け、冷媒システム起動時に低圧側構成機器または低圧側
配管内の冷媒液寝込部分に、圧縮機からの吐出冷媒を吹
き込むこととした。
SUMMARY OF THE INVENTION A refrigerating circuit according to the present invention is provided.
In the ring system, the compressor discharge section is connected to the low pressure side structure of the refrigerant circuit.
Connected to at least one of the components or low pressure side piping
Install a bypass pipe to bypass the refrigerant liquid to the refrigerant liquid storage part.
The low-pressure side components or low-pressure side when starting the refrigerant system.
The refrigerant discharged from the compressor is blown into the refrigerant liquid stagnation section in the piping.
I decided to go.

【0010】さらに、バイパス管に開閉機構を設け、開
閉機構は起動時に開放されることとした。
Further, an opening / closing mechanism is provided in the bypass pipe to open and close the bypass pipe.
The closing mechanism is to be opened at startup.

【0011】さらに、開閉機構を開閉させて、冷媒を冷
媒回路内の各機器を循環させながら組成を調整すること
とした。
Further, the opening and closing mechanism is opened and closed to cool the refrigerant.
Adjust the composition while circulating each device in the medium circuit
And

【0012】[0012]

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】[0018]

【0019】[0019]

【作用】この発明は、冷媒を冷媒回路の機器をバイパス
させて、冷媒回路内を循環する冷媒の組成を調整するこ
とにより、定常運転時及び非定常運転時において、高低
圧を制御し、常に安定かつ効率の良い運転を行うことが
できる。
The present invention controls the high and low pressures during normal operation and non-steady operation by adjusting the composition of the refrigerant circulating in the refrigerant circuit by bypassing the refrigerant circuit equipment. Stable and efficient operation can be performed.

【0020】この発明は、圧縮機吐出部から、冷媒回路
の低圧側へ冷媒をバイパスさせる。
According to the present invention, the refrigerant is bypassed from the compressor discharge section to the low pressure side of the refrigerant circuit.

【0021】この発明は、圧縮機より吐出される低沸点
成分に富む冷媒を低圧側構成機器又は低圧側配管に一部
バイパスすることにより、蒸発器に寝込んだ高沸点成分
に富む液冷媒を蒸発させ、冷媒の組成を素早く一定にす
ることができる。
According to the present invention, the refrigerant rich in the low boiling point component discharged from the compressor is partially bypassed to the low pressure side component equipment or the low pressure side piping, thereby evaporating the liquid refrigerant rich in the high boiling point component trapped in the evaporator. As a result, the composition of the refrigerant can be quickly made constant.

【0022】この発明は、必要に応じて、時間、温度変
化、圧力変化、液面量等物理量を検知して開閉機構を開
閉することにより、精度よいタイミングで開閉できる。
According to the present invention, the opening and closing mechanism can be opened and closed with high accuracy by detecting physical quantities such as time, temperature change, pressure change, and liquid level, as required.

【0023】[0023]

【実施例】実施例1. 以下、本発明の一実施例を図1について説明する。図1
は、本発明の基本システムを示す冷媒回路図である。図
1において、31は圧縮機、32は熱源側熱交換器、3
3は絞り装置、34は負荷側熱交換器、35は低圧レシ
ーバで、これらは冷媒配管にて順次接続されメイン回路
をなす。また、101は、冷媒を圧縮機吐出側から低圧
レシーバ吸入側へバイパスするバイパス管であり、36
はバイパス管101上に位置する開閉機構である。
[Embodiment 1] Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG.
1 is a refrigerant circuit diagram showing a basic system of the present invention. In FIG. 1, 31 is a compressor, 32 is a heat source side heat exchanger, 3
Reference numeral 3 denotes a throttling device, reference numeral 34 denotes a load-side heat exchanger, reference numeral 35 denotes a low-pressure receiver, which are sequentially connected by a refrigerant pipe to form a main circuit. Reference numeral 101 denotes a bypass pipe for bypassing the refrigerant from the compressor discharge side to the low-pressure receiver suction side.
Is an opening / closing mechanism located on the bypass pipe 101.

【0024】作用について説明する。図1の冷媒の流れ
に示す如く、圧縮機31から吐出された冷媒は熱源側熱
交換器32、絞り装置33、負荷側熱交換器34と流れ
圧縮機31に吸入される。一方、圧縮機31起動時に、
開閉機構36を開き、圧縮機31から吐出される冷媒ガ
スを低圧レシーバ35へと導く。低圧レシーバ35に
は、熱容量関係から、冷媒液が寝込んでいる場合が多
く、ガス成分は低沸点成分に富んでおり、液成分は高沸
点成分に富んでいる。起動時、圧縮機31は低沸点成分
に富んだガス成分を吸うため、圧縮機31の吐出圧力は
急激に上昇するが、上記圧縮機31の高温の吐出ガスの
一部を、低圧レシーバ35吸入側に戻すことによって、
高沸点冷媒に富む液成分を蒸発気化させ、上記圧縮機3
1に吸入される冷媒の組成を調節し、高圧の上昇を抑え
る。
The operation will be described. As shown in the flow of the refrigerant in FIG. 1, the refrigerant discharged from the compressor 31 is sucked into the heat source side heat exchanger 32, the expansion device 33, the load side heat exchanger 34, and the flow compressor 31. On the other hand, when the compressor 31 is started,
The opening / closing mechanism 36 is opened to guide the refrigerant gas discharged from the compressor 31 to the low-pressure receiver 35. In many cases, the refrigerant liquid is trapped in the low-pressure receiver 35 due to heat capacity, the gas component is rich in low-boiling components, and the liquid component is rich in high-boiling components. When the compressor 31 is started, the discharge pressure of the compressor 31 rapidly rises because the compressor 31 absorbs a gas component rich in low boiling point components, but a part of the high temperature discharge gas of the compressor 31 is sucked into the low pressure receiver 35. By returning to the side,
The liquid component rich in high boiling point refrigerant is evaporated and vaporized, and the compressor 3
The composition of the refrigerant sucked into 1 is adjusted to suppress a rise in high pressure.

【0025】図1の説明では、低圧レシーバ35と負荷
側熱交換器34(蒸発器)の間の低圧配管にバイパス管
101を接続し、吐出ガスを吹き込んだが、このガスの
吹き込み先は低圧部の冷媒液が寝込む可能性のあるとこ
ろであればどこでも同様な効果を奏する。なお上記説明
では圧縮機31起動時に開閉機構36を開く説明を行っ
たが、組成調整が必要な条件、例えば能力低下のような
物理量を検出したり、一定時間毎に開放しても良い。
In the description of FIG. 1, the bypass pipe 101 is connected to the low-pressure pipe between the low-pressure receiver 35 and the load-side heat exchanger 34 (evaporator) to blow out the discharge gas. The same effect can be obtained in any place where there is a possibility that the refrigerant liquid may fall asleep. In the above description, the opening / closing mechanism 36 is opened when the compressor 31 is started. However, a condition requiring a composition adjustment, for example, a physical quantity such as a decrease in capacity may be detected, or the opening may be performed at regular intervals.

【0026】実施例2. 以下、本発明の実施例2を図2に基づいて説明する。な
お図中、実施例1と同一部分には同一符号を付し、説明
を省略する。図2に示すように、図1における実施例1
の構成要素において、圧縮機31の吐出側と主絞り装置
33出口をバイパスするバイパス管102と、バイパス
管102上に位置する開閉機構37とを有する構成とす
る。また、バイパス管101及び開閉機構36を廃止し
ても良いし、そのまま残しても良い。
Embodiment 2 FIG. Hereinafter, a second embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be omitted. As shown in FIG. 2, the first embodiment in FIG.
Are configured to include a bypass pipe 102 that bypasses the discharge side of the compressor 31 and the outlet of the main throttle device 33, and an opening / closing mechanism 37 located on the bypass pipe 102. Further, the bypass pipe 101 and the opening / closing mechanism 36 may be eliminated or may be left as it is.

【0027】作用について説明する。冷媒は図示の如く
流れる。一方、圧縮機起動時に、開閉機構37を開き、
圧縮機31から吐出される冷媒ガスを負荷側熱交換器3
4の入口へと導く。負荷側熱交換器34には、熱容量関
係から、冷媒液が寝込んでいる場合が多く、液成分は高
沸点成分に富んでいる。起動時、圧縮機31は低沸点成
分に富んだガス成分を吸うため、圧縮機31の吐出圧力
は急激に上昇するが、高温の上記圧縮機31吐出ガスの
一部を、負荷側熱交換器へバイパスすることによって、
高沸点冷媒に富む液成分を蒸発気化させ、上記圧縮機3
1に吸入される冷媒の組成を調節し、高圧の上昇を抑え
る。
The operation will be described. The refrigerant flows as shown. On the other hand, when the compressor is started, the opening / closing mechanism 37 is opened,
The refrigerant gas discharged from the compressor 31 is transferred to the load-side heat exchanger 3.
4 to the entrance. In many cases, the refrigerant liquid is stagnant in the load side heat exchanger 34 due to heat capacity, and the liquid component is rich in high boiling point components. At startup, the compressor 31 sucks a gas component rich in low boiling point components, so that the discharge pressure of the compressor 31 rises rapidly, but a part of the high temperature compressor 31 discharge gas is transferred to the load side heat exchanger. By bypassing to
The liquid component rich in high boiling point refrigerant is evaporated and vaporized, and the compressor 3
The composition of the refrigerant sucked into 1 is adjusted to suppress a rise in high pressure.

【0028】図2の説明では負荷側熱交換器34入口と
主絞り装置33出口との間の配管にバイパス管102を
接続したが、このバイパス管102と図1で説明したバ
イパス管101のような位置の違う部分を接続する他の
バイパス管を2本またはそれ以上設けることにより寝込
みのおきやすい部分全体にホットガスを流すことができ
るので冷媒の組成が一定となるまでの時間を一層短縮で
きることになる。
In the description of FIG. 2, the bypass pipe 102 is connected to the pipe between the inlet of the load-side heat exchanger 34 and the outlet of the main throttle device 33. However, the bypass pipe 102 and the bypass pipe 101 described with reference to FIG. By providing two or more bypass pipes that connect different parts at different positions, hot gas can flow through the entire area where laying is likely to occur, so that the time until the composition of the refrigerant becomes constant can be further reduced. become.

【0029】なおシステム停止時には室温が下がれば、
熱交換器の熱交換やヘッダー部は液で満たされることに
なる。
If the room temperature drops when the system is stopped,
The heat exchange and the header of the heat exchanger will be filled with liquid.

【0030】また、開閉機構(図1 36、図2 3
7)は、組成調整時や、システム起動時に開とされる
が、例えば開放されている時間を検出し数分後に閉じれ
ば良い。所定時間のみ冷媒を流すことにより開閉機構が
閉じられている定常運転時は冷媒のバイパスによる能力
ロスをなくせる。なお、時間検出以外にも低圧レシーバ
35の液面が低下(なくなる)した後や、圧縮機31吸
入スーパーヒートが増大した後や、高圧の上昇が止まっ
た後等、温度の変化や圧力の変化を検出して閉じても良
い。すなわち、組成が一定になったことを検出したり、
あるいは液が寝込んでいなくなればこの開閉機構を閉じ
て通常の運転回路に戻すことになる。なお、図1、図2
の説明は冷媒回路の例を示したが暖房回路でもよいこと
は当然である。このように所定の物理量がある値に達し
ないような時には、開閉機構を開閉することにより、開
閉するタイミングが適正となるので、効率のよい運転を
行うことができる。
The opening and closing mechanism (FIGS. 136 and 23)
7) is opened when the composition is adjusted or when the system is started. For example, the open time may be detected and closed after a few minutes. By flowing the refrigerant only for a predetermined time, the capacity loss due to the bypass of the refrigerant can be eliminated during the steady operation in which the opening / closing mechanism is closed. In addition to the time detection, a change in temperature or a change in pressure, such as after the liquid level of the low-pressure receiver 35 has decreased (eliminated), after the superheat of the suction of the compressor 31 has increased, or after the increase in the high pressure has stopped. May be detected and closed. That is, to detect that the composition has become constant,
Alternatively, when the liquid is no longer laid down, the opening / closing mechanism is closed to return to the normal operation circuit. 1 and 2
In the above description, an example of the refrigerant circuit is shown, but it goes without saying that a heating circuit may be used. When the predetermined physical quantity does not reach a certain value as described above, the opening and closing timing of the opening and closing mechanism becomes appropriate, so that efficient operation can be performed.

【0031】実施例3. 以下、本発明の実施例3を図3に基づいて説明する。な
お図中、実施例1と同一部分には同一符号を付し、説明
を省略する。図3に示すように、熱源側熱交換器32の
出口側と圧縮機31吸入側をバイパスするバイパス管1
03と、バイパス管103上に位置する開閉機構38と
を有する構成とする。
Embodiment 3 FIG. Hereinafter, a third embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be omitted. As shown in FIG. 3, a bypass pipe 1 that bypasses the outlet side of the heat source side heat exchanger 32 and the suction side of the compressor 31.
03 and an opening / closing mechanism 38 located on the bypass pipe 103.

【0032】作用について説明する。冷媒は図示の如く
流れる。圧縮機31起動時に、開閉機構38を開き、低
沸点成分に富む凝縮器である熱源側熱交換器32出口の
未凝縮冷媒ガスを圧縮機31吸入へと導くことにより、
圧縮機31吸入において、圧力が大気圧以下になるのを
抑え、圧縮機の破損を防ぐ。なお、この構成は暖房時、
外気が非常に低い場合に有効である。
The operation will be described. The refrigerant flows as shown. When the compressor 31 is started, the opening / closing mechanism 38 is opened, and the uncondensed refrigerant gas at the outlet of the heat source side heat exchanger 32, which is a condenser rich in low boiling point components, is guided to the compressor 31 suction.
During the suction of the compressor 31, the pressure is suppressed from becoming lower than the atmospheric pressure, and damage to the compressor is prevented. This configuration is for heating
It is effective when the outside air is very low.

【0033】実施例4. 以下、本発明の実施例4を図4に基づいて説明する。な
お図中、実施例1と同一部分には同一符号を付し、説明
を省略する。図4に示すように、図1における実施例1
の構成要素において、熱源側熱交換器32の出口側より
主絞り装置をバイパスし負荷側熱交換器34入口と接続
するバイパス管104と、バイパス管上に位置する開閉
機構39とを有する構成とする。
Embodiment 4 FIG. Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be omitted. As shown in FIG. 4, the first embodiment in FIG.
A configuration having a bypass pipe 104 which bypasses the main throttle device from the outlet side of the heat source side heat exchanger 32 and connects to the inlet of the load side heat exchanger 34, and an opening / closing mechanism 39 located on the bypass pipe. I do.

【0034】作用について説明する。冷媒は図示の如く
流れる。圧縮機31起動時に、開閉機構39を開き、高
低圧を小さくし冷媒の循環量を増大させることにより、
起動時における高圧の上昇を抑えつつ、冷媒回路内の冷
媒の濃度分布を素早く均一とし、起動時から安定した冷
凍サイクル制御を行うことができる。なお、この構成は
冷房時、特に3分程度で再起動する際有効である。ま
た、高圧レシーバ(図示せず)を用いる場合は絞りの位
置が変わるが、冷房と暖房の区別はない。
The operation will be described. The refrigerant flows as shown. When the compressor 31 is started, the opening / closing mechanism 39 is opened to reduce the high / low pressure and increase the circulation amount of the refrigerant,
The concentration distribution of the refrigerant in the refrigerant circuit is quickly made uniform while suppressing a rise in high pressure at the time of startup, and stable refrigeration cycle control can be performed from the time of startup. This configuration is effective at the time of cooling, especially when restarting in about 3 minutes. When a high-pressure receiver (not shown) is used, the position of the throttle changes, but there is no distinction between cooling and heating.

【0035】開閉機構を起動時あけることにより、起動
時の冷凍サイクルの安定性を向上できる。凝縮器である
熱源側熱交換器32出口のからバイパスさせ絞り出口下
流からはバイパスさせない構成したのは、冷媒が低圧の
二相状態となり、差圧がつきにくくバイパスが流れにく
くなるためである。図4の開閉機構39は、全開でもよ
いが、但し、バイパスを流れる冷媒流量が多すぎると、
多量に液バックするので、バイパス管自体にある程度の
絞りの機能を持たせることが必要である。このような構
成により、冷媒の濃度分布を短時間に均一化できるの
は、冷媒循環量を多くとることによって、冷媒回路内に
存在する冷媒の濃度分布を解消し、組成を早く均一にす
る効果が得られる。
By opening the opening / closing mechanism at startup, the stability of the refrigeration cycle at startup can be improved. The reason why the refrigerant is bypassed from the outlet of the heat source side heat exchanger 32 as a condenser and not from the downstream of the throttle outlet is that the refrigerant is in a low-pressure two-phase state, so that a differential pressure is hardly generated and the bypass hardly flows. The opening / closing mechanism 39 in FIG. 4 may be fully opened, provided that the flow rate of the refrigerant flowing through the bypass is too large.
Since a large amount of liquid is backed up, it is necessary to provide the bypass pipe itself with a certain throttling function. With such a configuration, the concentration distribution of the refrigerant can be made uniform in a short time. The effect of eliminating the concentration distribution of the refrigerant present in the refrigerant circuit and increasing the composition quickly by taking a large amount of refrigerant circulation. Is obtained.

【0036】実施例5. 図5は、本発明の基本システムを示す冷媒回路図であ
る。図において、31は圧縮機、40は四方弁、32は
熱源側熱交換器、33は主絞り装置、34は負荷側熱交
換器、35は低圧レシーバで、これらは冷媒配管にて順
次接続されメイン回路をなす。
Embodiment 5 FIG. FIG. 5 is a refrigerant circuit diagram showing the basic system of the present invention. In the figure, 31 is a compressor, 40 is a four-way valve, 32 is a heat source side heat exchanger, 33 is a main throttle device, 34 is a load side heat exchanger, 35 is a low pressure receiver, and these are sequentially connected by refrigerant piping. Form the main circuit.

【0037】作用について説明する。暖房時と冷房時の
冷媒の流れを図に示す。予め、余剰冷媒が低圧レシーバ
に溜まるように冷媒を充填し、熱源側熱交換器32の熱
交換器出口の過冷却度を負荷に応じて変更する。負荷が
重い時には、熱源側熱交換器32の熱交換器出口の過冷
却度を少なめとし、余剰冷媒を低圧レシーバ35に溜め
る運転をする。低圧レシーバ35に溜まった余剰の液冷
媒は、高沸点成分に富み、よって、メイン回路を循環す
る冷媒の組成は低沸点成分に富んだ冷媒となる。このた
め、圧縮機31に吸入される冷媒の密度は増大し、冷媒
循環量が増し、能力が増大する。負荷が軽い時には、熱
源側熱交換器32側の熱交換器出口の過冷却度を多めと
し、余剰冷媒を低圧レシーバ35から熱交換器または冷
媒配管へと移動させ、余剰冷媒を低圧レシーバ35に溜
めない運転をすることにより、冷媒循環量を減少させ、
能力を減少させる。
The operation will be described. The flow of the refrigerant at the time of heating and at the time of cooling is shown in the figure. The refrigerant is charged in advance so that the surplus refrigerant accumulates in the low-pressure receiver, and the degree of supercooling at the heat exchanger outlet of the heat source side heat exchanger 32 is changed according to the load. When the load is heavy, the degree of supercooling at the heat exchanger outlet of the heat source side heat exchanger 32 is reduced, and an operation is performed in which excess refrigerant is stored in the low-pressure receiver 35. The excess liquid refrigerant accumulated in the low-pressure receiver 35 is rich in high-boiling components, and therefore, the composition of the refrigerant circulating in the main circuit is a refrigerant rich in low-boiling components. For this reason, the density of the refrigerant sucked into the compressor 31 increases, the refrigerant circulation amount increases, and the capacity increases. When the load is light, the degree of supercooling at the heat exchanger outlet on the side of the heat source side heat exchanger 32 is increased, and the excess refrigerant is moved from the low-pressure receiver 35 to the heat exchanger or the refrigerant pipe. By operating without storing, the amount of circulating refrigerant is reduced,
Decrease ability.

【0038】過冷却度の変更は、例えば、低圧レシーバ
35内の温度と圧力のデータより絞り装置の開度を変え
ることにより変更する。ここで、負荷が重いとは空気条
件(DB/WB)が高い時であり、軽いとは、空気条件
が低い時を示す。また、過冷却度は凝縮器(冷房時:熱
源側熱交換器32/暖房時:負荷側熱交換器34)出口
圧力における飽和液温度と凝縮器出口冷媒温度との差と
して定義しているが、上記飽和液温度は冷媒の組成に依
存するためセンシング(上記低圧レシーバの圧力と温
度)により予め推測することが必要である。充填組成
(ユニットに封入する冷媒の組成)と循環組成(ユニッ
トを運転させた時の冷媒の組成)に相違が生じるのは、
気液二相ラインでの気液のスリップのためであり、つま
りR32リッチのガスの方がR134aリッチの液より
も速度が速く、いわばR134aはその場に滞留するに
近い形となる。その極限が低圧のレシーバ(アキュムレ
ータ)になる。
The degree of supercooling is changed, for example, by changing the degree of opening of the expansion device based on temperature and pressure data in the low-pressure receiver 35. Here, a heavy load indicates a high air condition (DB / WB), and a light load indicates a low air condition. The degree of supercooling is defined as the difference between the saturated liquid temperature at the outlet pressure of the condenser (at the time of cooling: heat source side heat exchanger 32 / at the time of heating: load side heat exchanger 34) and the refrigerant temperature at the outlet of the condenser. Since the temperature of the saturated liquid depends on the composition of the refrigerant, it needs to be estimated in advance by sensing (pressure and temperature of the low-pressure receiver). The difference between the filling composition (the composition of the refrigerant sealed in the unit) and the circulation composition (the composition of the refrigerant when the unit is operated) occurs.
This is due to the gas-liquid slip in the gas-liquid two-phase line, that is, the velocity of the R32-rich gas is higher than that of the R134a-rich liquid, so that R134a is close to staying in place. The limit is a low-pressure receiver (accumulator).

【0039】このように低圧レシーバ35に冷媒液を貯
留させることにより、冷媒回路内を流れる高沸点成分の
冷媒量を調整し、負荷に合わせて能力を調整する。
By storing the refrigerant liquid in the low-pressure receiver 35 as described above, the amount of the high-boiling component refrigerant flowing in the refrigerant circuit is adjusted, and the capacity is adjusted according to the load.

【0040】能力とは、熱交換器での熱交換量を示す。
低圧のレシーバ35は余剰の液冷媒を溜めれば、そこに
は高沸点成分に富む液冷媒が溜まり、メインの冷媒回路
を流れる冷媒の組成は低沸点成分リッチになる。よっ
て、低圧レシーバ35に溜まる液冷媒の量を制御するこ
とにより、メインの冷媒回路を流れる冷媒の組成を変化
させることができる。更に、低圧レシーバ35内の液面
を変化させるには、絞りを絞ることにより、冷媒は低圧
レシーバ35内から凝縮器へ移動する。余剰の液冷媒の
成分は高沸点成分に富んだものであり、循環組成が低沸
点成分に富んだものになれば、圧縮機31に吸収される
冷媒ガスの密度が増大し、冷媒循環量が増える。
The capacity indicates the amount of heat exchange in the heat exchanger.
When the low-pressure receiver 35 stores the excess liquid refrigerant, the liquid refrigerant rich in high-boiling components is stored therein, and the composition of the refrigerant flowing through the main refrigerant circuit becomes rich in low-boiling components. Therefore, by controlling the amount of the liquid refrigerant accumulated in the low-pressure receiver 35, the composition of the refrigerant flowing through the main refrigerant circuit can be changed. Further, in order to change the liquid level in the low-pressure receiver 35, the throttle moves down to move the refrigerant from inside the low-pressure receiver 35 to the condenser. The component of the excess liquid refrigerant is rich in high-boiling components, and if the circulating composition becomes rich in low-boiling components, the density of the refrigerant gas absorbed by the compressor 31 increases, and the refrigerant circulation amount increases. Increase.

【0041】実施例6. 図6は、本発明の基本システムを示す冷媒回路図であ
る。なお図中、実施例5と同一部分には同一符号を付
し、説明を省略する。図5における実施例5の構成要素
に加えて、副絞り装置41及び高圧レシーバ42を新た
に設け、熱源側熱交換器32と主絞り装置の間に、副絞
り装置41及び高圧レシーバ42を接続する。
Embodiment 6 FIG. FIG. 6 is a refrigerant circuit diagram showing the basic system of the present invention. In the figure, the same parts as those of the fifth embodiment are denoted by the same reference numerals, and the description thereof will be omitted. In addition to the components of the fifth embodiment in FIG. 5, a sub-throttle device 41 and a high-pressure receiver 42 are newly provided, and the sub-throttle device 41 and the high-pressure receiver 42 are connected between the heat source side heat exchanger 32 and the main throttle device. I do.

【0042】作用について説明する。冷媒は図示の如く
流れる。予め、余剰冷媒が低圧レシーバ35または高圧
レシーバ42に溜まるように充填する。冷房する場合、
圧縮機31より吐出された冷媒ガスは、四方弁40を通
って熱源側熱交換器32で凝縮され液冷媒となり、副絞
り装置41にて若干絞られた後、高圧レシーバ42に入
る。高圧レシーバ42を通った液冷媒は、主絞り装置3
3にて低圧まで絞られ、負荷側熱交換器34にて蒸発
し、四方弁40及び低圧レシーバ35を介して圧縮機3
1へ戻る。高圧レシーバ42に液冷媒を溜める場合に
は、蒸発器である負荷側熱交換器34の出口過熱度が一
定となるように制御し、低圧レシーバ35に液冷媒を溜
める場合には、凝縮器である熱源側熱交換器32出口過
冷却度一定の制御を行う。
The operation will be described. The refrigerant flows as shown. The surplus refrigerant is filled beforehand so as to accumulate in the low-pressure receiver 35 or the high-pressure receiver 42. When cooling,
The refrigerant gas discharged from the compressor 31 passes through the four-way valve 40 and is condensed in the heat source side heat exchanger 32 to become a liquid refrigerant. After being slightly throttled by the sub-throttle device 41, it enters the high-pressure receiver 42. The liquid refrigerant passing through the high-pressure receiver 42 is supplied to the main throttle device 3
3, the pressure is reduced to a low pressure, evaporated in the load-side heat exchanger 34, and compressed through the four-way valve 40 and the low-pressure receiver 35.
Return to 1. When the liquid refrigerant is stored in the high-pressure receiver 42, the outlet superheat degree of the load-side heat exchanger 34, which is an evaporator, is controlled to be constant, and when the liquid refrigerant is stored in the low-pressure receiver 35, a condenser is used. Control is performed to keep the degree of supercooling constant at the outlet of a certain heat source side heat exchanger 32.

【0043】負荷が重い時には、副絞り装置41をきつ
く絞ることによって、副絞り装置41出口にて冷媒が二
相状態となるようにすれば、高圧レシーバ42には液冷
媒が溜まらなくなり、液冷媒は低圧レシーバ35へと移
動する。低圧レシーバ35には、高沸点成分に富んだ冷
媒液が溜まるため、メイン回路を循環する冷媒は、低沸
点成分に富んだ冷媒となる。このため、圧縮機31に吸
入される冷媒の密度は増大し、冷媒循環量が増し、能力
が増大する。すなわち、副絞り装置41をきつく絞り、
高圧レシーバ42に流れ込む冷媒が二相となることと、
高圧レシーバ42から低圧レシーバ35へ液が移ること
との両効果により、高圧レシーバ42には液がなくな
る。
When the load is heavy, if the refrigerant becomes a two-phase state at the outlet of the sub-throttle device 41 by tightly restricting the sub-throttle device 41, the liquid refrigerant will not accumulate in the high-pressure receiver 42, Moves to the low-pressure receiver 35. Since the refrigerant liquid rich in the high boiling point component is stored in the low pressure receiver 35, the refrigerant circulating in the main circuit is a refrigerant rich in the low boiling point component. For this reason, the density of the refrigerant sucked into the compressor 31 increases, the refrigerant circulation amount increases, and the capacity increases. That is, the sub-aperture device 41 is tightened tightly,
That the refrigerant flowing into the high-pressure receiver 42 has two phases,
Both the effect of transferring the liquid from the high-pressure receiver 42 to the low-pressure receiver 35 causes the high-pressure receiver 42 to run out of liquid.

【0044】負荷が軽い時には、主絞り装置33をきつ
く絞り、液冷媒を低圧レシーバ35から高圧レシーバ4
2へ移動させることによって、冷媒の組成は、充填した
冷媒の組成に近付くので、能力を減少させることができ
る。
When the load is light, the main throttle device 33 is throttled tightly, and the liquid refrigerant is transferred from the low-pressure receiver 35 to the high-pressure receiver 4.
By moving to 2, the composition of the refrigerant approaches the composition of the charged refrigerant, so that the capacity can be reduced.

【0045】なお、暖房時に外気が低温の時、低圧が引
く場合にも、低圧レシーバ35に液冷媒を溜めることに
より、低圧の低下を押さえることができる。
Even when a low pressure is applied when the outside air is at a low temperature during heating, the reduction of the low pressure can be suppressed by storing the liquid refrigerant in the low-pressure receiver 35.

【0046】暖房の場合も同様に、負荷に合わせて、高
圧レシーバ42または低圧レシーバ35に液冷媒を溜め
ることにより、能力を調整することができる。このよう
に、低圧レシーバ35に冷媒液を溜めることにより、冷
媒回路内を流れる高沸点成分の量を調節し、負荷に合わ
せて能力を調整する。
Similarly, in the case of heating, the capacity can be adjusted by storing the liquid refrigerant in the high-pressure receiver 42 or the low-pressure receiver 35 according to the load. In this way, by storing the refrigerant liquid in the low-pressure receiver 35, the amount of the high-boiling component flowing in the refrigerant circuit is adjusted, and the capacity is adjusted according to the load.

【0047】高圧レシーバ42に余剰冷媒液を貯留する
ことにより、冷媒回路内を流れる冷媒の組成変化の量を
小さくし、安定した冷凍サイクル制御を行うことができ
る。また、主絞りと副絞りの操作により、各レシーバを
利用して運転中に組成調整が簡単にできることになる。
これは絞り装置33の操作により高圧レシーバ42内の
冷媒量の調整ができることであり、すなわち蒸発器であ
る熱源側熱交換器32出口の冷媒の過熱度が一定となる
ように絞り装置33の開度を制御することになる。
By storing the excess refrigerant liquid in the high-pressure receiver 42, the amount of change in the composition of the refrigerant flowing in the refrigerant circuit can be reduced, and stable refrigeration cycle control can be performed. Further, by operating the main throttle and the sub-aperture, the composition can be easily adjusted during operation using each receiver.
This means that the amount of the refrigerant in the high-pressure receiver 42 can be adjusted by operating the expansion device 33, that is, the opening of the expansion device 33 is controlled so that the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger 32 as an evaporator becomes constant. Will control the degree.

【0048】負荷が重い(空気温度が高い)時は、図6
A矢印のようにレシーバに入る冷媒は二相状態であり、
レシーバから出ていくB矢印の冷媒は飽和状態のため、
単相で出ていき、このため高圧レシーバ42より持ち出
される冷媒量の方が多くなり高圧レシーバ42内の液面
が下がる。
When the load is heavy (air temperature is high), FIG.
As shown by the arrow A, the refrigerant entering the receiver is in a two-phase state,
Since the refrigerant indicated by the arrow B coming out of the receiver is saturated,
The refrigerant flows out in a single phase, so that the amount of refrigerant taken out of the high-pressure receiver 42 increases, and the liquid level in the high-pressure receiver 42 drops.

【0049】負荷が軽い(空気温度が低い)時、矢印A
の高圧レシーバ42に入る単相の液冷媒が過冷却するよ
うに絞り装置33を絞ると、高圧レシーバ42に入った
過冷却状態の液冷媒は高圧レシーバ42内のガス冷媒を
凝縮させて自身は飽和の単相の液冷媒となり高圧レシー
バ42より矢印Bのように持ち出される。よって、高圧
レシーバ42内のガスが凝縮される分、高圧レシーバ4
2内の液の量は増える。なお、図4のような構成におい
ては熱交換器に液溜めとしての機能をもたせているが、
高圧レシーバ42を高圧側に設けることにより、格段に
調整量を増やすことができる。
When the load is light (air temperature is low), arrow A
When the expansion device 33 is throttled so that the single-phase liquid refrigerant entering the high-pressure receiver 42 is supercooled, the supercooled liquid refrigerant entering the high-pressure receiver 42 condenses the gas refrigerant in the high-pressure receiver 42 and becomes itself. The liquid refrigerant becomes a saturated single-phase liquid refrigerant and is taken out from the high-pressure receiver 42 as shown by the arrow B. Therefore, as much as the gas in the high-pressure receiver 42 is condensed, the high-pressure receiver 4
The amount of liquid in 2 increases. In the configuration shown in FIG. 4, the heat exchanger has a function as a liquid reservoir,
By providing the high-pressure receiver 42 on the high-pressure side, the amount of adjustment can be significantly increased.

【0050】また、暖房時、負荷が重い時には、主絞り
装置33をきつく絞ることにより、上記の負荷が重い時
の状態とすることができ、高圧レシーバ42内の液冷媒
は減少する。逆に負荷が軽い時には、副絞り装置41を
きつく絞ることにより上記の負荷が軽い時の状態とす
る。
When the load is heavy at the time of heating, the main throttle device 33 is tightly throttled to make the above-mentioned state at the time of heavy load, and the liquid refrigerant in the high-pressure receiver 42 is reduced. Conversely, when the load is light, the sub-throttle device 41 is squeezed tightly to make the above-mentioned state where the load is light.

【0051】以上のように、高圧レシーバ42を凝縮器
となる熱交換器の出口側に配置することにより、凝縮器
で凝縮した液冷媒が高圧レシーバ42に溜まる。この液
冷媒は、循環している冷媒がすべて凝縮し、液単相の状
態である為、組成は充填組成に近いものとなり、低圧レ
シーバ35に余剰冷媒を溜める場合とは異なる。又、副
絞り装置41を設けることにより冷房・暖房で高圧レシ
ーバを高圧液ラインに位置させることができる。このよ
うに凝縮器となる熱交換器と高圧レシーバ42との間に
圧力を変化させる手段を設けることにより、高圧レシー
バ42に流入する冷媒の乾き度を変化させ、簡易に高圧
レシーバ42内の液面を制御することができる。
As described above, by disposing the high-pressure receiver 42 on the outlet side of the heat exchanger serving as a condenser, the liquid refrigerant condensed by the condenser accumulates in the high-pressure receiver 42. Since the circulating refrigerant is all condensed and in a liquid single-phase state, the composition of the liquid refrigerant is close to the filling composition, which is different from the case where excess refrigerant is stored in the low-pressure receiver 35. Further, by providing the sub-throttle device 41, the high-pressure receiver can be positioned in the high-pressure liquid line during cooling and heating. By providing a means for changing the pressure between the heat exchanger serving as a condenser and the high-pressure receiver 42, the dryness of the refrigerant flowing into the high-pressure receiver 42 is changed, and the liquid in the high-pressure receiver 42 is easily changed. The surface can be controlled.

【0052】実施例7. 図7は、本発明の基本システムを示す冷媒回路図であ
る。なお図中、実施例6と同一部分には同一符号を付
し、説明を省略する。図6における実施例6の構成要素
に加えて、高圧レシーバ42の底部より低圧レシーバ3
5に至るバイパス管105と、開閉装置43を設け、開
閉装置43をバイパス管105の途中に設置する構成と
する。
Embodiment 7 FIG. FIG. 7 is a refrigerant circuit diagram showing the basic system of the present invention. In the figure, the same parts as those in the sixth embodiment are denoted by the same reference numerals, and the description will be omitted. In addition to the components of the sixth embodiment in FIG.
5 and a switching device 43 are provided, and the switching device 43 is installed in the middle of the bypass tube 105.

【0053】作用について説明する。図示の如く冷媒が
流れる。予め、余剰冷媒が低圧レシーバ35または高圧
レシーバ42に溜まるように充填する。冷房する場合、
圧縮機31より吐出された冷媒ガスは、四方弁40を通
って熱源側熱交換器32で凝縮され液冷媒となり、副絞
り装置41にて若干絞られた後、高圧レシーバ42に入
る。高圧レシーバ42を通った液冷媒は、主絞り装置3
3にて低圧まで絞られ、負荷側熱交換器34にて蒸発
し、四方弁40及び低圧レシーバ35を介して圧縮機3
1へ戻る。
The operation will be described. The refrigerant flows as shown. The surplus refrigerant is filled beforehand so as to accumulate in the low-pressure receiver 35 or the high-pressure receiver 42. When cooling,
The refrigerant gas discharged from the compressor 31 passes through the four-way valve 40 and is condensed in the heat source side heat exchanger 32 to become a liquid refrigerant. After being slightly throttled by the sub-throttle device 41, it enters the high-pressure receiver 42. The liquid refrigerant passing through the high-pressure receiver 42 is supplied to the main throttle device 3
3, the pressure is reduced to a low pressure, evaporated in the load-side heat exchanger 34, and compressed through the four-way valve 40 and the low-pressure receiver 35.
Return to 1.

【0054】負荷が重い時には、開閉装置43を開き、
副絞り装置41をきつく絞ることによって、高圧レシー
バ42内の液冷媒は、バイパス管105を通って、低圧
レシーバ35へ移動する。副絞り装置41出口にて冷媒
が二相状態になるようにすれば、高圧レシーバ42には
液冷媒が溜まらなくなり、液冷媒は低圧レシーバ35に
確保される。低圧レシーバ35には、高沸点成分に富ん
だ冷媒液が溜まるため、メイン回路を循環する冷媒は、
低沸点成分に富んだ冷媒となる。このため、圧縮機31
に吸入される冷媒の密度は増大し、冷媒循環量が増し、
能力が増大する。
When the load is heavy, the switch 43 is opened,
The liquid refrigerant in the high-pressure receiver 42 moves to the low-pressure receiver 35 through the bypass pipe 105 by tightly restricting the sub-throttle device 41. If the refrigerant is made to be in a two-phase state at the outlet of the sub-throttle device 41, the liquid refrigerant does not accumulate in the high-pressure receiver 42, and the liquid refrigerant is secured in the low-pressure receiver 35. Since the refrigerant liquid rich in the high boiling point component is accumulated in the low-pressure receiver 35, the refrigerant circulating in the main circuit is:
It becomes a refrigerant rich in low boiling point components. For this reason, the compressor 31
The density of the refrigerant sucked into the air increases, the refrigerant circulation amount increases,
Ability increases.

【0055】負荷が軽い時には、主絞り装置33をきつ
く絞り、液冷媒を低圧レシーバ35から高圧レシーバ4
2へ移動させることによって、冷媒の組成は、充填した
冷媒の組成に近付くので、能力を減少させることができ
る。
When the load is light, the main throttle device 33 is tightly throttled, and the liquid refrigerant is supplied from the low-pressure receiver 35 to the high-pressure receiver 4.
By moving to 2, the composition of the refrigerant approaches the composition of the charged refrigerant, so that the capacity can be reduced.

【0056】暖房時の場合も同様に、負荷に合わせて、
高圧レシーバ42または低圧レシーバ35に液冷媒を溜
めることにより、能力を調整することができる。このよ
うにこの、冷凍・空調装置は、低圧レシーバ35と高圧
レシーバ42に溜める冷媒液の量を、上記低圧レシーバ
35と高圧レシーバ42を結ぶバイパス管105を用い
て調節することにより、冷媒回路内を流れる高沸点成分
の量を素早く調節し、負荷に合わせて能力を調節する。
以上のようにバイパス管105を設けることにより組成
を素早く調整し、冷凍サイクルを安定にすることができ
る。
Similarly, at the time of heating, according to the load,
The capacity can be adjusted by storing the liquid refrigerant in the high-pressure receiver 42 or the low-pressure receiver 35. As described above, the refrigeration / air-conditioning apparatus adjusts the amount of the refrigerant liquid stored in the low-pressure receiver 35 and the high-pressure receiver 42 by using the bypass pipe 105 that connects the low-pressure receiver 35 and the high-pressure receiver 42, so that the refrigerant circuit Quickly adjust the amount of high boiling components flowing through and adjust the capacity according to the load.
By providing the bypass pipe 105 as described above, the composition can be quickly adjusted and the refrigeration cycle can be stabilized.

【0057】実施例8. 図8は、本発明の基本システムを示す冷媒回路図であ
る。なお図中、実施例6と同一部分には同一符号を付
し、説明を省略する。図6における実施例6の構成要素
に加えて、高圧レシーバ42の上部より低圧レシーバ3
5に至るバイパス管106と、開閉装置44を設け、開
閉装置44をバイパス管106の途中に設置する構成と
する。
Embodiment 8 FIG. FIG. 8 is a refrigerant circuit diagram showing the basic system of the present invention. In the figure, the same parts as those in the sixth embodiment are denoted by the same reference numerals, and the description will be omitted. In addition to the components of the sixth embodiment in FIG.
5 and a switching device 44 are provided, and the switching device 44 is installed in the middle of the bypass tube 106.

【0058】作用について説明する。予め、余剰冷媒が
低圧レシーバ35または高圧レシーバ42に溜まるよう
に充填する。冷房する場合、圧縮機31より吐出された
冷媒ガスは、四方弁40を通って熱源側熱交換器32で
凝縮され液冷媒となり、副絞り装置41にて若干絞られ
た後、高圧レシーバ42に入る。高圧レシーバ42を通
った液冷媒は、主絞り装置にて低圧まで絞られ、負荷側
熱交換器34にて蒸発し、四方弁40及び低圧レシーバ
35を介して圧縮機31へ戻る。
The operation will be described. The surplus refrigerant is filled beforehand so as to accumulate in the low-pressure receiver 35 or the high-pressure receiver 42. In the case of cooling, the refrigerant gas discharged from the compressor 31 passes through the four-way valve 40 and is condensed in the heat source side heat exchanger 32 to become a liquid refrigerant. enter. The liquid refrigerant that has passed through the high-pressure receiver 42 is throttled to a low pressure by the main throttle device, evaporates in the load-side heat exchanger 34, and returns to the compressor 31 via the four-way valve 40 and the low-pressure receiver 35.

【0059】運転中、暖房時で外気が低温の時、低圧が
低い場合には、開閉装置44を開き、図示の如く低沸点
成分に富んだ未凝縮ガスを低圧レシーバ35へと導き、
圧縮機31吸入の圧力の低下を押さえる。
During operation, when the outside air is at a low temperature during heating and the low pressure is low, the switch 44 is opened to guide the uncondensed gas rich in low boiling point components to the low pressure receiver 35 as shown in FIG.
The compressor 31 suppresses a decrease in suction pressure.

【0060】実施例9. 以下、本発明の実施例9を図9に基づいて説明する。3
1は圧縮機、40は四方弁、32は熱源側熱交換器、4
1は副絞り装置、42は高圧レシーバ、33は主絞り装
置、34は負荷側熱交換器、35は低圧レシーバで、こ
れらは冷媒配管にて順次接続されメイン回路をなす。4
7,48は高圧レシーバ42の入口と出口を開閉する開
閉機構である。また、107は高圧レシーバ42から低
圧レシーバに至る第一のバイパス管であり、45は上記
第一のバイパス管上に設けられた開閉機構である。10
8は高圧レシーバ42と開閉機構47及び48をバイパ
スする第二のバイパス管であり、46は上記第二のバイ
パス管108上に設けられた開閉機構である。
Embodiment 9 FIG. Hereinafter, a ninth embodiment of the present invention will be described with reference to FIG. 3
1 is a compressor, 40 is a four-way valve, 32 is a heat source side heat exchanger, 4
1 is a sub-throttling device, 42 is a high-pressure receiver, 33 is a main throttling device, 34 is a load-side heat exchanger, and 35 is a low-pressure receiver, which are sequentially connected by refrigerant piping to form a main circuit. 4
Reference numerals 7 and 48 denote opening and closing mechanisms for opening and closing the inlet and outlet of the high-pressure receiver 42, respectively. Reference numeral 107 denotes a first bypass pipe extending from the high-pressure receiver 42 to the low-pressure receiver, and reference numeral 45 denotes an opening / closing mechanism provided on the first bypass pipe. 10
Reference numeral 8 denotes a second bypass pipe that bypasses the high-pressure receiver 42 and the opening / closing mechanisms 47 and 48, and 46 denotes an opening / closing mechanism provided on the second bypass pipe 108.

【0061】作用について説明する。冷媒は図9に示す
如く流れる。予め、余剰冷媒が低圧レシーバ35または
高圧レシーバ42に溜まるように充填する。冷房する場
合、圧縮機31より吐出された冷媒ガスは、四方弁40
を通って熱源側熱交換器32で凝縮され液冷媒となり、
副絞り装置41にて若干絞られた後、高圧レシーバ42
に入る。高圧レシーバ42を通った液冷媒は、主絞り装
置にて低圧まで絞られ、負荷側熱交換器34にて蒸発
し、四方弁40及び低圧レシーバ35を介して圧縮機3
1へ戻る。
The operation will be described. The refrigerant flows as shown in FIG. The surplus refrigerant is filled beforehand so as to accumulate in the low-pressure receiver 35 or the high-pressure receiver 42. In the case of cooling, the refrigerant gas discharged from the compressor 31 is supplied to the four-way valve 40.
Through the heat source side heat exchanger 32 to be condensed into a liquid refrigerant,
After being slightly throttled by the sub-throttle device 41, the high-pressure receiver 42
to go into. The liquid refrigerant that has passed through the high-pressure receiver 42 is throttled to a low pressure by the main throttle device, evaporates in the load-side heat exchanger 34, and passes through the four-way valve 40 and the low-pressure receiver 35.
Return to 1.

【0062】負荷が重い時には、開閉機構45を開き、
副絞り装置41をきつく絞ることによって、高圧レシー
バ42内の液冷媒は、バイパス管107を通って、低圧
レシーバ35へ移動する。副絞り装置41出口にて冷媒
が二相状態になるようにすれば、高圧のレシーバ42に
は液冷媒が溜まらなくなり、液冷媒は低圧レシーバ35
に保持される。低圧レシーバ35に保持された液冷媒
は、メイン回路を循環する冷媒の組成とは異なり、高沸
点成分に富んだ冷媒となる。低圧レシーバ35に確保さ
れた状態を検知した後、開閉機構47,48を閉じ、開
閉機構46を開き、冷媒が高圧レシーバ42をバイパス
するようにし、常に冷媒回路内の冷媒分布を一定にする
ことによって、運転を安定させる。液冷媒がレシーバに
ある状態を検知するには、液面検知回路、すなわちアキ
ュムレータ外壁を一定量加熱し、温度上昇を検知し加熱
位置を比較したり、あるいは後述のように循環組成を検
知してレシーバ内の冷媒量を求める方法などがある。
When the load is heavy, the opening / closing mechanism 45 is opened,
The liquid refrigerant in the high-pressure receiver 42 moves to the low-pressure receiver 35 through the bypass pipe 107 by tightly restricting the sub-throttle device 41. If the refrigerant is made to be in a two-phase state at the outlet of the sub-throttle device 41, the liquid refrigerant will not accumulate in the high-pressure receiver 42, and the liquid refrigerant will
Is held. The liquid refrigerant held in the low-pressure receiver 35 is different from the composition of the refrigerant circulating in the main circuit, and becomes a refrigerant rich in high-boiling components. After detecting the state secured in the low-pressure receiver 35, the opening and closing mechanisms 47 and 48 are closed, and the opening and closing mechanism 46 is opened so that the refrigerant bypasses the high-pressure receiver 42 and the distribution of the refrigerant in the refrigerant circuit is always kept constant. Stabilizes driving. To detect the state that the liquid refrigerant is in the receiver, the liquid level detection circuit, that is, heat the outer wall of the accumulator by a certain amount, detect the temperature rise and compare the heating position, or detect the circulation composition as described later. There is a method of determining the amount of refrigerant in the receiver.

【0063】負荷が軽い時には、開閉機構47及び48
を開き、開閉機構46を閉じ、主絞り装置33をきつく
絞り、凝縮器として作用している熱源側熱交換器32の
出口において、冷媒の状態を液状態とすることによっ
て、高圧レシーバ42に液冷媒を溜める。高圧レシーバ
42に液冷媒を溜めた状態で、開閉機構47及び48を
閉じ、開閉機構46を開き、高圧レシーバ42に液冷媒
を溜めた状態を保持する。この時、高圧レシーバ42に
保持される液冷媒は、冷媒回路に冷媒を充填した時の組
成と近いものとなり、かつ、冷媒回路内を循環する冷媒
の組成もまた冷媒を充填した時の組成に近いものとな
る。
When the load is light, the opening / closing mechanisms 47 and 48
Is opened, the opening / closing mechanism 46 is closed, the main throttle device 33 is tightly throttled, and the state of the refrigerant is changed to a liquid state at the outlet of the heat source side heat exchanger 32 acting as a condenser, so that the high-pressure receiver 42 Store refrigerant. With the liquid refrigerant stored in the high-pressure receiver 42, the opening and closing mechanisms 47 and 48 are closed, and the opening and closing mechanism 46 is opened to maintain the state in which the liquid refrigerant is stored in the high-pressure receiver 42. At this time, the liquid refrigerant held in the high-pressure receiver 42 has a composition close to the composition when the refrigerant circuit is filled with the refrigerant, and the composition of the refrigerant circulating in the refrigerant circuit also has the composition when the refrigerant is filled. It will be close.

【0064】暖房する場合、圧縮機31より吐出された
冷媒ガスは、四方弁40を通って負荷側熱交換器34で
凝縮され液冷媒となり、主絞り装置33にて若干絞られ
た後、高圧レシーバ42に入る。高圧レシーバ42を通
った液冷媒は、副絞り装置41にて低圧まで絞られ、熱
源側熱交換器32にて蒸発し、四方弁40及び低圧レシ
ーバ35を介して圧縮機31へ戻る。
In the case of heating, the refrigerant gas discharged from the compressor 31 passes through the four-way valve 40 and is condensed in the load-side heat exchanger 34 to become a liquid refrigerant. Enter the receiver 42. The liquid refrigerant that has passed through the high-pressure receiver 42 is throttled to a low pressure by the sub-throttle device 41, evaporates in the heat-source-side heat exchanger 32, and returns to the compressor 31 via the four-way valve 40 and the low-pressure receiver 35.

【0065】負荷が重い時には、開閉装置45を開き、
主絞り装置33をきつく絞ることによって、高圧レシー
バ42内の液冷媒は、バイパス管107を通って、低圧
レシーバ35へ移動する。主絞り装置33出口にて冷媒
が二相状態になるようにすれば、高圧のレシーバ42に
は液冷媒が溜まらなくなり、液冷媒は低圧レシーバ35
に保持される。低圧レシーバ35に保持された液冷媒
は、メイン回路を循環する冷媒の組成とは異なり、高沸
点成分に富んだ冷媒となる。適当な量の冷媒が低圧レシ
ーバ35へ移動した後、開閉機構47,48を閉じ、開
閉機構46を開き、冷媒が高圧レシーバ42をバイパス
するようにし、常に冷媒回路内の冷媒分布を一定にする
ことによって、運転を安定させる。
When the load is heavy, the switching device 45 is opened,
The liquid refrigerant in the high-pressure receiver 42 moves to the low-pressure receiver 35 through the bypass pipe 107 by tightly restricting the main expansion device 33. If the refrigerant is made to be in a two-phase state at the outlet of the main throttle device 33, the liquid refrigerant will not accumulate in the high-pressure receiver 42, and the liquid refrigerant will
Is held. The liquid refrigerant held in the low-pressure receiver 35 is different from the composition of the refrigerant circulating in the main circuit, and becomes a refrigerant rich in high-boiling components. After an appropriate amount of refrigerant has moved to the low-pressure receiver 35, the opening and closing mechanisms 47 and 48 are closed, and the opening and closing mechanism 46 is opened, so that the refrigerant bypasses the high-pressure receiver 42, and the refrigerant distribution in the refrigerant circuit is always constant. This stabilizes driving.

【0066】負荷が軽い時には、開閉機構47及び48
を開き、開閉機構46を閉じ、副絞り装置41をきつく
絞り、凝縮器として作用している負荷側熱交換器32の
出口において、冷媒の状態を液状態とすることによっ
て、高圧レシーバ42に液冷媒を溜める。高圧レシーバ
42に液冷媒を溜めた状態で、開閉機構47及び48を
閉じ、開閉機構46を開き、高圧レシーバ42に液冷媒
を溜めた状態を保持する。この時、高圧レシーバ42に
保持される液冷媒は、冷媒回路に冷媒を充填した時の組
成と近いものとなり、かつ、冷媒回路内を循環する冷媒
の組成もまた冷媒を充填した時の組成に近いものとする
ことができる。
When the load is light, the opening / closing mechanisms 47 and 48
Is opened, the opening / closing mechanism 46 is closed, the sub-throttle device 41 is tightly throttled, and at the outlet of the load-side heat exchanger 32 acting as a condenser, the state of the refrigerant is changed to a liquid state. Store refrigerant. With the liquid refrigerant stored in the high-pressure receiver 42, the opening and closing mechanisms 47 and 48 are closed, and the opening and closing mechanism 46 is opened to maintain the state in which the liquid refrigerant is stored in the high-pressure receiver 42. At this time, the liquid refrigerant held in the high-pressure receiver 42 has a composition close to the composition when the refrigerant circuit is filled with the refrigerant, and the composition of the refrigerant circulating in the refrigerant circuit also has the composition when the refrigerant is filled. Can be close.

【0067】このように、負荷に応じて、低圧レシーバ
35または高圧レシーバ42に冷媒液を選択して溜める
ことによって、冷媒回路内を循環する冷媒の組成を変更
し、圧縮機31の回転周波数を変えることなく、能力を
変化させることができる。
As described above, by selectively storing the refrigerant liquid in the low-pressure receiver 35 or the high-pressure receiver 42 according to the load, the composition of the refrigerant circulating in the refrigerant circuit is changed, and the rotational frequency of the compressor 31 is changed. The ability can be changed without changing.

【0068】上述の如く、これらの冷媒回路から構成さ
れる冷凍・空調装置は、低圧レシーバ35と高圧レシー
バ42に溜める冷媒液の量を、上記低圧レシーバ35と
高圧レシーバ42を結ぶバイパス管を用いて調節するこ
とにより、冷媒回路内を流れる高沸点成分の量を素早く
調節し、負荷に合わせて能力を調整する。
As described above, the refrigeration / air-conditioning apparatus constituted by these refrigerant circuits uses the bypass pipe connecting the low-pressure receiver 35 and the high-pressure receiver 42 with the amount of the refrigerant liquid stored in the low-pressure receiver 35 and the high-pressure receiver 42. In this way, the amount of the high boiling point component flowing in the refrigerant circuit is quickly adjusted, and the capacity is adjusted according to the load.

【0069】また、これらの冷凍・空調装置は、低圧レ
シーバ35と高圧レシーバ42に溜める冷媒液を調節し
つつ、圧縮機31吸入にて圧力が低下する場合には、高
圧レシーバ42上部より低沸点成分に富む冷媒ガスを圧
縮機31吸入側に戻すことによって、圧縮機吸入圧力の
低下を防止する。
In addition, these refrigeration / air-conditioning devices adjust the refrigerant liquid stored in the low-pressure receiver 35 and the high-pressure receiver 42 and, when the pressure is reduced by the suction of the compressor 31, have a lower boiling point than the high-pressure receiver 42. By returning the refrigerant gas rich in components to the suction side of the compressor 31, a decrease in compressor suction pressure is prevented.

【0070】以上実施例7,8,9にはバイパス管に開
閉機構を設けた例を記載したが、この開閉のタイミング
は例えば起動時や定常時に高圧が上昇するか、低圧が引
込む場合等に開放するようにする。
In the above-described embodiments 7, 8, and 9, an example in which an opening / closing mechanism is provided in the bypass pipe is described. The timing of the opening / closing is, for example, when the high pressure rises at the time of startup or steady state, or when low pressure is drawn in. Make it open.

【0071】実施例10. 以下、本発明の実施例10を図10に基づいて説明す
る。31は圧縮機、40は四方弁、32は熱源側熱交換
器、41は副絞り装置、42は高圧レシーバ、33は主
絞り装置、34は負荷側熱交換器、35は低圧レシーバ
で、これらは冷媒配管にて順次接続されメイン回路をな
す。また、109は高圧レシーバ42から低圧レシーバ
35に至るバイパス管であり、49は上記第一のバイパ
ス管上に設けられた第三の絞り装置である。50は主絞
り装置33と副絞り装置41の間のメイン配管と、第三
の絞り装置49と低圧レシーバ35の間のバイパス管と
を熱交換させる過冷却熱交換器である。
Embodiment 10 FIG. Hereinafter, a tenth embodiment of the present invention will be described with reference to FIG. 31 is a compressor, 40 is a four-way valve, 32 is a heat source side heat exchanger, 41 is a sub-throttle device, 42 is a high-pressure receiver, 33 is a main throttle device, 34 is a load-side heat exchanger, and 35 is a low-pressure receiver. Are sequentially connected by a refrigerant pipe to form a main circuit. Reference numeral 109 denotes a bypass pipe from the high-pressure receiver 42 to the low-pressure receiver 35, and reference numeral 49 denotes a third throttle device provided on the first bypass pipe. Reference numeral 50 denotes a supercooling heat exchanger for exchanging heat between a main pipe between the main throttle device 33 and the sub-throttle device 41 and a bypass pipe between the third throttle device 49 and the low-pressure receiver 35.

【0072】作用について説明する。冷媒は図10に示
す如く流れる。予め、余剰冷媒が低圧レシーバ35また
は高圧レシーバ42に溜まるように充填する。冷房する
場合、圧縮機31より吐出された冷媒ガスは、四方弁4
0を通って熱源側熱交換器32で凝縮され液冷媒とな
り、副絞り装置41にて若干絞られた後、高圧レシーバ
に入る。高圧レシーバ42を通った液冷媒は、主絞り装
置にて低圧まで絞られ、負荷側熱交換器34にて蒸発
し、四方弁40及び低圧レシーバ35を介して圧縮機3
1へ戻る。
The operation will be described. The refrigerant flows as shown in FIG. The surplus refrigerant is filled beforehand so as to accumulate in the low-pressure receiver 35 or the high-pressure receiver 42. In the case of cooling, the refrigerant gas discharged from the compressor 31 is supplied to the four-way valve 4.
After passing through 0, it is condensed in the heat source side heat exchanger 32 to become a liquid refrigerant, and after being slightly throttled by the sub-throttle device 41, enters the high-pressure receiver. The liquid refrigerant that has passed through the high-pressure receiver 42 is throttled to a low pressure by the main throttle device, evaporates in the load-side heat exchanger 34, and passes through the four-way valve 40 and the low-pressure receiver 35.
Return to 1.

【0073】ここで、第三の絞り装置49を開き、高圧
レシーバ42内の液冷媒を低圧の二相冷媒として過冷却
熱交換器50へと導く。過冷却熱交換器50では、高圧
の液冷媒が流れるメイン配管と、低圧の二相冷媒が流れ
るバイパス管とが熱交換し、メイン配管を流れる液冷媒
の過冷却度を増大させることができる。このことによ
り、主絞り装置33及び副絞り装置41における流量制
御の信頼性を高めることができる。
Here, the third expansion device 49 is opened to guide the liquid refrigerant in the high-pressure receiver 42 to the supercooling heat exchanger 50 as a low-pressure two-phase refrigerant. In the supercooling heat exchanger 50, the main pipe through which the high-pressure liquid refrigerant flows and the bypass pipe through which the low-pressure two-phase refrigerant flows exchange heat, and the degree of subcooling of the liquid refrigerant flowing through the main pipe can be increased. Thereby, the reliability of the flow control in the main throttle device 33 and the sub throttle device 41 can be improved.

【0074】また、高圧の上昇が著しい時には、主絞り
装置33及び副絞り装置41を甘くし、凝縮器として作
用している熱源側熱交換器32の出口において、冷媒の
状態を二相状態とする。この時、高圧レシーバ42内に
溜まる液冷媒を高沸点冷媒に富むものとなり、第三の絞
り装置49を開けて、この高沸点成分に富む冷媒を、過
冷却熱交換器50にて蒸発させた後、低圧レシーバ35
に戻すことによって、圧縮機31は高沸点成分に富むガ
ス冷媒を吸入するため、圧縮機31の吐出圧力を抑える
ことができる。
When the high pressure rise is remarkable, the main throttle device 33 and the sub-throttle device 41 are weakened, and the state of the refrigerant is changed to a two-phase state at the outlet of the heat source side heat exchanger 32 acting as a condenser. I do. At this time, the liquid refrigerant accumulated in the high-pressure receiver 42 becomes rich in high-boiling-point refrigerant, and the third expansion device 49 is opened to evaporate the high-boiling-point-rich refrigerant in the supercooling heat exchanger 50. Later, low-voltage receiver 35
By returning the pressure to, the compressor 31 sucks in the gas refrigerant rich in the high boiling point component, so that the discharge pressure of the compressor 31 can be suppressed.

【0075】暖房する場合、圧縮機31より吐出された
冷媒ガスは、四方弁40を通って負荷側熱交換器34で
凝縮され液冷媒となり、主絞り装置33にて若干絞られ
た後、高圧レシーバ42に入る。高圧レシーバ42を通
った液冷媒は、副絞り装置41にて低圧まで絞られ、熱
源側熱交換器32にて蒸発し、四方弁40及び低圧レシ
ーバ35を介して圧縮機31へ戻る。
In the case of heating, the refrigerant gas discharged from the compressor 31 passes through the four-way valve 40 and is condensed in the load side heat exchanger 34 to become a liquid refrigerant. Enter the receiver 42. The liquid refrigerant that has passed through the high-pressure receiver 42 is throttled to a low pressure by the sub-throttle device 41, evaporates in the heat-source-side heat exchanger 32, and returns to the compressor 31 via the four-way valve 40 and the low-pressure receiver 35.

【0076】ここで、第三の絞り装置49を開き、高圧
レシーバ42内の液冷媒を低圧の二相冷媒として過冷却
熱交換器50へと導く。過冷却熱交換器50では、高圧
の液冷媒が流れるメイン配管と、低圧の二相冷媒が流れ
るバイパス管とが熱交換し、メイン配管を流れる液冷媒
の過冷却度を増大させることができる。このことによ
り、主絞り装置33及び副絞り装置41における流量制
御の信頼性を高めることができる。
Here, the third expansion device 49 is opened, and the liquid refrigerant in the high-pressure receiver 42 is guided to the supercooling heat exchanger 50 as a low-pressure two-phase refrigerant. In the supercooling heat exchanger 50, the main pipe through which the high-pressure liquid refrigerant flows and the bypass pipe through which the low-pressure two-phase refrigerant flows exchange heat, and the degree of subcooling of the liquid refrigerant flowing through the main pipe can be increased. Thereby, the reliability of the flow control in the main throttle device 33 and the sub throttle device 41 can be improved.

【0077】また、高圧の上昇が著しい時には、主絞り
装置33及び副絞り装置41を甘くし、凝縮器として作
用している負荷側熱交換器34の出口において、冷媒の
状態を二相状態とする。この時、高圧レシーバ42内に
溜まる液冷媒を高沸点冷媒に富むものとなり、第三の絞
り装置49を開けて、この高沸点成分に富む冷媒を、過
冷却熱交換器50にて蒸発させた後、低圧レシーバ35
に戻すことによって、圧縮機31は高沸点成分に富むガ
ス冷媒を吸入するため、圧縮機31の吐出圧力を抑える
ことができる。
When the high pressure rise is remarkable, the main expansion device 33 and the auxiliary expansion device 41 are weakened, and the state of the refrigerant is changed to a two-phase state at the outlet of the load side heat exchanger 34 acting as a condenser. I do. At this time, the liquid refrigerant accumulated in the high-pressure receiver 42 becomes rich in high-boiling-point refrigerant, and the third expansion device 49 is opened to evaporate the high-boiling-point-rich refrigerant in the supercooling heat exchanger 50. Later, low-voltage receiver 35
By returning the pressure to, the compressor 31 sucks in the gas refrigerant rich in the high boiling point component, so that the discharge pressure of the compressor 31 can be suppressed.

【0078】すなわち、この冷凍・空調装置は、低圧レ
シーバ35と高圧レシーバ42に溜める冷媒液量を調節
することによって、冷媒回路内を流れる高沸点成分の量
を調節し、圧縮機31吐出圧力が上昇するときには、高
圧レシーバ42内の液を、一旦、絞った後、メインの高
圧の液冷媒と熱交換することによって自身を蒸発気化さ
せ、能力を保持したまま、圧縮機31吐出圧力を抑える
ことができる。このように高圧レシーバ42より絞りを
介して高圧の冷媒液配管と熱交換した後低圧のガス配管
と合流するバイパス管109を設けることにより、流量
制御の信頼性を高めることができるとともに、能力を保
持したまま圧縮機31吐出圧力を抑えられる。
That is, in this refrigeration / air-conditioning apparatus, the amount of the high-boiling component flowing in the refrigerant circuit is adjusted by adjusting the amount of the refrigerant liquid stored in the low-pressure receiver 35 and the high-pressure receiver 42, and the discharge pressure of the compressor 31 is reduced. When ascending, the liquid in the high-pressure receiver 42 is once squeezed, and then heat-exchanges with the main high-pressure liquid refrigerant to evaporate itself, thereby suppressing the discharge pressure of the compressor 31 while maintaining the capability. Can be. Thus, by providing the bypass pipe 109 that exchanges heat with the high-pressure refrigerant liquid pipe via the throttle from the high-pressure receiver 42 and then joins with the low-pressure gas pipe, the reliability of the flow rate control can be improved and the capacity can be improved. The discharge pressure of the compressor 31 can be suppressed while maintaining the pressure.

【0079】[0079]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に示すような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0080】この発明にかかる冷凍循環システムでは、
圧縮機吐出部から冷媒回路の低圧側構成機器または低圧
側配管の少なくとも1ケ所へ接続され冷媒液を冷媒液寝
込部分にバイパスするバイパス管を設け、冷媒システム
起動時に低圧側構成機器または低圧側配管内の冷媒液寝
込部分に、圧縮機からの吐出冷媒を吹き込むので、低圧
部に寝込んだ高沸点成分に富む液冷媒を蒸発させ、急激
な圧力上昇を抑えることができる。また、圧縮機の吸入
における圧力の低下を防ぐことができる。
In the refrigeration circulation system according to the present invention,
Low pressure side components of the refrigerant circuit from the compressor discharge section or low pressure
Connected to at least one location on the side pipe,
A bypass pipe is provided to bypass the refrigerant system.
Refrigerant liquid in low-pressure side components or low-pressure side piping at startup
Since the refrigerant discharged from the compressor is blown into the suction portion, the liquid refrigerant enriched in the high-boiling-point component that has accumulated in the low-pressure portion can be evaporated, and a rapid pressure rise can be suppressed. In addition, it is possible to prevent a decrease in pressure at the suction of the compressor.

【0081】さらに、バイパス管に開閉機構を設け、開
閉機構は起動時に開放されるので、熱容量の関係から低
圧部に寝込んだ高沸点成分に富む液冷媒を、起動時、圧
縮機の高温の吐出ガスを吹込むことで蒸発させ、圧縮機
に吸入される冷媒の組成を調節し急激な圧力上昇を抑え
ることができる。
Further, an opening / closing mechanism is provided in the bypass pipe to open the bypass pipe.
Since the closing mechanism is opened at startup , the high-boiling-point-rich liquid refrigerant that has accumulated in the low-pressure section due to heat capacity evaporates by blowing in the high-temperature discharge gas from the compressor at startup, and is sucked into the compressor. By controlling the composition of the refrigerant to be supplied, a rapid pressure rise can be suppressed.

【0082】さらに、開閉機構を開閉させて、冷媒を冷
媒回路内の各機器を循環させながら組成を調整するの
で、低圧部に寝込んだ高沸点成分に富む液冷媒を蒸発さ
せ、急激な圧力上昇を抑え、かつ、冷媒の組成が一定と
なり、安定な運転状態となるまでの時間を短縮できる。
Further, the opening and closing mechanism is opened and closed to cool the refrigerant.
Adjusting the composition while circulating each device in the medium circuit
Thus, the liquid refrigerant enriched in the high-boiling-point component laid down in the low-pressure portion is evaporated, a rapid pressure increase is suppressed, and the composition of the refrigerant becomes constant, so that the time required for a stable operating state can be shortened.

【0083】[0083]

【0084】[0084]

【0085】[0085]

【0086】[0086]

【0087】[0087]

【0088】[0088]

【0089】[0089]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明における実施例の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of an embodiment according to the present invention.

【図2】 本発明における他の実施例の冷媒回路図であ
る。
FIG. 2 is a refrigerant circuit diagram of another embodiment of the present invention.

【図3】 本発明における他の実施例の冷媒回路図であ
る。
FIG. 3 is a refrigerant circuit diagram of another embodiment of the present invention.

【図4】 本発明における他の実施例の冷媒回路図であ
る。
FIG. 4 is a refrigerant circuit diagram of another embodiment of the present invention.

【図5】 本発明における他の実施例の冷媒回路図であ
る。
FIG. 5 is a refrigerant circuit diagram of another embodiment of the present invention.

【図6】 本発明における他の実施例の冷媒回路図であ
る。
FIG. 6 is a refrigerant circuit diagram of another embodiment of the present invention.

【図7】 本発明における他の実施例の冷媒回路図であ
る。
FIG. 7 is a refrigerant circuit diagram of another embodiment of the present invention.

【図8】 本発明における他の実施例の冷媒回路図であ
る。
FIG. 8 is a refrigerant circuit diagram of another embodiment of the present invention.

【図9】 本発明における他の実施例の冷媒回路図であ
る。
FIG. 9 is a refrigerant circuit diagram of another embodiment of the present invention.

【図10】 本発明における他の実施例の冷媒回路図で
ある。
FIG. 10 is a refrigerant circuit diagram of another embodiment of the present invention.

【図11】 従来の冷凍・空調装置を示す冷媒回路図で
ある。
FIG. 11 is a refrigerant circuit diagram showing a conventional refrigeration / air-conditioning apparatus.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 熱源側熱交換器、3 主絞り装置、4
主絞り装置、5 副絞り装置、6 負荷側熱交換器、
8 冷媒貯留塔、9 冷却源、10 加熱源、11 塔
頂貯留器、12 塔底貯留器、13 開閉弁、14 開
閉弁、15 開閉弁、16 開閉弁、31 圧縮機、3
2 熱源側熱交換器、33 絞り装置、34 負荷側熱
交換器、35 低圧レシーバ、36 開閉機構、37
開閉機構、 38 開閉機構、39 開閉機構、40
四方弁、41 副絞り装置、42高圧レシーバ、43
開閉機構、44 開閉機構、45 開閉機構、46 開
閉機構、47 開閉機構、48 開閉機構、49 絞り
装置、50 過冷却熱交換器、51 絞り装置、52
負荷側熱交換器、53 冷媒−冷媒熱交換器、54 四
方弁、55 蓄熱用熱交換器、56 蓄熱媒体、57
蓄熱槽、58 冷媒ガスポンプ、59 蓄熱用四方弁、
60 開閉機構、61 開閉機構、62開閉機構、63
蓄熱用熱交換器、64 蓄熱用熱交換器、65 開閉
機構、66 開閉機構、67 開閉機構、68 開閉機
構、69 開閉機構、70 開閉機構、71 開閉機
構、72 開閉機構、73 絞り装置、75 絞り装
置、76 開閉機構、77 低温熱源、78 高温熱
源、79 中間圧レシーバ、81高温熱源、82 絞り
装置、83 高圧組成調整器、84 中間圧組成調整
器、85 開閉機構、86 開閉機構、87 飽和温度
検知用絞り装置、91 絞り装置、94 暖房用熱交換
器、95 冷房用熱交換器、96 暖房用絞り装置、9
7 バイパス用絞り装置、98 冷房用絞り装置、20
0 温度センサ、201 温度センサ、202 温度セ
ンサ、203 制御器、204 圧力センサ、205
温度センサ、206 圧力センサ、207 温度セン
サ、208 圧力センサ、209 温度センサ、210
圧力センサ、211 温度センサ、212 圧力セン
サ、213 温度センサ、214 圧力センサ、215
温度センサ、216 冷媒量検知手段、217 温度
センサ、218 圧力センサ、219 温度センサ、2
20 制御器、221 制御器、222 圧力センサ、
223 温度センサ。
1 compressor, 2 heat source side heat exchanger, 3 main throttle device, 4
Main throttle device, 5 auxiliary throttle device, 6 load side heat exchanger,
8 Refrigerant storage tower, 9 Cooling source, 10 Heating source, 11 Tower reservoir, 12 Tower reservoir, 13 Open / close valve, 14 Open / close valve, 15 Open / close valve, 16 Open / close valve, 31 Compressor, 3
2 heat source side heat exchanger, 33 expansion device, 34 load side heat exchanger, 35 low pressure receiver, 36 opening and closing mechanism, 37
Opening and closing mechanism, 38 opening and closing mechanism, 39 opening and closing mechanism, 40
Four-way valve, 41 Sub-throttle device, 42 High-pressure receiver, 43
Opening / closing mechanism, 44 opening / closing mechanism, 45 opening / closing mechanism, 46 opening / closing mechanism, 47 opening / closing mechanism, 48 opening / closing mechanism, 49 expansion device, 50 supercooling heat exchanger, 51 expansion device, 52
Load side heat exchanger, 53 refrigerant-refrigerant heat exchanger, 54 four-way valve, 55 heat storage heat exchanger, 56 heat storage medium, 57
Heat storage tank, 58 refrigerant gas pump, 59 four-way valve for heat storage,
60 opening / closing mechanism, 61 opening / closing mechanism, 62 opening / closing mechanism, 63
Heat storage heat exchanger, 64 Heat storage heat exchanger, 65 opening / closing mechanism, 66 opening / closing mechanism, 67 opening / closing mechanism, 68 opening / closing mechanism, 69 opening / closing mechanism, 70 opening / closing mechanism, 71 opening / closing mechanism, 72 opening / closing mechanism, 73 diaphragm device, 75 Expansion device, 76 opening and closing mechanism, 77 low temperature heat source, 78 high temperature heat source, 79 intermediate pressure receiver, 81 high temperature heat source, 82 expansion device, 83 high pressure composition adjuster, 84 intermediate pressure composition adjustment device, 85 opening and closing mechanism, 86 opening and closing mechanism, 87 Throttle device for detecting saturated temperature, 91 Throttle device, 94 Heat exchanger for heating, 95 Heat exchanger for cooling, 96 Throttle device for heating, 9
7 Throttle device for bypass, 98 Throttle device for cooling, 20
0 temperature sensor, 201 temperature sensor, 202 temperature sensor, 203 controller, 204 pressure sensor, 205
Temperature sensor, 206 pressure sensor, 207 temperature sensor, 208 pressure sensor, 209 temperature sensor, 210
Pressure sensor, 211 temperature sensor, 212 pressure sensor, 213 temperature sensor, 214 pressure sensor, 215
Temperature sensor, 216 refrigerant amount detection means, 217 temperature sensor, 218 pressure sensor, 219 temperature sensor, 2
20 controller, 221 controller, 222 pressure sensor,
223 Temperature sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷 秀一 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 河西 智彦 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 隅田 嘉裕 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 中央研究所内 (72)発明者 飯島 等 静岡市小鹿三丁目18番1号 三菱電機株 式会社 住環境エンジニアリング統括セ ンター内 (56)参考文献 特開 平6−101912(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 F25B 5/00 F25B 13/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shuichi Tani 6-5-66, Wakayama City, Tokyo Mitsubishi Electric Corporation Wakayama Works (72) Inventor Tomohiko Kawanishi 6-5-66, Terahira, Wakayama City Mitsubishi Electric Wakayama Works, Ltd. (72) Inventor Yoshihiro Sumida 8-1-1, Tsukaguchi-Honmachi, Amagasaki City Mitsubishi Electric Corporation Central Research Laboratory (72) Inventor, etc. 3-181-1, Oka, Shizuoka City Mitsubishi Electric Corporation (56) References JP-A-6-101912 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 1/00 F25B 5/00 F25B 13 / 00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、絞り装置及び蒸発器の
各機器を順次接続して冷媒を循環させる冷媒回路を形成
させ、冷媒に数種のハイドロフルオロカーボンを混合し
た非共沸混合冷媒を用いる冷媒循環システムにおいて、
前記圧縮機吐出部から前記冷媒回路の低圧側構成機器ま
たは低圧側配管の少なくとも1ケ所へ接続され冷媒液を
冷媒液寝込部分にバイパスするバイパス管を設け、前記
冷媒システム起動時に前記低圧側構成機器または前記低
圧側配管内の前記冷媒液寝込部分に、前記圧縮機からの
吐出冷媒を吹き込むことを特徴とする冷媒循環システ
ム。
1. A refrigerant circuit for circulating a refrigerant by sequentially connecting a compressor, a condenser, a throttle device, and an evaporator to form a non-azeotropic mixed refrigerant in which several types of hydrofluorocarbons are mixed with the refrigerant. In the refrigerant circulation system used,
The refrigerant liquid is connected from the compressor discharge section to at least one portion of low-pressure side components of the refrigerant circuit or low-pressure side piping.
Characterized in that a bypass pipe for bypassing the refrigerant fluid in bed portion provided on the refrigerant liquid in bed portion of the low-pressure side constituent devices or in the low-pressure side pipe when the refrigerant system startup, blown refrigerant discharged from the compressor Refrigerant circulation system.
【請求項2】 バイパス管に開閉機構を設け、前記開閉
機構は起動時に開放されることを特徴とする請求項1に
記載の冷媒循環システム。
2. An opening and closing mechanism is provided in a bypass pipe, and said opening and closing mechanism is provided.
2. The mechanism according to claim 1, wherein the mechanism is opened at startup.
The refrigerant circulation system according to claim 1.
【請求項3】 開閉機構を開閉させて、冷媒を冷媒回路
内の各機器を循環させながら組成を調整することを特徴
とする請求項2に記載の循環システム。
3. An opening and closing mechanism for opening and closing the opening and closing mechanism to allow the refrigerant to flow through the refrigerant circuit.
It is characterized by adjusting the composition while circulating each device in the
The circulation system according to claim 2, wherein
JP06116966A 1994-05-30 1994-05-30 Refrigerant circulation system Expired - Lifetime JP3140908B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP06116966A JP3140908B2 (en) 1994-05-30 1994-05-30 Refrigerant circulation system
EP95101830A EP0685692B1 (en) 1994-05-30 1995-02-10 Refrigerant circulating system
DE69533120T DE69533120D1 (en) 1994-05-30 1995-02-10 Coolant circulation system
CNB951026712A CN1135341C (en) 1994-05-30 1995-02-10 Refrigerating circulating system and refrigerating air conditioning device
US08/681,488 US5987907A (en) 1994-05-30 1996-07-23 Refrigerant circulating system
US08/957,738 US6032473A (en) 1994-05-30 1997-10-24 Refrigerant circulating system
CNB021275335A CN1201124C (en) 1994-05-30 2002-07-27 Refrigeration circulation system and freezing and air conditioner
CNB021275343A CN1201125C (en) 1994-05-30 2002-07-27 Refrigeration circulation system and freezing and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06116966A JP3140908B2 (en) 1994-05-30 1994-05-30 Refrigerant circulation system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000141563A Division JP2000356420A (en) 2000-01-01 2000-05-15 System for circulating refrigerant

Publications (2)

Publication Number Publication Date
JPH07324828A JPH07324828A (en) 1995-12-12
JP3140908B2 true JP3140908B2 (en) 2001-03-05

Family

ID=14700164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06116966A Expired - Lifetime JP3140908B2 (en) 1994-05-30 1994-05-30 Refrigerant circulation system

Country Status (1)

Country Link
JP (1) JP3140908B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548502B2 (en) * 2008-03-24 2010-09-22 三菱電機株式会社 Refrigeration equipment
US8850847B2 (en) 2009-05-04 2014-10-07 Lg Electronics Inc. Air conditioner
JP6309739B2 (en) * 2013-10-31 2018-04-11 シャープ株式会社 Air conditioner
CN107152808A (en) * 2017-06-28 2017-09-12 中山阿瑞德电器设备有限公司 A kind of circulating with choke cryogenic refrigeration system of multicomponent mixture work medium
CN108007017B (en) * 2017-11-02 2023-08-18 珠海格力电器股份有限公司 Air source heat pump system and control method thereof
JP2020128858A (en) * 2019-02-12 2020-08-27 株式会社富士通ゼネラル Air conditioner
JP7197815B1 (en) 2021-09-30 2022-12-28 ダイキン工業株式会社 refrigeration cycle equipment

Also Published As

Publication number Publication date
JPH07324828A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
US9322562B2 (en) Air-conditioning apparatus
US5987907A (en) Refrigerant circulating system
JP3331102B2 (en) Refrigeration cycle capacity control device
JP4734161B2 (en) Refrigeration cycle apparatus and air conditioner
US6212892B1 (en) Air conditioner and heat pump with dehumidification
JP6546813B2 (en) Air conditioner
JPH11142010A (en) Refrigeration air conditioner
JP3140908B2 (en) Refrigerant circulation system
JP3140923B2 (en) Refrigerant circulation system and refrigeration / air conditioner
EP0622594B1 (en) Air-conditioner
JP2002228282A (en) Refrigerating device
JPH11173698A (en) Refrigeration cycle
JP2000356420A (en) System for circulating refrigerant
JP2004020070A (en) Heat pump type cold-hot water heater
JP2748801B2 (en) Air conditioner
JP3055854B2 (en) Refrigeration cycle and control method thereof
JP2002357353A (en) Air conditioner
JP2001263857A (en) Cooling/heating water heater and its control method
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JP2875665B2 (en) Air conditioner
JPH06159743A (en) Heat accumulation type cooling device
JPH09138018A (en) Heat pump apparatus
JP3395449B2 (en) Air conditioner
JPH07139833A (en) Air conditioner
JPH04273954A (en) Refrigerant amount adjusting device in refrigerating cycle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 13

EXPY Cancellation because of completion of term